--- a/thys3/GeneralRegexBound.thy Sat Apr 30 00:50:08 2022 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,212 +0,0 @@
-theory GeneralRegexBound
- imports "BasicIdentities"
-begin
-
-lemma size_geq1:
- shows "rsize r \<ge> 1"
- by (induct r) auto
-
-definition RSEQ_set where
- "RSEQ_set A n \<equiv> {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A \<and> rsize r1 + rsize r2 \<le> n}"
-
-definition RSEQ_set_cartesian where
- "RSEQ_set_cartesian A = {RSEQ r1 r2 | r1 r2. r1 \<in> A \<and> r2 \<in> A}"
-
-definition RALT_set where
- "RALT_set A n \<equiv> {RALTS rs | rs. set rs \<subseteq> A \<and> rsizes rs \<le> n}"
-
-definition RALTs_set where
- "RALTs_set A n \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n}"
-
-definition
- "sizeNregex N \<equiv> {r. rsize r \<le> N}"
-
-
-lemma sizenregex_induct1:
- "sizeNregex (Suc n) = (({RZERO, RONE} \<union> {RCHAR c| c. True})
- \<union> (RSTAR ` sizeNregex n)
- \<union> (RSEQ_set (sizeNregex n) n)
- \<union> (RALTs_set (sizeNregex n) n))"
- apply(auto)
- apply(case_tac x)
- apply(auto simp add: RSEQ_set_def)
- using sizeNregex_def apply force
- using sizeNregex_def apply auto[1]
- apply (simp add: sizeNregex_def)
- apply (simp add: sizeNregex_def)
- apply (simp add: RALTs_set_def)
- apply (metis imageI list.set_map member_le_sum_list order_trans)
- apply (simp add: sizeNregex_def)
- apply (simp add: sizeNregex_def)
- apply (simp add: sizeNregex_def)
- using sizeNregex_def apply force
- apply (simp add: sizeNregex_def)
- apply (simp add: sizeNregex_def)
- apply (simp add: RALTs_set_def)
- apply(simp add: sizeNregex_def)
- apply(auto)
- using ex_in_conv by fastforce
-
-lemma s4:
- "RSEQ_set A n \<subseteq> RSEQ_set_cartesian A"
- using RSEQ_set_cartesian_def RSEQ_set_def by fastforce
-
-lemma s5:
- assumes "finite A"
- shows "finite (RSEQ_set_cartesian A)"
- using assms
- apply(subgoal_tac "RSEQ_set_cartesian A = (\<lambda>(x1, x2). RSEQ x1 x2) ` (A \<times> A)")
- apply simp
- unfolding RSEQ_set_cartesian_def
- apply(auto)
- done
-
-
-definition RALTs_set_length
- where
- "RALTs_set_length A n l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> rsizes rs \<le> n \<and> length rs \<le> l}"
-
-
-definition RALTs_set_length2
- where
- "RALTs_set_length2 A l \<equiv> {RALTS rs | rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
-
-definition set_length2
- where
- "set_length2 A l \<equiv> {rs. \<forall>r \<in> set rs. r \<in> A \<and> length rs \<le> l}"
-
-
-lemma r000:
- shows "RALTs_set_length A n l \<subseteq> RALTs_set_length2 A l"
- apply(auto simp add: RALTs_set_length2_def RALTs_set_length_def)
- done
-
-
-lemma r02:
- shows "set_length2 A 0 \<subseteq> {[]}"
- apply(auto simp add: set_length2_def)
- apply(case_tac x)
- apply(auto)
- done
-
-lemma r03:
- shows "set_length2 A (Suc n) \<subseteq>
- {[]} \<union> (\<lambda>(h, t). h # t) ` (A \<times> (set_length2 A n))"
- apply(auto simp add: set_length2_def)
- apply(case_tac x)
- apply(auto)
- done
-
-lemma r1:
- assumes "finite A"
- shows "finite (set_length2 A n)"
- using assms
- apply(induct n)
- apply(rule finite_subset)
- apply(rule r02)
- apply(simp)
- apply(rule finite_subset)
- apply(rule r03)
- apply(simp)
- done
-
-lemma size_sum_more_than_len:
- shows "rsizes rs \<ge> length rs"
- apply(induct rs)
- apply simp
- apply simp
- apply(subgoal_tac "rsize a \<ge> 1")
- apply linarith
- using size_geq1 by auto
-
-
-lemma sum_list_len:
- shows "rsizes rs \<le> n \<Longrightarrow> length rs \<le> n"
- by (meson order.trans size_sum_more_than_len)
-
-
-lemma t2:
- shows "RALTs_set A n \<subseteq> RALTs_set_length A n n"
- unfolding RALTs_set_length_def RALTs_set_def
- apply(auto)
- using sum_list_len by blast
-
-lemma s8_aux:
- assumes "finite A"
- shows "finite (RALTs_set_length A n n)"
-proof -
- have "finite A" by fact
- then have "finite (set_length2 A n)"
- by (simp add: r1)
- moreover have "(RALTS ` (set_length2 A n)) = RALTs_set_length2 A n"
- unfolding RALTs_set_length2_def set_length2_def
- by (auto)
- ultimately have "finite (RALTs_set_length2 A n)"
- by (metis finite_imageI)
- then show ?thesis
- by (metis infinite_super r000)
-qed
-
-lemma char_finite:
- shows "finite {RCHAR c |c. True}"
- apply simp
- apply(subgoal_tac "finite (RCHAR ` (UNIV::char set))")
- prefer 2
- apply simp
- by (simp add: full_SetCompr_eq)
-
-
-lemma finite_size_n:
- shows "finite (sizeNregex n)"
- apply(induct n)
- apply(simp add: sizeNregex_def)
- apply (metis (mono_tags, lifting) not_finite_existsD not_one_le_zero size_geq1)
- apply(subst sizenregex_induct1)
- apply(simp only: finite_Un)
- apply(rule conjI)+
- apply(simp)
-
- using char_finite apply blast
- apply(simp)
- apply(rule finite_subset)
- apply(rule s4)
- apply(rule s5)
- apply(simp)
- apply(rule finite_subset)
- apply(rule t2)
- apply(rule s8_aux)
- apply(simp)
- done
-
-lemma three_easy_cases0:
- shows "rsize (rders_simp RZERO s) \<le> Suc 0"
- apply(induct s)
- apply simp
- apply simp
- done
-
-
-lemma three_easy_cases1:
- shows "rsize (rders_simp RONE s) \<le> Suc 0"
- apply(induct s)
- apply simp
- apply simp
- using three_easy_cases0 by auto
-
-
-lemma three_easy_casesC:
- shows "rsize (rders_simp (RCHAR c) s) \<le> Suc 0"
- apply(induct s)
- apply simp
- apply simp
- apply(case_tac " a = c")
- using three_easy_cases1 apply blast
- apply simp
- using three_easy_cases0 by force
-
-
-unused_thms
-
-
-end
-