--- a/thys3/BlexerSimp.thy Sat Apr 30 00:50:08 2022 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,617 +0,0 @@
-theory BlexerSimp
- imports Blexer
-begin
-
-fun distinctWith :: "'a list \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a list"
- where
- "distinctWith [] eq acc = []"
-| "distinctWith (x # xs) eq acc =
- (if (\<exists> y \<in> acc. eq x y) then distinctWith xs eq acc
- else x # (distinctWith xs eq ({x} \<union> acc)))"
-
-
-fun eq1 ("_ ~1 _" [80, 80] 80) where
- "AZERO ~1 AZERO = True"
-| "(AONE bs1) ~1 (AONE bs2) = True"
-| "(ACHAR bs1 c) ~1 (ACHAR bs2 d) = (if c = d then True else False)"
-| "(ASEQ bs1 ra1 ra2) ~1 (ASEQ bs2 rb1 rb2) = (ra1 ~1 rb1 \<and> ra2 ~1 rb2)"
-| "(AALTs bs1 []) ~1 (AALTs bs2 []) = True"
-| "(AALTs bs1 (r1 # rs1)) ~1 (AALTs bs2 (r2 # rs2)) = (r1 ~1 r2 \<and> (AALTs bs1 rs1) ~1 (AALTs bs2 rs2))"
-| "(ASTAR bs1 r1) ~1 (ASTAR bs2 r2) = r1 ~1 r2"
-| "_ ~1 _ = False"
-
-
-
-lemma eq1_L:
- assumes "x ~1 y"
- shows "L (erase x) = L (erase y)"
- using assms
- apply(induct rule: eq1.induct)
- apply(auto elim: eq1.elims)
- apply presburger
- done
-
-fun flts :: "arexp list \<Rightarrow> arexp list"
- where
- "flts [] = []"
-| "flts (AZERO # rs) = flts rs"
-| "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs"
-| "flts (r1 # rs) = r1 # flts rs"
-
-
-
-fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp"
- where
- "bsimp_ASEQ _ AZERO _ = AZERO"
-| "bsimp_ASEQ _ _ AZERO = AZERO"
-| "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2"
-| "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2"
-
-lemma bsimp_ASEQ0[simp]:
- shows "bsimp_ASEQ bs r1 AZERO = AZERO"
- by (case_tac r1)(simp_all)
-
-lemma bsimp_ASEQ1:
- assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<nexists>bs. r1 = AONE bs"
- shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2"
- using assms
- apply(induct bs r1 r2 rule: bsimp_ASEQ.induct)
- apply(auto)
- done
-
-lemma bsimp_ASEQ2[simp]:
- shows "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2"
- by (case_tac r2) (simp_all)
-
-
-fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp"
- where
- "bsimp_AALTs _ [] = AZERO"
-| "bsimp_AALTs bs1 [r] = fuse bs1 r"
-| "bsimp_AALTs bs1 rs = AALTs bs1 rs"
-
-
-
-
-fun bsimp :: "arexp \<Rightarrow> arexp"
- where
- "bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)"
-| "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (distinctWith (flts (map bsimp rs)) eq1 {}) "
-| "bsimp r = r"
-
-
-fun
- bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
-where
- "bders_simp r [] = r"
-| "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s"
-
-definition blexer_simp where
- "blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then
- decode (bmkeps (bders_simp (intern r) s)) r else None"
-
-
-
-lemma bders_simp_append:
- shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2"
- apply(induct s1 arbitrary: r s2)
- apply(simp_all)
- done
-
-lemma bmkeps_fuse:
- assumes "bnullable r"
- shows "bmkeps (fuse bs r) = bs @ bmkeps r"
- using assms
- by (induct r rule: bnullable.induct) (auto)
-
-lemma bmkepss_fuse:
- assumes "bnullables rs"
- shows "bmkepss (map (fuse bs) rs) = bs @ bmkepss rs"
- using assms
- apply(induct rs arbitrary: bs)
- apply(auto simp add: bmkeps_fuse bnullable_fuse)
- done
-
-lemma bder_fuse:
- shows "bder c (fuse bs a) = fuse bs (bder c a)"
- apply(induct a arbitrary: bs c)
- apply(simp_all)
- done
-
-
-
-
-inductive
- rrewrite:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99)
-and
- srewrite:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ s\<leadsto> _" [100, 100] 100)
-where
- bs1: "ASEQ bs AZERO r2 \<leadsto> AZERO"
-| bs2: "ASEQ bs r1 AZERO \<leadsto> AZERO"
-| bs3: "ASEQ bs1 (AONE bs2) r \<leadsto> fuse (bs1@bs2) r"
-| bs4: "r1 \<leadsto> r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r2 r3"
-| bs5: "r3 \<leadsto> r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r1 r4"
-| bs6: "AALTs bs [] \<leadsto> AZERO"
-| bs7: "AALTs bs [r] \<leadsto> fuse bs r"
-| bs10: "rs1 s\<leadsto> rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto> AALTs bs rs2"
-| ss1: "[] s\<leadsto> []"
-| ss2: "rs1 s\<leadsto> rs2 \<Longrightarrow> (r # rs1) s\<leadsto> (r # rs2)"
-| ss3: "r1 \<leadsto> r2 \<Longrightarrow> (r1 # rs) s\<leadsto> (r2 # rs)"
-| ss4: "(AZERO # rs) s\<leadsto> rs"
-| ss5: "(AALTs bs1 rs1 # rsb) s\<leadsto> ((map (fuse bs1) rs1) @ rsb)"
-| ss6: "L (erase a2) \<subseteq> L (erase a1) \<Longrightarrow> (rsa@[a1]@rsb@[a2]@rsc) s\<leadsto> (rsa@[a1]@rsb@rsc)"
-
-
-inductive
- rrewrites:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100)
-where
- rs1[intro, simp]:"r \<leadsto>* r"
-| rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3"
-
-inductive
- srewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" ("_ s\<leadsto>* _" [100, 100] 100)
-where
- sss1[intro, simp]:"rs s\<leadsto>* rs"
-| sss2[intro]: "\<lbrakk>rs1 s\<leadsto> rs2; rs2 s\<leadsto>* rs3\<rbrakk> \<Longrightarrow> rs1 s\<leadsto>* rs3"
-
-
-lemma r_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2"
- using rrewrites.intros(1) rrewrites.intros(2) by blast
-
-lemma rs_in_rstar:
- shows "r1 s\<leadsto> r2 \<Longrightarrow> r1 s\<leadsto>* r2"
- using rrewrites.intros(1) rrewrites.intros(2) by blast
-
-
-lemma rrewrites_trans[trans]:
- assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3"
- shows "r1 \<leadsto>* r3"
- using a2 a1
- apply(induct r2 r3 arbitrary: r1 rule: rrewrites.induct)
- apply(auto)
- done
-
-lemma srewrites_trans[trans]:
- assumes a1: "r1 s\<leadsto>* r2" and a2: "r2 s\<leadsto>* r3"
- shows "r1 s\<leadsto>* r3"
- using a1 a2
- apply(induct r1 r2 arbitrary: r3 rule: srewrites.induct)
- apply(auto)
- done
-
-
-
-lemma contextrewrites0:
- "rs1 s\<leadsto>* rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto>* AALTs bs rs2"
- apply(induct rs1 rs2 rule: srewrites.inducts)
- apply simp
- using bs10 r_in_rstar rrewrites_trans by blast
-
-lemma contextrewrites1:
- "r \<leadsto>* r' \<Longrightarrow> AALTs bs (r # rs) \<leadsto>* AALTs bs (r' # rs)"
- apply(induct r r' rule: rrewrites.induct)
- apply simp
- using bs10 ss3 by blast
-
-lemma srewrite1:
- shows "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto> (rs @ rs2)"
- apply(induct rs)
- apply(auto)
- using ss2 by auto
-
-lemma srewrites1:
- shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto>* (rs @ rs2)"
- apply(induct rs1 rs2 rule: srewrites.induct)
- apply(auto)
- using srewrite1 by blast
-
-lemma srewrite2:
- shows "r1 \<leadsto> r2 \<Longrightarrow> True"
- and "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)"
- apply(induct rule: rrewrite_srewrite.inducts)
- apply(auto)
- apply (metis append_Cons append_Nil srewrites1)
- apply(meson srewrites.simps ss3)
- apply (meson srewrites.simps ss4)
- apply (meson srewrites.simps ss5)
- by (metis append_Cons append_Nil srewrites.simps ss6)
-
-
-lemma srewrites3:
- shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)"
- apply(induct rs1 rs2 arbitrary: rs rule: srewrites.induct)
- apply(auto)
- by (meson srewrite2(2) srewrites_trans)
-
-(*
-lemma srewrites4:
- assumes "rs3 s\<leadsto>* rs4" "rs1 s\<leadsto>* rs2"
- shows "(rs1 @ rs3) s\<leadsto>* (rs2 @ rs4)"
- using assms
- apply(induct rs3 rs4 arbitrary: rs1 rs2 rule: srewrites.induct)
- apply (simp add: srewrites3)
- using srewrite1 by blast
-*)
-
-lemma srewrites6:
- assumes "r1 \<leadsto>* r2"
- shows "[r1] s\<leadsto>* [r2]"
- using assms
- apply(induct r1 r2 rule: rrewrites.induct)
- apply(auto)
- by (meson srewrites.simps srewrites_trans ss3)
-
-lemma srewrites7:
- assumes "rs3 s\<leadsto>* rs4" "r1 \<leadsto>* r2"
- shows "(r1 # rs3) s\<leadsto>* (r2 # rs4)"
- using assms
- by (smt (verit, best) append_Cons append_Nil srewrites1 srewrites3 srewrites6 srewrites_trans)
-
-lemma ss6_stronger_aux:
- shows "(rs1 @ rs2) s\<leadsto>* (rs1 @ distinctWith rs2 eq1 (set rs1))"
- apply(induct rs2 arbitrary: rs1)
- apply(auto)
- prefer 2
- apply(drule_tac x="rs1 @ [a]" in meta_spec)
- apply(simp)
- apply(drule_tac x="rs1" in meta_spec)
- apply(subgoal_tac "(rs1 @ a # rs2) s\<leadsto>* (rs1 @ rs2)")
- using srewrites_trans apply blast
- apply(subgoal_tac "\<exists>rs1a rs1b. rs1 = rs1a @ [x] @ rs1b")
- prefer 2
- apply (simp add: split_list)
- apply(erule exE)+
- apply(simp)
- using eq1_L rs_in_rstar ss6 by force
-
-lemma ss6_stronger:
- shows "rs1 s\<leadsto>* distinctWith rs1 eq1 {}"
- by (metis append_Nil list.set(1) ss6_stronger_aux)
-
-
-lemma rewrite_preserves_fuse:
- shows "r2 \<leadsto> r3 \<Longrightarrow> fuse bs r2 \<leadsto> fuse bs r3"
- and "rs2 s\<leadsto> rs3 \<Longrightarrow> map (fuse bs) rs2 s\<leadsto>* map (fuse bs) rs3"
-proof(induct rule: rrewrite_srewrite.inducts)
- case (bs3 bs1 bs2 r)
- then show ?case
- by (metis fuse.simps(5) fuse_append rrewrite_srewrite.bs3)
-next
- case (bs7 bs r)
- then show ?case
- by (metis fuse.simps(4) fuse_append rrewrite_srewrite.bs7)
-next
- case (ss2 rs1 rs2 r)
- then show ?case
- using srewrites7 by force
-next
- case (ss3 r1 r2 rs)
- then show ?case by (simp add: r_in_rstar srewrites7)
-next
- case (ss5 bs1 rs1 rsb)
- then show ?case
- apply(simp)
- by (metis (mono_tags, lifting) comp_def fuse_append map_eq_conv rrewrite_srewrite.ss5 srewrites.simps)
-next
- case (ss6 a1 a2 rsa rsb rsc)
- then show ?case
- apply(simp only: map_append)
- by (smt (verit, best) erase_fuse list.simps(8) list.simps(9) rrewrite_srewrite.ss6 srewrites.simps)
-qed (auto intro: rrewrite_srewrite.intros)
-
-
-lemma rewrites_fuse:
- assumes "r1 \<leadsto>* r2"
- shows "fuse bs r1 \<leadsto>* fuse bs r2"
-using assms
-apply(induction r1 r2 arbitrary: bs rule: rrewrites.induct)
-apply(auto intro: rewrite_preserves_fuse rrewrites_trans)
-done
-
-
-lemma star_seq:
- assumes "r1 \<leadsto>* r2"
- shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r2 r3"
-using assms
-apply(induct r1 r2 arbitrary: r3 rule: rrewrites.induct)
-apply(auto intro: rrewrite_srewrite.intros)
-done
-
-lemma star_seq2:
- assumes "r3 \<leadsto>* r4"
- shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r1 r4"
- using assms
-apply(induct r3 r4 arbitrary: r1 rule: rrewrites.induct)
-apply(auto intro: rrewrite_srewrite.intros)
-done
-
-lemma continuous_rewrite:
- assumes "r1 \<leadsto>* AZERO"
- shows "ASEQ bs1 r1 r2 \<leadsto>* AZERO"
-using assms bs1 star_seq by blast
-
-(*
-lemma continuous_rewrite2:
- assumes "r1 \<leadsto>* AONE bs"
- shows "ASEQ bs1 r1 r2 \<leadsto>* (fuse (bs1 @ bs) r2)"
- using assms by (meson bs3 rrewrites.simps star_seq)
-*)
-
-lemma bsimp_aalts_simpcases:
- shows "AONE bs \<leadsto>* bsimp (AONE bs)"
- and "AZERO \<leadsto>* bsimp AZERO"
- and "ACHAR bs c \<leadsto>* bsimp (ACHAR bs c)"
- by (simp_all)
-
-lemma bsimp_AALTs_rewrites:
- shows "AALTs bs1 rs \<leadsto>* bsimp_AALTs bs1 rs"
- by (smt (verit) bs6 bs7 bsimp_AALTs.elims rrewrites.simps)
-
-lemma trivialbsimp_srewrites:
- "\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x \<rbrakk> \<Longrightarrow> rs s\<leadsto>* (map f rs)"
- apply(induction rs)
- apply simp
- apply(simp)
- using srewrites7 by auto
-
-
-
-lemma fltsfrewrites: "rs s\<leadsto>* flts rs"
- apply(induction rs rule: flts.induct)
- apply(auto intro: rrewrite_srewrite.intros)
- apply (meson srewrites.simps srewrites1 ss5)
- using rs1 srewrites7 apply presburger
- using srewrites7 apply force
- apply (simp add: srewrites7)
- by (simp add: srewrites7)
-
-lemma bnullable0:
-shows "r1 \<leadsto> r2 \<Longrightarrow> bnullable r1 = bnullable r2"
- and "rs1 s\<leadsto> rs2 \<Longrightarrow> bnullables rs1 = bnullables rs2"
- apply(induct rule: rrewrite_srewrite.inducts)
- apply(auto simp add: bnullable_fuse)
- apply (meson UnCI bnullable_fuse imageI)
- using bnullable_correctness nullable_correctness by blast
-
-
-lemma rewritesnullable:
- assumes "r1 \<leadsto>* r2"
- shows "bnullable r1 = bnullable r2"
-using assms
- apply(induction r1 r2 rule: rrewrites.induct)
- apply simp
- using bnullable0(1) by auto
-
-lemma rewrite_bmkeps_aux:
- shows "r1 \<leadsto> r2 \<Longrightarrow> (bnullable r1 \<and> bnullable r2 \<Longrightarrow> bmkeps r1 = bmkeps r2)"
- and "rs1 s\<leadsto> rs2 \<Longrightarrow> (bnullables rs1 \<and> bnullables rs2 \<Longrightarrow> bmkepss rs1 = bmkepss rs2)"
-proof (induct rule: rrewrite_srewrite.inducts)
- case (bs3 bs1 bs2 r)
- then show ?case by (simp add: bmkeps_fuse)
-next
- case (bs7 bs r)
- then show ?case by (simp add: bmkeps_fuse)
-next
- case (ss3 r1 r2 rs)
- then show ?case
- using bmkepss.simps bnullable0(1) by presburger
-next
- case (ss5 bs1 rs1 rsb)
- then show ?case
- by (simp add: bmkepss1 bmkepss2 bmkepss_fuse bnullable_fuse)
-next
- case (ss6 a1 a2 rsa rsb rsc)
- then show ?case
- by (smt (verit, best) Nil_is_append_conv bmkepss1 bmkepss2 bnullable_correctness in_set_conv_decomp list.distinct(1) list.set_intros(1) nullable_correctness set_ConsD subsetD)
-qed (auto)
-
-lemma rewrites_bmkeps:
- assumes "r1 \<leadsto>* r2" "bnullable r1"
- shows "bmkeps r1 = bmkeps r2"
- using assms
-proof(induction r1 r2 rule: rrewrites.induct)
- case (rs1 r)
- then show "bmkeps r = bmkeps r" by simp
-next
- case (rs2 r1 r2 r3)
- then have IH: "bmkeps r1 = bmkeps r2" by simp
- have a1: "bnullable r1" by fact
- have a2: "r1 \<leadsto>* r2" by fact
- have a3: "r2 \<leadsto> r3" by fact
- have a4: "bnullable r2" using a1 a2 by (simp add: rewritesnullable)
- then have "bmkeps r2 = bmkeps r3"
- using a3 bnullable0(1) rewrite_bmkeps_aux(1) by blast
- then show "bmkeps r1 = bmkeps r3" using IH by simp
-qed
-
-
-lemma rewrites_to_bsimp:
- shows "r \<leadsto>* bsimp r"
-proof (induction r rule: bsimp.induct)
- case (1 bs1 r1 r2)
- have IH1: "r1 \<leadsto>* bsimp r1" by fact
- have IH2: "r2 \<leadsto>* bsimp r2" by fact
- { assume as: "bsimp r1 = AZERO \<or> bsimp r2 = AZERO"
- with IH1 IH2 have "r1 \<leadsto>* AZERO \<or> r2 \<leadsto>* AZERO" by auto
- then have "ASEQ bs1 r1 r2 \<leadsto>* AZERO"
- by (metis bs2 continuous_rewrite rrewrites.simps star_seq2)
- then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" using as by auto
- }
- moreover
- { assume "\<exists>bs. bsimp r1 = AONE bs"
- then obtain bs where as: "bsimp r1 = AONE bs" by blast
- with IH1 have "r1 \<leadsto>* AONE bs" by simp
- then have "ASEQ bs1 r1 r2 \<leadsto>* fuse (bs1 @ bs) r2" using bs3 star_seq by blast
- with IH2 have "ASEQ bs1 r1 r2 \<leadsto>* fuse (bs1 @ bs) (bsimp r2)"
- using rewrites_fuse by (meson rrewrites_trans)
- then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 (AONE bs) r2)" by simp
- then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by (simp add: as)
- }
- moreover
- { assume as1: "bsimp r1 \<noteq> AZERO" "bsimp r2 \<noteq> AZERO" and as2: "(\<nexists>bs. bsimp r1 = AONE bs)"
- then have "bsimp_ASEQ bs1 (bsimp r1) (bsimp r2) = ASEQ bs1 (bsimp r1) (bsimp r2)"
- by (simp add: bsimp_ASEQ1)
- then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" using as1 as2 IH1 IH2
- by (metis rrewrites_trans star_seq star_seq2)
- then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by simp
- }
- ultimately show "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by blast
-next
- case (2 bs1 rs)
- have IH: "\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* bsimp x" by fact
- then have "rs s\<leadsto>* (map bsimp rs)" by (simp add: trivialbsimp_srewrites)
- also have "... s\<leadsto>* flts (map bsimp rs)" by (simp add: fltsfrewrites)
- also have "... s\<leadsto>* distinctWith (flts (map bsimp rs)) eq1 {}" by (simp add: ss6_stronger)
- finally have "AALTs bs1 rs \<leadsto>* AALTs bs1 (distinctWith (flts (map bsimp rs)) eq1 {})"
- using contextrewrites0 by auto
- also have "... \<leadsto>* bsimp_AALTs bs1 (distinctWith (flts (map bsimp rs)) eq1 {})"
- by (simp add: bsimp_AALTs_rewrites)
- finally show "AALTs bs1 rs \<leadsto>* bsimp (AALTs bs1 rs)" by simp
-qed (simp_all)
-
-
-lemma to_zero_in_alt:
- shows "AALT bs (ASEQ [] AZERO r) r2 \<leadsto> AALT bs AZERO r2"
- by (simp add: bs1 bs10 ss3)
-
-
-
-lemma bder_fuse_list:
- shows "map (bder c \<circ> fuse bs1) rs1 = map (fuse bs1 \<circ> bder c) rs1"
- apply(induction rs1)
- apply(simp_all add: bder_fuse)
- done
-
-lemma map1:
- shows "(map f [a]) = [f a]"
- by (simp)
-
-lemma rewrite_preserves_bder:
- shows "r1 \<leadsto> r2 \<Longrightarrow> (bder c r1) \<leadsto>* (bder c r2)"
- and "rs1 s\<leadsto> rs2 \<Longrightarrow> map (bder c) rs1 s\<leadsto>* map (bder c) rs2"
-proof(induction rule: rrewrite_srewrite.inducts)
- case (bs1 bs r2)
- then show ?case
- by (simp add: continuous_rewrite)
-next
- case (bs2 bs r1)
- then show ?case
- apply(auto)
- apply (meson bs6 contextrewrites0 rrewrite_srewrite.bs2 rs2 ss3 ss4 sss1 sss2)
- by (simp add: r_in_rstar rrewrite_srewrite.bs2)
-next
- case (bs3 bs1 bs2 r)
- then show ?case
- apply(simp)
-
- by (metis (no_types, lifting) bder_fuse bs10 bs7 fuse_append rrewrites.simps ss4 to_zero_in_alt)
-next
- case (bs4 r1 r2 bs r3)
- have as: "r1 \<leadsto> r2" by fact
- have IH: "bder c r1 \<leadsto>* bder c r2" by fact
- from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r2 r3)"
- by (metis bder.simps(5) bnullable0(1) contextrewrites1 rewrite_bmkeps_aux(1) star_seq)
-next
- case (bs5 r3 r4 bs r1)
- have as: "r3 \<leadsto> r4" by fact
- have IH: "bder c r3 \<leadsto>* bder c r4" by fact
- from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r1 r4)"
- apply(simp)
- apply(auto)
- using contextrewrites0 r_in_rstar rewrites_fuse srewrites6 srewrites7 star_seq2 apply presburger
- using star_seq2 by blast
-next
- case (bs6 bs)
- then show ?case
- using rrewrite_srewrite.bs6 by force
-next
- case (bs7 bs r)
- then show ?case
- by (simp add: bder_fuse r_in_rstar rrewrite_srewrite.bs7)
-next
- case (bs10 rs1 rs2 bs)
- then show ?case
- using contextrewrites0 by force
-next
- case ss1
- then show ?case by simp
-next
- case (ss2 rs1 rs2 r)
- then show ?case
- by (simp add: srewrites7)
-next
- case (ss3 r1 r2 rs)
- then show ?case
- by (simp add: srewrites7)
-next
- case (ss4 rs)
- then show ?case
- using rrewrite_srewrite.ss4 by fastforce
-next
- case (ss5 bs1 rs1 rsb)
- then show ?case
- apply(simp)
- using bder_fuse_list map_map rrewrite_srewrite.ss5 srewrites.simps by blast
-next
- case (ss6 a1 a2 bs rsa rsb)
- then show ?case
- apply(simp only: map_append map1)
- apply(rule srewrites_trans)
- apply(rule rs_in_rstar)
- apply(rule_tac rrewrite_srewrite.ss6)
- using Der_def der_correctness apply auto[1]
- by blast
-qed
-
-lemma rewrites_preserves_bder:
- assumes "r1 \<leadsto>* r2"
- shows "bder c r1 \<leadsto>* bder c r2"
-using assms
-apply(induction r1 r2 rule: rrewrites.induct)
-apply(simp_all add: rewrite_preserves_bder rrewrites_trans)
-done
-
-
-lemma central:
- shows "bders r s \<leadsto>* bders_simp r s"
-proof(induct s arbitrary: r rule: rev_induct)
- case Nil
- then show "bders r [] \<leadsto>* bders_simp r []" by simp
-next
- case (snoc x xs)
- have IH: "\<And>r. bders r xs \<leadsto>* bders_simp r xs" by fact
- have "bders r (xs @ [x]) = bders (bders r xs) [x]" by (simp add: bders_append)
- also have "... \<leadsto>* bders (bders_simp r xs) [x]" using IH
- by (simp add: rewrites_preserves_bder)
- also have "... \<leadsto>* bders_simp (bders_simp r xs) [x]" using IH
- by (simp add: rewrites_to_bsimp)
- finally show "bders r (xs @ [x]) \<leadsto>* bders_simp r (xs @ [x])"
- by (simp add: bders_simp_append)
-qed
-
-lemma main_aux:
- assumes "bnullable (bders r s)"
- shows "bmkeps (bders r s) = bmkeps (bders_simp r s)"
-proof -
- have "bders r s \<leadsto>* bders_simp r s" by (rule central)
- then
- show "bmkeps (bders r s) = bmkeps (bders_simp r s)" using assms
- by (rule rewrites_bmkeps)
-qed
-
-
-
-
-theorem main_blexer_simp:
- shows "blexer r s = blexer_simp r s"
- unfolding blexer_def blexer_simp_def
- by (metis central main_aux rewritesnullable)
-
-theorem blexersimp_correctness:
- shows "lexer r s = blexer_simp r s"
- using blexer_correctness main_blexer_simp by simp
-
-
-unused_thms
-
-end