--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/thys4/posix/ClosedFormsBounds.thy Mon Aug 29 23:16:28 2022 +0100
@@ -0,0 +1,691 @@
+
+theory ClosedFormsBounds
+ imports "GeneralRegexBound" "ClosedForms"
+begin
+lemma alts_ders_lambda_shape_ders:
+ shows "\<forall>r \<in> set (map (\<lambda>r. rders_simp r ( s)) rs ). \<exists>r1 \<in> set rs. r = rders_simp r1 s"
+ by (simp add: image_iff)
+
+lemma rlist_bound:
+ assumes "\<forall>r \<in> set rs. rsize r \<le> N"
+ shows "rsizes rs \<le> N * (length rs)"
+ using assms
+ apply(induct rs)
+ apply simp
+ by simp
+
+lemma alts_closed_form_bounded:
+ assumes "\<forall>r \<in> set rs. \<forall>s. rsize (rders_simp r s) \<le> N"
+ shows "rsize (rders_simp (RALTS rs) s) \<le> max (Suc (N * (length rs))) (rsize (RALTS rs))"
+proof (cases s)
+ case Nil
+ then show "rsize (rders_simp (RALTS rs) s) \<le> max (Suc (N * length rs)) (rsize (RALTS rs))"
+ by simp
+next
+ case (Cons a s)
+
+ from assms have "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (a # s)) rs ). rsize r \<le> N"
+ by (metis alts_ders_lambda_shape_ders)
+ then have a: "rsizes (map (\<lambda>r. rders_simp r (a # s)) rs ) \<le> N * (length rs)"
+ by (metis length_map rlist_bound)
+
+ have "rsize (rders_simp (RALTS rs) (a # s))
+ = rsize (rsimp (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs)))"
+ by (metis alts_closed_form_variant list.distinct(1))
+ also have "... \<le> rsize (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs))"
+ using rsimp_mono by blast
+ also have "... = Suc (rsizes (map (\<lambda>r. rders_simp r (a # s)) rs))"
+ by simp
+ also have "... \<le> Suc (N * (length rs))"
+ using a by blast
+ finally have "rsize (rders_simp (RALTS rs) (a # s)) \<le> max (Suc (N * length rs)) (rsize (RALTS rs))"
+ by auto
+ then show ?thesis using local.Cons by simp
+qed
+
+lemma alts_simp_ineq_unfold:
+ shows "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct (rflts (map rsimp rs)) {}))"
+ using rsimp_aalts_smaller by auto
+
+
+lemma rdistinct_mono_list:
+ shows "rsizes (rdistinct (x5 @ rs) rset) \<le> rsizes x5 + rsizes (rdistinct rs ((set x5 ) \<union> rset))"
+ apply(induct x5 arbitrary: rs rset)
+ apply simp
+ apply(case_tac "a \<in> rset")
+ apply simp
+ apply (simp add: add.assoc insert_absorb trans_le_add2)
+ apply simp
+ by (metis Un_insert_right)
+
+
+lemma flts_size_reduction_alts:
+ assumes a: "\<And>noalts_set alts_set corr_set.
+ (\<forall>r\<in>noalts_set. \<forall>xs. r \<noteq> RALTS xs) \<and>
+ (\<forall>a\<in>alts_set. \<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set) \<Longrightarrow>
+ Suc (rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set)))
+ \<le> Suc (rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set))))"
+ and b: "\<forall>r\<in>noalts_set. \<forall>xs. r \<noteq> RALTS xs"
+ and c: "\<forall>a\<in>alts_set. \<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set"
+ and d: "a = RALTS x5"
+ shows "rsizes (rdistinct (rflts (a # rs)) (noalts_set \<union> corr_set))
+ \<le> rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))"
+
+ apply(case_tac "a \<in> alts_set")
+ using a b c d
+ apply simp
+ apply(subgoal_tac "set x5 \<subseteq> corr_set")
+ apply(subst rdistinct_concat)
+ apply auto[1]
+ apply presburger
+ apply fastforce
+ using a b c d
+ apply (subgoal_tac "a \<notin> noalts_set")
+ prefer 2
+ apply blast
+ apply simp
+ apply(subgoal_tac "rsizes (rdistinct (x5 @ rflts rs) (noalts_set \<union> corr_set))
+ \<le> rsizes x5 + rsizes (rdistinct (rflts rs) ((set x5) \<union> (noalts_set \<union> corr_set)))")
+ prefer 2
+ using rdistinct_mono_list apply presburger
+ apply(subgoal_tac "insert (RALTS x5) (noalts_set \<union> alts_set) = noalts_set \<union> (insert (RALTS x5) alts_set)")
+ apply(simp only:)
+ apply(subgoal_tac "rsizes x5 + rsizes (rdistinct (rflts rs) (noalts_set \<union> (corr_set \<union> (set x5)))) \<le>
+ rsizes x5 + rsizes (rdistinct rs (insert RZERO (noalts_set \<union> insert (RALTS x5) alts_set)))")
+
+ apply (simp add: Un_left_commute inf_sup_aci(5))
+ apply(subgoal_tac "rsizes (rdistinct (rflts rs) (noalts_set \<union> (corr_set \<union> set x5))) \<le>
+ rsizes (rdistinct rs (insert RZERO (noalts_set \<union> insert (RALTS x5) alts_set)))")
+ apply linarith
+ apply(subgoal_tac "\<forall>r \<in> insert (RALTS x5) alts_set. \<exists>xs1.( r = RALTS xs1 \<and> set xs1 \<subseteq> corr_set \<union> set x5)")
+ apply presburger
+ apply (meson insert_iff sup.cobounded2 sup.coboundedI1)
+ by blast
+
+
+lemma flts_vs_nflts1:
+ assumes "\<forall>r \<in> noalts_set. \<forall>xs. r \<noteq> RALTS xs"
+ and "\<forall>a \<in> alts_set. (\<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set)"
+ shows "rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set))
+ \<le> rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set)))"
+ using assms
+ apply(induct rs arbitrary: noalts_set alts_set corr_set)
+ apply simp
+ apply(case_tac a)
+ apply(case_tac "RZERO \<in> noalts_set")
+ apply simp
+ apply(subgoal_tac "RZERO \<notin> alts_set")
+ apply simp
+ apply fastforce
+ apply(case_tac "RONE \<in> noalts_set")
+ apply simp
+ apply(subgoal_tac "RONE \<notin> alts_set")
+ prefer 2
+ apply fastforce
+ apply(case_tac "RONE \<in> corr_set")
+ apply(subgoal_tac "rflts (a # rs) = RONE # rflts rs")
+ apply(simp only:)
+ apply(subgoal_tac "rdistinct (RONE # rflts rs) (noalts_set \<union> corr_set) =
+ rdistinct (rflts rs) (noalts_set \<union> corr_set)")
+ apply(simp only:)
+ apply(subgoal_tac "rdistinct (RONE # rs) (insert RZERO (noalts_set \<union> alts_set)) =
+ RONE # (rdistinct rs (insert RONE (insert RZERO (noalts_set \<union> alts_set)))) ")
+ apply(simp only:)
+ apply(subgoal_tac "rdistinct (rflts rs) (noalts_set \<union> corr_set) =
+ rdistinct (rflts rs) (insert RONE (noalts_set \<union> corr_set))")
+ apply (simp only:)
+ apply(subgoal_tac "insert RONE (noalts_set \<union> corr_set) = (insert RONE noalts_set) \<union> corr_set")
+ apply(simp only:)
+ apply(subgoal_tac "insert RONE (insert RZERO (noalts_set \<union> alts_set)) =
+ insert RZERO ((insert RONE noalts_set) \<union> alts_set)")
+ apply(simp only:)
+ apply(subgoal_tac "rsizes (rdistinct rs (insert RZERO (insert RONE noalts_set \<union> alts_set)))
+ \<le> rsizes (RONE # rdistinct rs (insert RZERO (insert RONE noalts_set \<union> alts_set)))")
+ apply (smt (verit, ccfv_threshold) dual_order.trans insertE rrexp.distinct(17))
+ apply (metis (no_types, opaque_lifting) le_add_same_cancel2 list.simps(9) sum_list.Cons zero_le)
+ apply fastforce
+ apply fastforce
+ apply (metis Un_iff insert_absorb)
+ apply (metis UnE insertE insert_is_Un rdistinct.simps(2) rrexp.distinct(1))
+ apply (meson UnCI rdistinct.simps(2))
+ using rflts.simps(4) apply presburger
+ apply simp
+ apply(subgoal_tac "insert RONE (noalts_set \<union> corr_set) = (insert RONE noalts_set) \<union> corr_set")
+ apply(simp only:)
+ apply (metis Un_insert_left insertE rrexp.distinct(17))
+ apply fastforce
+ apply(case_tac "a \<in> noalts_set")
+ apply simp
+ apply(subgoal_tac "a \<notin> alts_set")
+ prefer 2
+ apply blast
+ apply(case_tac "a \<in> corr_set")
+ apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
+ prefer 2
+ apply fastforce
+ apply(simp only:)
+ apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
+
+ apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
+ apply fastforce
+ apply simp
+ apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
+ apply(simp only:)
+ apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
+ apply(simp only:)
+ apply (metis insertE nonalt.simps(1) nonalt.simps(4))
+ apply blast
+
+ apply fastforce
+ apply force
+ apply simp
+ apply (metis Un_insert_left insertE nonalt.simps(1) nonalt.simps(4))
+ apply(case_tac "a \<in> noalts_set")
+ apply simp
+ apply(subgoal_tac "a \<notin> alts_set")
+ prefer 2
+ apply blast
+ apply(case_tac "a \<in> corr_set")
+ apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
+ prefer 2
+ apply fastforce
+ apply(simp only:)
+ apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
+
+ apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
+ apply fastforce
+ apply simp
+ apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
+ apply(simp only:)
+ apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
+ apply(simp only:)
+
+ apply (metis insertE rrexp.distinct(31))
+ apply blast
+ apply fastforce
+ apply force
+ apply simp
+
+ apply (metis Un_insert_left insertE rrexp.distinct(31))
+
+ using Suc_le_mono flts_size_reduction_alts apply presburger
+ apply(case_tac "a \<in> noalts_set")
+ apply simp
+ apply(subgoal_tac "a \<notin> alts_set")
+ prefer 2
+ apply blast
+ apply(case_tac "a \<in> corr_set")
+ apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
+ prefer 2
+ apply fastforce
+ apply(simp only:)
+ apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
+
+ apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
+ apply fastforce
+ apply simp
+ apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
+ apply(simp only:)
+ apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
+ apply(simp only:)
+ apply (metis insertE rrexp.distinct(37))
+
+ apply blast
+
+ apply fastforce
+ apply force
+ apply simp
+ apply (metis Un_insert_left insert_iff rrexp.distinct(37))
+ apply(case_tac "a \<in> noalts_set")
+ apply simp
+ apply(subgoal_tac "a \<notin> alts_set")
+ prefer 2
+ apply blast
+ apply(case_tac "a \<in> corr_set")
+ apply(subgoal_tac "noalts_set \<union> corr_set = insert a ( noalts_set \<union> corr_set)")
+ prefer 2
+ apply fastforce
+ apply(simp only:)
+ apply(subgoal_tac "rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set))) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO (noalts_set \<union> alts_set)))")
+
+ apply(subgoal_tac "rsizes (rdistinct (rflts (a # rs)) ((insert a noalts_set) \<union> corr_set)) \<le>
+ rsizes (rdistinct (a # rs) (insert RZERO ((insert a noalts_set) \<union> alts_set)))")
+ apply fastforce
+ apply simp
+ apply(subgoal_tac "(insert a (noalts_set \<union> alts_set)) = (insert a noalts_set) \<union> alts_set")
+ apply(simp only:)
+ apply(subgoal_tac "noalts_set \<union> corr_set = (insert a noalts_set) \<union> corr_set")
+ apply(simp only:)
+ apply (metis insertE nonalt.simps(1) nonalt.simps(7))
+ apply blast
+ apply blast
+ apply force
+ apply(auto)
+ by (metis Un_insert_left insert_iff rrexp.distinct(39))
+
+
+lemma flts_vs_nflts:
+ assumes "\<forall>r \<in> noalts_set. \<forall>xs. r \<noteq> RALTS xs"
+ and "\<forall>a \<in> alts_set. (\<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set)"
+ shows "rsizes (rdistinct (rflts rs) (noalts_set \<union> corr_set))
+ \<le> rsizes (rdistinct rs (insert RZERO (noalts_set \<union> alts_set)))"
+ by (simp add: assms flts_vs_nflts1)
+
+lemma distinct_simp_ineq_general:
+ assumes "rsimp ` no_simp = has_simp" "finite no_simp"
+ shows "rsizes (rdistinct (map rsimp rs) has_simp) \<le> rsizes (rdistinct rs no_simp)"
+ using assms
+ apply(induct rs no_simp arbitrary: has_simp rule: rdistinct.induct)
+ apply simp
+ apply(auto)
+ using add_le_mono rsimp_mono by presburger
+
+lemma larger_acc_smaller_distinct_res0:
+ assumes "ss \<subseteq> SS"
+ shows "rsizes (rdistinct rs SS) \<le> rsizes (rdistinct rs ss)"
+ using assms
+ apply(induct rs arbitrary: ss SS)
+ apply simp
+ by (metis distinct_early_app1 rdistinct_smaller)
+
+lemma without_flts_ineq:
+ shows "rsizes (rdistinct (rflts rs) {}) \<le> rsizes (rdistinct rs {})"
+proof -
+ have "rsizes (rdistinct (rflts rs) {}) \<le> rsizes (rdistinct rs (insert RZERO {}))"
+ by (metis empty_iff flts_vs_nflts sup_bot_left)
+ also have "... \<le> rsizes (rdistinct rs {})"
+ by (simp add: larger_acc_smaller_distinct_res0)
+ finally show ?thesis
+ by blast
+qed
+
+
+lemma distinct_simp_ineq:
+ shows "rsizes (rdistinct (map rsimp rs) {}) \<le> rsizes (rdistinct rs {})"
+ using distinct_simp_ineq_general by blast
+
+
+lemma alts_simp_control:
+ shows "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct rs {}))"
+proof -
+ have "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct (rflts (map rsimp rs)) {}))"
+ using alts_simp_ineq_unfold by auto
+ moreover have "\<dots> \<le> Suc (rsizes (rdistinct (map rsimp rs) {}))"
+ using without_flts_ineq by blast
+ ultimately show "rsize (rsimp (RALTS rs)) \<le> Suc (rsizes (rdistinct rs {}))"
+ by (meson Suc_le_mono distinct_simp_ineq le_trans)
+qed
+
+
+lemma larger_acc_smaller_distinct_res:
+ shows "rsizes (rdistinct rs (insert a ss)) \<le> rsizes (rdistinct rs ss)"
+ by (simp add: larger_acc_smaller_distinct_res0 subset_insertI)
+
+lemma triangle_inequality_distinct:
+ shows "rsizes (rdistinct (a # rs) ss) \<le> rsize a + rsizes (rdistinct rs ss)"
+ apply(case_tac "a \<in> ss")
+ apply simp
+ by (simp add: larger_acc_smaller_distinct_res)
+
+
+lemma distinct_list_size_len_bounded:
+ assumes "\<forall>r \<in> set rs. rsize r \<le> N" "length rs \<le> lrs"
+ shows "rsizes rs \<le> lrs * N "
+ using assms
+ by (metis rlist_bound dual_order.trans mult.commute mult_le_mono1)
+
+
+
+lemma rdistinct_same_set:
+ shows "r \<in> set rs \<longleftrightarrow> r \<in> set (rdistinct rs {})"
+ apply(induct rs)
+ apply simp
+ by (metis rdistinct_set_equality)
+
+(* distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size *)
+lemma distinct_list_rexp_upto:
+ assumes "\<forall>r\<in> set rs. (rsize r) \<le> N"
+ shows "rsizes (rdistinct rs {}) \<le> (card (sizeNregex N)) * N"
+
+ apply(subgoal_tac "distinct (rdistinct rs {})")
+ prefer 2
+ using rdistinct_does_the_job apply blast
+ apply(subgoal_tac "length (rdistinct rs {}) \<le> card (sizeNregex N)")
+ apply(rule distinct_list_size_len_bounded)
+ using assms
+ apply (meson rdistinct_same_set)
+ apply blast
+ apply(subgoal_tac "\<forall>r \<in> set (rdistinct rs {}). rsize r \<le> N")
+ prefer 2
+ using assms
+ apply (meson rdistinct_same_set)
+ apply(subgoal_tac "length (rdistinct rs {}) = card (set (rdistinct rs {}))")
+ prefer 2
+ apply (simp add: distinct_card)
+ apply(simp)
+ by (metis card_mono finite_size_n mem_Collect_eq sizeNregex_def subsetI)
+
+
+lemma star_control_bounded:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows "rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates s r [[c]])) {})
+ \<le> (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))"
+ by (smt (verit) add_Suc_shift add_mono_thms_linordered_semiring(3) assms distinct_list_rexp_upto image_iff list.set_map plus_nat.simps(2) rsize.simps(5))
+
+
+lemma star_closed_form_bounded:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows "rsize (rders_simp (RSTAR r) s) \<le>
+ max ((Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r))))) (rsize (RSTAR r))"
+proof(cases s)
+ case Nil
+ then show "rsize (rders_simp (RSTAR r) s)
+ \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))"
+ by simp
+next
+ case (Cons a list)
+ then have "rsize (rders_simp (RSTAR r) s) =
+ rsize (rsimp (RALTS ((map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])))))"
+ using star_closed_form by fastforce
+ also have "... \<le> Suc (rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])) {}))"
+ using alts_simp_control by blast
+ also have "... \<le> Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))"
+ using star_control_bounded[OF assms] by (metis add_mono le_add1 mult_Suc plus_1_eq_Suc)
+ also have "... \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))"
+ by simp
+ finally show ?thesis by simp
+qed
+
+
+thm ntimes_closed_form
+
+thm rsize.simps
+
+lemma nupdates_snoc:
+ shows " (nupdates (xs @ [x]) r optlist) = nupdate x r (nupdates xs r optlist)"
+ by (simp add: nupdates_append)
+
+lemma nupdate_elems:
+ shows "\<forall>opt \<in> set (nupdate c r optlist). opt = None \<or> (\<exists>s n. opt = Some (s, n))"
+ using nonempty_string.cases by auto
+
+lemma nupdates_elems:
+ shows "\<forall>opt \<in> set (nupdates s r optlist). opt = None \<or> (\<exists>s n. opt = Some (s, n))"
+ by (meson nonempty_string.cases)
+
+
+lemma opterm_optlist_result_shape:
+ shows "\<forall>r' \<in> set (map (optermsimp r) optlist). r' = RZERO \<or> (\<exists>s m. r' = RSEQ (rders_simp r s) (RNTIMES r m))"
+ apply(induct optlist)
+ apply simp
+ apply(case_tac a)
+ apply simp+
+ by fastforce
+
+
+lemma opterm_optlist_result_shape2:
+ shows "\<And>optlist. \<forall>r' \<in> set (map (optermsimp r) optlist). r' = RZERO \<or> (\<exists>s m. r' = RSEQ (rders_simp r s) (RNTIMES r m))"
+ using opterm_optlist_result_shape by presburger
+
+
+lemma nupdate_n_leq_n:
+ shows "\<forall>r \<in> set (nupdate c' r [Some ([c], n)]). r = None \<or>( \<exists>s' m. r = Some (s', m) \<and> m \<le> n)"
+ apply(case_tac n)
+ apply simp
+ apply simp
+ done
+(*
+lemma nupdate_induct_leqn:
+ shows "\<lbrakk>\<forall>opt \<in> set optlist. opt = None \<or> (\<exists>s' m. opt = Some(s', m) \<and> m \<le> n) \<rbrakk> \<Longrightarrow>
+ \<forall>opt \<in> set (nupdate c' r optlist). opt = None \<or> (\<exists>s' m. opt = Some (s', m) \<and> m \<le> n)"
+ apply (case_tac optlist)
+ apply simp
+ apply(case_tac a)
+ apply simp
+ sledgehammer
+*)
+
+
+lemma nupdates_n_leq_n:
+ shows "\<forall>r \<in> set (nupdates s r [Some ([c], n)]). r = None \<or>( \<exists>s' m. r = Some (s', m) \<and> m \<le> n)"
+ apply(induct s rule: rev_induct)
+ apply simp
+ apply(subst nupdates_append)
+ by (metis nupdates_elems_leqn nupdates_snoc)
+
+
+
+lemma ntimes_closed_form_list_elem_shape:
+ shows "\<forall>r' \<in> set (map (optermsimp r) (nupdates s r [Some ([c], n)])).
+r' = RZERO \<or> (\<exists>s' m. r' = RSEQ (rders_simp r s') (RNTIMES r m) \<and> m \<le> n)"
+ apply(insert opterm_optlist_result_shape2)
+ apply(case_tac s)
+ apply(auto)
+ apply (metis rders_simp_one_char)
+ by (metis case_prod_conv nupdates.simps(2) nupdates_n_leq_n option.simps(4) option.simps(5))
+
+
+lemma ntimes_trivial1:
+ shows "rsize RZERO \<le> N + rsize (RNTIMES r n)"
+ by simp
+
+
+lemma ntimes_trivial20:
+ shows "m \<le> n \<Longrightarrow> rsize (RNTIMES r m) \<le> rsize (RNTIMES r n)"
+ by simp
+
+
+lemma ntimes_trivial2:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows " r' = RSEQ (rders_simp r s1) (RNTIMES r m) \<and> m \<le> n
+ \<Longrightarrow> rsize r' \<le> Suc (N + rsize (RNTIMES r n))"
+ apply simp
+ by (simp add: add_mono_thms_linordered_semiring(1) assms)
+
+lemma ntimes_closed_form_list_elem_bounded:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows "\<forall>r' \<in> set (map (optermsimp r) (nupdates s r [Some ([c], n)])). rsize r' \<le> Suc (N + rsize (RNTIMES r n))"
+ apply(rule ballI)
+ apply(subgoal_tac "r' = RZERO \<or> (\<exists>s' m. r' = RSEQ (rders_simp r s') (RNTIMES r m) \<and> m \<le> n)")
+ prefer 2
+ using ntimes_closed_form_list_elem_shape apply blast
+ apply(case_tac "r' = RZERO")
+ using le_SucI ntimes_trivial1 apply presburger
+ apply(subgoal_tac "\<exists>s1 m. r' = RSEQ (rders_simp r s1) (RNTIMES r m) \<and> m \<le> n")
+ apply(erule exE)+
+ using assms ntimes_trivial2 apply presburger
+ by blast
+
+
+lemma P_holds_after_distinct:
+ assumes "\<forall>r \<in> set rs. P r"
+ shows "\<forall>r \<in> set (rdistinct rs rset). P r"
+ by (simp add: assms rdistinct_set_equality1)
+
+
+
+lemma ntimes_control_bounded:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows "rsizes (rdistinct (map (optermsimp r) (nupdates s r [Some ([c], n)])) {})
+ \<le> (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n)))"
+ apply(subgoal_tac "\<forall>r' \<in> set (rdistinct (map (optermsimp r) (nupdates s r [Some ([c], n)])) {}).
+ rsize r' \<le> Suc (N + rsize (RNTIMES r n))")
+ apply (meson distinct_list_rexp_upto rdistinct_same_set)
+ apply(subgoal_tac "\<forall>r' \<in> set (map (optermsimp r) (nupdates s r [Some ([c], n)])). rsize r' \<le> Suc (N + rsize (RNTIMES r n))")
+ apply (simp add: rdistinct_set_equality)
+ by (metis assms nat_le_linear not_less_eq_eq ntimes_closed_form_list_elem_bounded)
+
+
+
+lemma ntimes_closed_form_bounded0:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows " (rders_simp (RNTIMES r 0) s) = RZERO \<or> (rders_simp (RNTIMES r 0) s) = RNTIMES r 0
+ "
+ apply(induct s)
+ apply simp
+ by (metis always0 list.simps(3) rder.simps(7) rders.simps(2) rders_simp_same_simpders rsimp.simps(3))
+
+lemma ntimes_closed_form_bounded1:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows " rsize (rders_simp (RNTIMES r 0) s) \<le> max (rsize RZERO) (rsize (RNTIMES r 0))"
+
+ by (metis assms max.cobounded1 max.cobounded2 ntimes_closed_form_bounded0)
+
+lemma self_smaller_than_bound:
+ shows "\<forall>s. rsize (rders_simp r s) \<le> N \<Longrightarrow> rsize r \<le> N"
+ apply(drule_tac x = "[]" in spec)
+ apply simp
+ done
+
+lemma ntimes_closed_form_bounded_nil_aux:
+ shows "max (rsize RZERO) (rsize (RNTIMES r 0)) = 1 + rsize r"
+ by auto
+
+lemma ntimes_closed_form_bounded_nil:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows " rsize (rders_simp (RNTIMES r 0) s) \<le> 1 + rsize r"
+ using assms ntimes_closed_form_bounded1 by auto
+
+lemma ntimes_ineq1:
+ shows "(rsize (RNTIMES r n)) \<ge> 1 + rsize r"
+ by simp
+
+lemma ntimes_ineq2:
+ shows "1 + rsize r \<le>
+max ((Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n))))) (rsize (RNTIMES r n))"
+ by (meson le_max_iff_disj ntimes_ineq1)
+
+lemma ntimes_closed_form_bounded:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows "rsize (rders_simp (RNTIMES r (Suc n)) s) \<le>
+ max ((Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n))))) (rsize (RNTIMES r n))"
+proof(cases s)
+ case Nil
+ then show "rsize (rders_simp (RNTIMES r (Suc n)) s)
+ \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * Suc (N + rsize (RNTIMES r n))) (rsize (RNTIMES r n))"
+ by simp
+next
+ case (Cons a list)
+
+ then have "rsize (rders_simp (RNTIMES r (Suc n)) s) =
+ rsize (rsimp (RALTS ((map (optermsimp r) (nupdates list r [Some ([a], n)])))))"
+ using ntimes_closed_form by fastforce
+ also have "... \<le> Suc (rsizes (rdistinct ((map (optermsimp r) (nupdates list r [Some ([a], n)]))) {}))"
+ using alts_simp_control by blast
+ also have "... \<le> Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * (Suc (N + rsize (RNTIMES r n)))"
+ using ntimes_control_bounded[OF assms]
+ by (metis add_mono le_add1 mult_Suc plus_1_eq_Suc)
+ also have "... \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RNTIMES r n))))) * Suc (N + rsize (RNTIMES r n))) (rsize (RNTIMES r n))"
+ by simp
+ finally show ?thesis by simp
+qed
+
+
+lemma ntimes_closed_form_boundedA:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N"
+ shows "\<exists>N'. \<forall>s. rsize (rders_simp (RNTIMES r n) s) \<le> N'"
+ apply(case_tac n)
+ using assms ntimes_closed_form_bounded_nil apply blast
+ using assms ntimes_closed_form_bounded by blast
+
+
+lemma star_closed_form_nonempty_bounded:
+ assumes "\<forall>s. rsize (rders_simp r s) \<le> N" and "s \<noteq> []"
+ shows "rsize (rders_simp (RSTAR r) s) \<le>
+ ((Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r))))) "
+proof(cases s)
+ case Nil
+ then show ?thesis
+ using local.Nil by fastforce
+next
+ case (Cons a list)
+ then have "rsize (rders_simp (RSTAR r) s) =
+ rsize (rsimp (RALTS ((map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])))))"
+ using star_closed_form by fastforce
+ also have "... \<le> Suc (rsizes (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r s1) (RSTAR r)) (star_updates list r [[a]])) {}))"
+ using alts_simp_control by blast
+ also have "... \<le> Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * (Suc (N + rsize (RSTAR r)))"
+ by (smt (z3) add_mono_thms_linordered_semiring(1) assms(1) le_add1 map_eq_conv mult_Suc plus_1_eq_Suc star_control_bounded)
+ also have "... \<le> max (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r))))) * Suc (N + rsize (RSTAR r))) (rsize (RSTAR r))"
+ by simp
+ finally show ?thesis by simp
+qed
+
+
+
+lemma seq_estimate_bounded:
+ assumes "\<forall>s. rsize (rders_simp r1 s) \<le> N1"
+ and "\<forall>s. rsize (rders_simp r2 s) \<le> N2"
+ shows
+ "rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {})
+ \<le> (Suc (N1 + (rsize r2)) + (N2 * card (sizeNregex N2)))"
+proof -
+ have a: "rsizes (rdistinct (map (rders_simp r2) (vsuf s r1)) {}) \<le> N2 * card (sizeNregex N2)"
+ by (metis assms(2) distinct_list_rexp_upto ex_map_conv mult.commute)
+
+ have "rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}) \<le>
+ rsize (RSEQ (rders_simp r1 s) r2) + rsizes (rdistinct (map (rders_simp r2) (vsuf s r1)) {})"
+ using triangle_inequality_distinct by blast
+ also have "... \<le> rsize (RSEQ (rders_simp r1 s) r2) + N2 * card (sizeNregex N2)"
+ by (simp add: a)
+ also have "... \<le> Suc (N1 + (rsize r2) + N2 * card (sizeNregex N2))"
+ by (simp add: assms(1))
+ finally show ?thesis
+ by force
+qed
+
+
+lemma seq_closed_form_bounded2:
+ assumes "\<forall>s. rsize (rders_simp r1 s) \<le> N1"
+ and "\<forall>s. rsize (rders_simp r2 s) \<le> N2"
+shows "rsize (rders_simp (RSEQ r1 r2) s)
+ \<le> max (2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))) (rsize (RSEQ r1 r2))"
+proof(cases s)
+ case Nil
+ then show "rsize (rders_simp (RSEQ r1 r2) s)
+ \<le> max (2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))) (rsize (RSEQ r1 r2))"
+ by simp
+next
+ case (Cons a list)
+ then have "rsize (rders_simp (RSEQ r1 r2) s) =
+ rsize (rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1)))))"
+ using seq_closed_form_variant by (metis list.distinct(1))
+ also have "... \<le> Suc (rsizes (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {}))"
+ using alts_simp_control by blast
+ also have "... \<le> 2 + N1 + (rsize r2) + (N2 * card (sizeNregex N2))"
+ using seq_estimate_bounded[OF assms] by auto
+ ultimately show "rsize (rders_simp (RSEQ r1 r2) s)
+ \<le> max (2 + N1 + (rsize r2) + N2 * card (sizeNregex N2)) (rsize (RSEQ r1 r2))"
+ by auto
+qed
+
+lemma rders_simp_bounded:
+ shows "\<exists>N. \<forall>s. rsize (rders_simp r s) \<le> N"
+ apply(induct r)
+ apply(rule_tac x = "Suc 0 " in exI)
+ using three_easy_cases0 apply force
+ using three_easy_cases1 apply blast
+ using three_easy_casesC apply blast
+ apply(erule exE)+
+ apply(rule exI)
+ apply(rule allI)
+ apply(rule seq_closed_form_bounded2)
+ apply(assumption)
+ apply(assumption)
+ apply (metis alts_closed_form_bounded size_list_estimation')
+ using star_closed_form_bounded apply blast
+ using ntimes_closed_form_boundedA by blast
+
+
+unused_thms
+export_code rders_simp rsimp rder in Scala module_name Example
+
+
+end