thys2/BasicIdentities.thy
changeset 488 370dae790b30
parent 486 f5b96a532c85
child 489 2b5b3f83e2b6
--- a/thys2/BasicIdentities.thy	Wed Apr 13 18:57:24 2022 +0100
+++ b/thys2/BasicIdentities.thy	Wed Apr 13 22:20:08 2022 +0100
@@ -53,12 +53,24 @@
      (if x \<in> acc then rdistinct xs  acc 
       else x # (rdistinct xs  ({x} \<union> acc)))"
 
+lemma rdistinct1:
+  assumes "a \<in> acc"
+  shows "a \<notin> set (rdistinct rs acc)"
+  using assms
+  apply(induct rs arbitrary: acc a)
+   apply(auto)
+  done
+
+
 lemma rdistinct_does_the_job:
   shows "distinct (rdistinct rs s)"
   apply(induct rs arbitrary: s)
-   apply simp
+  apply simp
   apply simp
-  sorry
+  apply(auto)
+  by (simp add: rdistinct1)
+
+
 
 
 lemma rdistinct_concat:
@@ -110,24 +122,18 @@
   done
   
 
-lemma rdistinct_concat_general:
-  shows "rdistinct (rs1 @ rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
-  sorry
+
+
+
+lemma rdistinct_set_equality1:
+  shows "set (rdistinct rs acc) = set rs - acc"
+  apply(induct rs acc rule: rdistinct.induct)
+   apply(auto)
+  done
 
 lemma rdistinct_set_equality:
   shows "set (rdistinct rs {}) = set rs"
-  sorry
-
-lemma distinct_once_enough:
-  shows "rdistinct (rs @ rsa) {} = rdistinct (rdistinct rs {} @ rsa) {}"
-  apply(subgoal_tac "distinct (rdistinct rs {})")
-   apply(subgoal_tac 
-" rdistinct (rdistinct rs {} @ rsa) {} = rdistinct rs {} @ (rdistinct rsa (set rs))")
-  apply(simp only:)
-  using rdistinct_concat_general apply blast
-  apply (simp add: distinct_rdistinct_append rdistinct_set_equality)
-  by (simp add: rdistinct_does_the_job)
-  
+  by (simp add: rdistinct_set_equality1)
 
 
 fun rflts :: "rrexp list \<Rightarrow> rrexp list"
@@ -429,14 +435,97 @@
 
 
 
+fun
+  RL :: "rrexp \<Rightarrow> string set"
+where
+  "RL (RZERO) = {}"
+| "RL (RONE) = {[]}"
+| "RL (RCHAR c) = {[c]}"
+| "RL (RSEQ r1 r2) = (RL r1) ;; (RL r2)"
+| "RL (RALTS rs) = (\<Union> (set (map RL rs)))"
+| "RL (RSTAR r) = (RL r)\<star>"
+
+
+lemma RL_rnullable:
+  shows "rnullable r = ([] \<in> RL r)"
+  apply(induct r)
+  apply(auto simp add: Sequ_def)
+  done
+
+lemma RL_rder:
+  shows "RL (rder c r) = Der c (RL r)"
+  apply(induct r)
+  apply(auto simp add: Sequ_def Der_def)
+        apply (metis append_Cons)
+  using RL_rnullable apply blast
+  apply (metis append_eq_Cons_conv)
+  apply (metis append_Cons)
+  apply (metis RL_rnullable append_eq_Cons_conv)
+  apply (metis Star.step append_Cons)
+  using Star_decomp by auto
+
+
+
+
+lemma RL_rsimp_RSEQ:
+  shows "RL (rsimp_SEQ r1 r2) = (RL r1 ;; RL r2)"
+  apply(induct r1 r2 rule: rsimp_SEQ.induct)
+  apply(simp_all)
+  done
+
+lemma RL_rsimp_RALTS:
+  shows "RL (rsimp_ALTs rs) = (\<Union> (set (map RL rs)))"
+  apply(induct rs rule: rsimp_ALTs.induct)
+  apply(simp_all)
+  done
+
+lemma RL_rsimp_rdistinct:
+  shows "(\<Union> (set (map RL (rdistinct rs {})))) = (\<Union> (set (map RL rs)))"
+  apply(auto)
+  apply (metis rdistinct_set_equality)
+  by (metis rdistinct_set_equality)
+
+lemma RL_rsimp_rflts:
+  shows "(\<Union> (set (map RL (rflts rs)))) = (\<Union> (set (map RL rs)))"
+  apply(induct rs rule: rflts.induct)
+  apply(simp_all)
+  done
+
+lemma RL_rsimp:
+  shows "RL r = RL (rsimp r)"
+  apply(induct r rule: rsimp.induct)
+       apply(auto simp add: Sequ_def RL_rsimp_RSEQ)
+  using RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts apply auto[1]
+  by (smt (verit, del_insts) RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts UN_E image_iff list.set_map)
+
+lemma RL_rders:
+  shows "RL (rders_simp r s) = RL (rders r s)"
+  apply(induct s arbitrary: r rule: rev_induct)
+   apply(simp)
+  apply(simp add: rders_append rders_simp_append) 
+  apply(subst RL_rsimp[symmetric])
+  using RL_rder by force
+  
+
+lemma der_simp_nullability:
+  shows "rnullable r = rnullable (rsimp r)"
+  using RL_rnullable RL_rsimp by auto
+  
 
 lemma ders_simp_nullability:
   shows "rnullable (rders r s) = rnullable (rders_simp r s)"
-  sorry
+  apply(induct s arbitrary: r rule: rev_induct)
+   apply(simp)
+  apply(simp add: rders_append rders_simp_append)
+  apply(simp only: RL_rnullable)
+  apply(simp only: RL_rder)
+  apply(subst RL_rsimp[symmetric])
+  apply(simp only: RL_rder)
+  by (simp add: RL_rders)
 
-lemma der_simp_nullability:
-  shows "rnullable r = rnullable (rsimp r)"
-  sorry
+
+
+
 
 
 lemma  first_elem_seqder:
@@ -459,21 +548,6 @@
 
 
 
-lemma seq_ders_closed_form1:
-  shows "\<exists>Ss. rders_simp (RSEQ r1 r2) [c] = rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # 
-(map ( rders_simp r2 ) Ss)))"
-  apply(case_tac "rnullable r1")
-   apply(subgoal_tac " rders_simp (RSEQ r1 r2) [c] = 
-rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [[c]])))")
-    prefer 2
-    apply (simp add: rsimp_idem)
-   apply(rule_tac x = "[[c]]" in exI)
-   apply simp
-  apply(subgoal_tac  " rders_simp (RSEQ r1 r2) [c] = 
-rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [])))")
-   apply blast
-  apply(simp add: rsimp_idem)
-  sorry
 
 
 
@@ -632,10 +706,26 @@
   apply simp
   by (metis good1.cases good1.intros(1) goods.cases list.distinct(1) list.inject list.set_intros(2) rrexp.distinct(15) rrexp.distinct(29) rrexp.distinct(7) rrexp.inject(3) rrexp.simps(26) rrexp.simps(30))
 
+lemma rsimp_good10:
+  shows "good1 (rsimp r)"
+  apply(induct r)
+       apply simp
+  
+       apply (simp add: good1.intros(2))
+      apply simp
+
+      apply (simp add: good1.intros(3))
+  
+  apply (simp add: good1.intros(4))
+  sledgehammer
+
+  sorry
+
 lemma rsimp_good1:
   shows "rsimp r = r1 \<Longrightarrow> good1 r1"
+  using rsimp_good10 by blast
 
-  sorry
+  
 
 lemma rsimp_no_dup:
   shows "rsimp r = RALTS rs \<Longrightarrow> distinct rs"
@@ -740,6 +830,22 @@
 
 
 
+lemma rdistinct_concat_general:
+  shows "rdistinct (rs1 @ rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))"
+  
+  sorry
+
+lemma distinct_once_enough:
+  shows "rdistinct (rs @ rsa) {} = rdistinct (rdistinct rs {} @ rsa) {}"
+  apply(subgoal_tac "distinct (rdistinct rs {})")
+   apply(subgoal_tac 
+" rdistinct (rdistinct rs {} @ rsa) {} = rdistinct rs {} @ (rdistinct rsa (set rs))")
+  apply(simp only:)
+  using rdistinct_concat_general apply blast
+  apply (simp add: distinct_rdistinct_append rdistinct_set_equality)
+  by (simp add: rdistinct_does_the_job)
+  
+
 lemma simp_flatten:
   shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))"
   apply simp