thys2/ClosedFormsBounds.thy
changeset 449 09d7cd8e5ef8
parent 448 3bc0f0069d06
child 450 dabd25e8e4e9
--- a/thys2/ClosedFormsBounds.thy	Fri Mar 11 23:32:44 2022 +0000
+++ b/thys2/ClosedFormsBounds.thy	Sat Mar 12 14:04:57 2022 +0000
@@ -3,92 +3,44 @@
   imports "GeneralRegexBound" "ClosedForms"
 begin
 
+lemma alts_ders_lambda_shape_ders:
+  shows "\<forall>r \<in> set (map (\<lambda>r. rders_simp r ( s)) rs ). \<exists>r1 \<in> set rs. r = rders_simp r1 s"
+  by (simp add: image_iff)
+
+
+
+lemma rlist_bound:
+  shows "\<forall>r \<in> set rs. rsize r \<le> N \<Longrightarrow> sum_list (map rsize rs) \<le> N * (length rs)"
+  apply(induct rs)
+  apply simp
+  by simp
 
 
 lemma alts_closed_form_bounded: shows
 "\<forall>r \<in> set rs. \<forall>s. rsize(rders_simp r s ) \<le> N \<Longrightarrow> 
-rsize (rders_simp (RALTS rs ) s) \<le> max (Suc ( N * (card (sizeNregex N)))) (rsize (RALTS rs) )"
+rsize (rders_simp (RALTS rs ) s) \<le> max (Suc ( N * (length rs))) (rsize (RALTS rs) )"
   apply(induct s)
   apply simp
-  apply(insert alts_closed_form_variant)
-
-  
-  sorry
-
-
-
-lemma star_closed_form_bounded_by_rdistinct_list_estimate:
-  shows "rsize (rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
-         (star_updates s r0 [[c]]) ) ))) \<le>
-        Suc (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
-         (star_updates s r0 [[c]]) ) {})  ) )"
-
-  sorry
-
-lemma distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size:
-  shows "\<forall>r\<in> set rs. (rsize r ) \<le> N \<Longrightarrow> sum_list (map rsize (rdistinct rs {})) \<le>
-         (card (sizeNregex N))* N"
-
-  sorry
-
-
-lemma star_lambda_ders:
-  shows " \<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>
-    \<forall>r\<in>set (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) (star_updates s r0 [[c]])).
-       rsize r \<le> Suc (N + rsize (RSTAR r0))"
-  sorry
-
-
-lemma star_control_bounded:
-  shows "\<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>        
-      (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0))
-         (star_updates s r0 [[c]]) ) {})  ) ) \<le> 
-(card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * (Suc (N + rsize (RSTAR r0)))
-"
-  apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0))
-         (star_updates s r0 [[c]]) ). (rsize r ) \<le> Suc (N + rsize (RSTAR r0))")
+  apply(subst alts_closed_form_variant)
+   apply force
+  apply(subgoal_tac "rsize (rsimp (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs))) \<le> rsize ( (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs)))")
    prefer 2
-  using star_lambda_ders apply blast
-  using distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size by blast
-
-
-lemma star_control_variant:
-  assumes "\<forall>s. rsize (rders_simp r0 s) \<le> N"
-  shows"Suc 
-      (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) 
-          (star_updates list r0 [[a]])) {}))) 
-\<le>  (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0))) "
-  apply(subgoal_tac    "(sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) 
-          (star_updates list r0 [[a]])) {}))) 
-\<le>  ( (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0))) ")
+  using rsimp_mono apply presburger
+  apply(subgoal_tac "rsize (RALTS (map (\<lambda>r. rders_simp r (a # s)) rs)) =
+                     Suc (sum_list  (map rsize (map (\<lambda>r. rders_simp r (a # s)) rs)))")
   prefer 2
-  using assms star_control_bounded apply presburger
-  by simp
-
-
+  using rsize.simps(4) apply blast
+  apply(subgoal_tac "sum_list (map rsize (map (\<lambda>r. rders_simp r (a # s)) rs )) \<le> N *  (length rs) ")
+   apply linarith
+  apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (a # s)) rs ). rsize r \<le> N")
+  prefer 2
+  apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (a # s)) rs ). \<exists>r1 \<in> set rs. r = rders_simp r1 (a # s)")
+  prefer 2
+  using alts_ders_lambda_shape_ders apply presburger
+   apply metis
+  apply(frule rlist_bound)
+  by fastforce
 
-lemma star_closed_form_bounded:
-  shows "\<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>
-              rsize (rders_simp (RSTAR r0) s) \<le> 
-max (   (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * (Suc (N + rsize (RSTAR r0)))))   (rsize (RSTAR r0))"
-  apply(case_tac s)
-  apply simp
-  apply(subgoal_tac " rsize (rders_simp (RSTAR r0) (a # list)) = 
-rsize (rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates list r0 [[a]]) ) )))") 
-   prefer 2
-  using star_closed_form apply presburger
-  apply(subgoal_tac "rsize (rsimp (
- RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates list    r0 [[a]]) ) ))) 
-\<le>         Suc (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
-         (star_updates list r0 [[a]]) ) {})  ) )")
-  prefer 2
-  using star_closed_form_bounded_by_rdistinct_list_estimate apply presburger
-  apply(subgoal_tac "Suc (sum_list 
-                 (map rsize
-                   (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) (star_updates list r0 [[a]])) {}))) 
-\<le>  (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0)))  ")
-  apply auto[1]
-  using star_control_variant by blast
 
 lemma alts_simp_ineq_unfold:
   shows "rsize (rsimp (RALTS rs)) \<le> Suc (sum_list (map rsize (rdistinct (rflts (map rsimp rs)) {})))"
@@ -96,8 +48,15 @@
 
 lemma flts_has_no_zero:
   shows "rdistinct (rflts rs) rset = rdistinct (rflts rs) (insert RZERO rset)"
+
   sorry
 
+lemma not_mentioned_elem_distinct:
+  shows "r \<noteq> a \<Longrightarrow> (r \<in> set (rdistinct rs {})) = (r \<in> set (rdistinct rs {a}))"
+  sorry
+
+
+
 lemma flts_vs_nflts:
   shows "\<forall>r \<in> noalts_set. \<forall>xs. r \<noteq> RALTS xs
  \<and> (\<forall>a \<in> alts_set. \<exists>xs. a = RALTS xs \<and> set xs \<subseteq> corr_set)  
@@ -108,6 +67,12 @@
 
   sorry
 
+lemma distinct_simp_ineq_general:
+  shows "rsimp ` no_simp = has_simp \<Longrightarrow>Suc (sum_list (map rsize (rdistinct (map rsimp rs) has_simp)))
+    \<le> Suc (sum_list (map rsize (rdistinct rs no_simp)))"
+
+  sorry
+
 
 lemma without_flts_ineq:
   shows " Suc (sum_list (map rsize (rdistinct (rflts rs) {}) )) \<le> 
@@ -115,10 +80,6 @@
   by (metis empty_iff flts_vs_nflts sup_bot_left)
 
 
-lemma distinct_simp_ineq_general:
-  shows "rsimp ` no_simp = has_simp \<Longrightarrow>Suc (sum_list (map rsize (rdistinct (map rsimp rs) has_simp)))
-    \<le> Suc (sum_list (map rsize (rdistinct rs no_simp)))"
-  sorry
 
 
 lemma distinct_simp_ineq:
@@ -145,12 +106,6 @@
 
 
 
-
-lemma seq_list_estimate_control: shows 
-" rsize (rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1))))
-           \<le> Suc (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {})))"
-  by(metis alts_simp_control)
-
 lemma rdistinct_equality1:
   shows "a \<notin> ss \<Longrightarrow> rdistinct (a  # rs) ss = a # rdistinct rs (insert a ss) "
   by auto
@@ -211,6 +166,149 @@
   apply(rule same_regex_property_after_map)
   by simp
 
+
+
+lemma Sum_cons:
+  shows "distinct (a # as) \<Longrightarrow> \<Sum> (set ((a::nat) # as)) =  a + \<Sum> (set  as)"
+  by simp
+
+
+lemma distinct_list_sizeNregex_bounded:
+  shows "distinct rs \<and> (\<forall> r \<in> (set rs). rsize r \<le> N) \<Longrightarrow> sum_list (map rsize rs) \<le> N * length rs"
+  apply(induct rs)
+   apply simp
+  by simp
+
+
+lemma distinct_list_size_len_bounded:
+  shows "distinct rs \<and> (\<forall>r \<in> set rs. rsize r \<le> N) \<and> length rs \<le> lrs \<Longrightarrow> sum_list (map rsize rs) \<le> lrs * N "
+  by (metis distinct_list_sizeNregex_bounded dual_order.trans mult.commute mult_le_mono1)
+
+
+
+lemma rdistinct_same_set:
+  shows "(r \<in> set rs) =  (r \<in> set (rdistinct rs {}))"
+  apply(induct rs)
+   apply simp
+  apply(case_tac "a \<in> set rs")
+  apply(case_tac "r = a")
+    apply (simp)
+  apply (simp add: not_mentioned_elem_distinct)
+  using not_mentioned_elem_distinct by fastforce
+
+
+
+lemma distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size:
+  shows "\<forall>r\<in> set rs. (rsize r ) \<le> N \<Longrightarrow> sum_list (map rsize (rdistinct rs {})) \<le>
+         (card (sizeNregex N))* N"
+  apply(subgoal_tac "distinct (rdistinct rs {})")
+  prefer 2
+  using rdistinct_does_the_job apply blast
+  apply(subgoal_tac "length (rdistinct rs {}) \<le> card (sizeNregex N)")
+  apply(rule distinct_list_size_len_bounded)
+   apply(rule conjI)+
+    apply simp
+   apply(rule conjI)
+  apply (meson rdistinct_same_set)
+   apply blast
+  apply(subgoal_tac "\<forall>r \<in> set (rdistinct rs {}). rsize r \<le> N")
+  prefer 2
+   apply (meson rdistinct_same_set)
+  apply(subgoal_tac "length (rdistinct rs {}) = card (set (rdistinct rs {}))")
+  prefer 2
+  using set_related_list apply blast
+  apply(simp only:)
+  by (metis card_mono finite_size_n mem_Collect_eq sizeNregex_def subset_code(1))
+
+
+
+
+
+
+lemma star_closed_form_bounded_by_rdistinct_list_estimate:
+  shows "rsize (rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
+         (star_updates s r0 [[c]]) ) ))) \<le>
+        Suc (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
+         (star_updates s r0 [[c]]) ) {})  ) )"
+  by (metis alts_simp_control )
+
+
+
+
+lemma star_lambda_form:
+  shows "\<forall> r \<in> set (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) ls). 
+        \<exists>s2. r = RSEQ (rders_simp r0 s2) (RSTAR r0) "
+  by (meson ex_map_conv)
+
+
+lemma star_lambda_ders:
+  shows " \<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>
+    \<forall>r\<in>set (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) (star_updates s r0 [[c]])).
+       rsize r \<le> Suc (N + rsize (RSTAR r0))"
+  apply(insert star_lambda_form)
+  apply(simp)
+  done
+
+
+
+
+lemma star_control_bounded:
+  shows "\<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>        
+      (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0))
+         (star_updates s r0 [[c]]) ) {})  ) ) \<le> 
+(card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * (Suc (N + rsize (RSTAR r0)))
+"
+  apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0))
+         (star_updates s r0 [[c]]) ). (rsize r ) \<le> Suc (N + rsize (RSTAR r0))")
+   prefer 2
+  using star_lambda_ders apply blast
+  using distinct_list_rexp_up_to_certain_size_bouded_by_set_enumerating_up_to_that_size by blast
+
+
+lemma star_control_variant:
+  assumes "\<forall>s. rsize (rders_simp r0 s) \<le> N"
+  shows"Suc 
+      (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) 
+          (star_updates list r0 [[a]])) {}))) 
+\<le>  (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0))) "
+  apply(subgoal_tac    "(sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) 
+          (star_updates list r0 [[a]])) {}))) 
+\<le>  ( (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0))) ")
+  prefer 2
+  using assms star_control_bounded apply presburger
+  by simp
+
+
+
+lemma star_closed_form_bounded:
+  shows "\<forall>s. rsize (rders_simp r0 s) \<le> N \<Longrightarrow>
+              rsize (rders_simp (RSTAR r0) s) \<le> 
+max (   (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * (Suc (N + rsize (RSTAR r0)))))   (rsize (RSTAR r0))"
+  apply(case_tac s)
+  apply simp
+  apply(subgoal_tac " rsize (rders_simp (RSTAR r0) (a # list)) = 
+rsize (rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates list r0 [[a]]) ) )))") 
+   prefer 2
+  using star_closed_form apply presburger
+  apply(subgoal_tac "rsize (rsimp (
+ RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates list    r0 [[a]]) ) ))) 
+\<le>         Suc (sum_list (map rsize (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) )
+         (star_updates list r0 [[a]]) ) {})  ) )")
+  prefer 2
+  using star_closed_form_bounded_by_rdistinct_list_estimate apply presburger
+  apply(subgoal_tac "Suc (sum_list 
+                 (map rsize
+                   (rdistinct (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0)) (star_updates list r0 [[a]])) {}))) 
+\<le>  (Suc (card (sizeNregex (Suc (N + rsize (RSTAR r0))))) * Suc (N + rsize (RSTAR r0)))  ")
+  apply auto[1]
+  using star_control_variant by blast
+
+
+lemma seq_list_estimate_control: shows 
+" rsize (rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1))))
+           \<le> Suc (sum_list (map rsize (rdistinct (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)) {})))"
+  by(metis alts_simp_control)
+
 lemma map_ders_is_list_of_ders:
   shows  "\<forall>s. rsize (rders_simp r2 s) \<le> N2 \<Longrightarrow>
 \<forall>r \<in> set (rdistinct (map (rders_simp r2) Ss) {}). rsize r \<le> N2"