--- a/thys3/Blexer.thy Sat Apr 30 00:50:08 2022 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,454 +0,0 @@
-
-theory Blexer
- imports "Lexer" "PDerivs"
-begin
-
-section \<open>Bit-Encodings\<close>
-
-datatype bit = Z | S
-
-fun code :: "val \<Rightarrow> bit list"
-where
- "code Void = []"
-| "code (Char c) = []"
-| "code (Left v) = Z # (code v)"
-| "code (Right v) = S # (code v)"
-| "code (Seq v1 v2) = (code v1) @ (code v2)"
-| "code (Stars []) = [S]"
-| "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)"
-
-
-fun
- Stars_add :: "val \<Rightarrow> val \<Rightarrow> val"
-where
- "Stars_add v (Stars vs) = Stars (v # vs)"
-
-function
- decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)"
-where
- "decode' bs ZERO = (undefined, bs)"
-| "decode' bs ONE = (Void, bs)"
-| "decode' bs (CH d) = (Char d, bs)"
-| "decode' [] (ALT r1 r2) = (Void, [])"
-| "decode' (Z # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r1 in (Left v, bs'))"
-| "decode' (S # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r2 in (Right v, bs'))"
-| "decode' bs (SEQ r1 r2) = (let (v1, bs') = decode' bs r1 in
- let (v2, bs'') = decode' bs' r2 in (Seq v1 v2, bs''))"
-| "decode' [] (STAR r) = (Void, [])"
-| "decode' (S # bs) (STAR r) = (Stars [], bs)"
-| "decode' (Z # bs) (STAR r) = (let (v, bs') = decode' bs r in
- let (vs, bs'') = decode' bs' (STAR r)
- in (Stars_add v vs, bs''))"
-by pat_completeness auto
-
-lemma decode'_smaller:
- assumes "decode'_dom (bs, r)"
- shows "length (snd (decode' bs r)) \<le> length bs"
-using assms
-apply(induct bs r)
-apply(auto simp add: decode'.psimps split: prod.split)
-using dual_order.trans apply blast
-by (meson dual_order.trans le_SucI)
-
-termination "decode'"
-apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))")
-apply(auto dest!: decode'_smaller)
-by (metis less_Suc_eq_le snd_conv)
-
-definition
- decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option"
-where
- "decode ds r \<equiv> (let (v, ds') = decode' ds r
- in (if ds' = [] then Some v else None))"
-
-lemma decode'_code_Stars:
- assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []"
- shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)"
- using assms
- apply(induct vs)
- apply(auto)
- done
-
-lemma decode'_code:
- assumes "\<Turnstile> v : r"
- shows "decode' ((code v) @ ds) r = (v, ds)"
-using assms
- apply(induct v r arbitrary: ds)
- apply(auto)
- using decode'_code_Stars by blast
-
-lemma decode_code:
- assumes "\<Turnstile> v : r"
- shows "decode (code v) r = Some v"
- using assms unfolding decode_def
- by (smt append_Nil2 decode'_code old.prod.case)
-
-
-section {* Annotated Regular Expressions *}
-
-datatype arexp =
- AZERO
-| AONE "bit list"
-| ACHAR "bit list" char
-| ASEQ "bit list" arexp arexp
-| AALTs "bit list" "arexp list"
-| ASTAR "bit list" arexp
-
-abbreviation
- "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]"
-
-fun asize :: "arexp \<Rightarrow> nat" where
- "asize AZERO = 1"
-| "asize (AONE cs) = 1"
-| "asize (ACHAR cs c) = 1"
-| "asize (AALTs cs rs) = Suc (sum_list (map asize rs))"
-| "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)"
-| "asize (ASTAR cs r) = Suc (asize r)"
-
-fun
- erase :: "arexp \<Rightarrow> rexp"
-where
- "erase AZERO = ZERO"
-| "erase (AONE _) = ONE"
-| "erase (ACHAR _ c) = CH c"
-| "erase (AALTs _ []) = ZERO"
-| "erase (AALTs _ [r]) = (erase r)"
-| "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))"
-| "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)"
-| "erase (ASTAR _ r) = STAR (erase r)"
-
-
-fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where
- "fuse bs AZERO = AZERO"
-| "fuse bs (AONE cs) = AONE (bs @ cs)"
-| "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c"
-| "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs"
-| "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2"
-| "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r"
-
-lemma fuse_append:
- shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)"
- apply(induct r)
- apply(auto)
- done
-
-
-fun intern :: "rexp \<Rightarrow> arexp" where
- "intern ZERO = AZERO"
-| "intern ONE = AONE []"
-| "intern (CH c) = ACHAR [] c"
-| "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1))
- (fuse [S] (intern r2))"
-| "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)"
-| "intern (STAR r) = ASTAR [] (intern r)"
-
-
-fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where
- "retrieve (AONE bs) Void = bs"
-| "retrieve (ACHAR bs c) (Char d) = bs"
-| "retrieve (AALTs bs [r]) v = bs @ retrieve r v"
-| "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
-| "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
-| "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2"
-| "retrieve (ASTAR bs r) (Stars []) = bs @ [S]"
-| "retrieve (ASTAR bs r) (Stars (v#vs)) =
- bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)"
-
-
-
-fun
- bnullable :: "arexp \<Rightarrow> bool"
-where
- "bnullable (AZERO) = False"
-| "bnullable (AONE bs) = True"
-| "bnullable (ACHAR bs c) = False"
-| "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)"
-| "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)"
-| "bnullable (ASTAR bs r) = True"
-
-abbreviation
- bnullables :: "arexp list \<Rightarrow> bool"
-where
- "bnullables rs \<equiv> (\<exists>r \<in> set rs. bnullable r)"
-
-fun
- bmkeps :: "arexp \<Rightarrow> bit list" and
- bmkepss :: "arexp list \<Rightarrow> bit list"
-where
- "bmkeps(AONE bs) = bs"
-| "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)"
-| "bmkeps(AALTs bs rs) = bs @ (bmkepss rs)"
-| "bmkeps(ASTAR bs r) = bs @ [S]"
-| "bmkepss (r # rs) = (if bnullable(r) then (bmkeps r) else (bmkepss rs))"
-
-lemma bmkepss1:
- assumes "\<not> bnullables rs1"
- shows "bmkepss (rs1 @ rs2) = bmkepss rs2"
- using assms
- by (induct rs1) (auto)
-
-lemma bmkepss2:
- assumes "bnullables rs1"
- shows "bmkepss (rs1 @ rs2) = bmkepss rs1"
- using assms
- by (induct rs1) (auto)
-
-
-fun
- bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp"
-where
- "bder c (AZERO) = AZERO"
-| "bder c (AONE bs) = AZERO"
-| "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)"
-| "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)"
-| "bder c (ASEQ bs r1 r2) =
- (if bnullable r1
- then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2))
- else ASEQ bs (bder c r1) r2)"
-| "bder c (ASTAR bs r) = ASEQ (bs @ [Z]) (bder c r) (ASTAR [] r)"
-
-
-fun
- bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp"
-where
- "bders r [] = r"
-| "bders r (c#s) = bders (bder c r) s"
-
-lemma bders_append:
- "bders c (s1 @ s2) = bders (bders c s1) s2"
- apply(induct s1 arbitrary: c s2)
- apply(simp_all)
- done
-
-lemma bnullable_correctness:
- shows "nullable (erase r) = bnullable r"
- apply(induct r rule: erase.induct)
- apply(simp_all)
- done
-
-lemma erase_fuse:
- shows "erase (fuse bs r) = erase r"
- apply(induct r rule: erase.induct)
- apply(simp_all)
- done
-
-lemma erase_intern [simp]:
- shows "erase (intern r) = r"
- apply(induct r)
- apply(simp_all add: erase_fuse)
- done
-
-lemma erase_bder [simp]:
- shows "erase (bder a r) = der a (erase r)"
- apply(induct r rule: erase.induct)
- apply(simp_all add: erase_fuse bnullable_correctness)
- done
-
-lemma erase_bders [simp]:
- shows "erase (bders r s) = ders s (erase r)"
- apply(induct s arbitrary: r )
- apply(simp_all)
- done
-
-lemma bnullable_fuse:
- shows "bnullable (fuse bs r) = bnullable r"
- apply(induct r arbitrary: bs)
- apply(auto)
- done
-
-lemma retrieve_encode_STARS:
- assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v"
- shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)"
- using assms
- apply(induct vs)
- apply(simp_all)
- done
-
-lemma retrieve_fuse2:
- assumes "\<Turnstile> v : (erase r)"
- shows "retrieve (fuse bs r) v = bs @ retrieve r v"
- using assms
- apply(induct r arbitrary: v bs)
- apply(auto elim: Prf_elims)[4]
- apply(case_tac x2a)
- apply(simp)
- using Prf_elims(1) apply blast
- apply(case_tac x2a)
- apply(simp)
- apply(simp)
- apply(case_tac list)
- apply(simp)
- apply(simp)
- apply (smt (verit, best) Prf_elims(3) append_assoc retrieve.simps(4) retrieve.simps(5))
- apply(simp)
- using retrieve_encode_STARS
- apply(auto elim!: Prf_elims)[1]
- apply(case_tac vs)
- apply(simp)
- apply(simp)
- done
-
-lemma retrieve_fuse:
- assumes "\<Turnstile> v : r"
- shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v"
- using assms
- by (simp_all add: retrieve_fuse2)
-
-
-lemma retrieve_code:
- assumes "\<Turnstile> v : r"
- shows "code v = retrieve (intern r) v"
- using assms
- apply(induct v r )
- apply(simp_all add: retrieve_fuse retrieve_encode_STARS)
- done
-
-
-lemma retrieve_AALTs_bnullable1:
- assumes "bnullable r"
- shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))
- = bs @ retrieve r (mkeps (erase r))"
- using assms
- apply(case_tac rs)
- apply(auto simp add: bnullable_correctness)
- done
-
-lemma retrieve_AALTs_bnullable2:
- assumes "\<not>bnullable r" "bnullables rs"
- shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))
- = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
- using assms
- apply(induct rs arbitrary: r bs)
- apply(auto)
- using bnullable_correctness apply blast
- apply(case_tac rs)
- apply(auto)
- using bnullable_correctness apply blast
- apply(case_tac rs)
- apply(auto)
- done
-
-lemma bmkeps_retrieve_AALTs:
- assumes "\<forall>r \<in> set rs. bnullable r \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))"
- "bnullables rs"
- shows "bs @ bmkepss rs = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))"
- using assms
- apply(induct rs arbitrary: bs)
- apply(auto)
- using retrieve_AALTs_bnullable1 apply presburger
- apply (metis retrieve_AALTs_bnullable2)
- apply (simp add: retrieve_AALTs_bnullable1)
- by (metis retrieve_AALTs_bnullable2)
-
-
-lemma bmkeps_retrieve:
- assumes "bnullable r"
- shows "bmkeps r = retrieve r (mkeps (erase r))"
- using assms
- apply(induct r)
- apply(auto)
- using bmkeps_retrieve_AALTs by auto
-
-lemma bder_retrieve:
- assumes "\<Turnstile> v : der c (erase r)"
- shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)"
- using assms
- apply(induct r arbitrary: v rule: erase.induct)
- using Prf_elims(1) apply auto[1]
- using Prf_elims(1) apply auto[1]
- apply(auto)[1]
- apply (metis Prf_elims(4) injval.simps(1) retrieve.simps(1) retrieve.simps(2))
- using Prf_elims(1) apply blast
- (* AALTs case *)
- apply(simp)
- apply(erule Prf_elims)
- apply(simp)
- apply(simp)
- apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v)
- apply(erule Prf_elims)
- apply(simp)
- apply(simp)
- apply(case_tac rs)
- apply(simp)
- apply(simp)
- using Prf_elims(3) apply fastforce
- (* ASEQ case *)
- apply(simp)
- apply(case_tac "nullable (erase r1)")
- apply(simp)
- apply(erule Prf_elims)
- using Prf_elims(2) bnullable_correctness apply force
- apply (simp add: bmkeps_retrieve bnullable_correctness retrieve_fuse2)
- apply (simp add: bmkeps_retrieve bnullable_correctness retrieve_fuse2)
- using Prf_elims(2) apply force
- (* ASTAR case *)
- apply(rename_tac bs r v)
- apply(simp)
- apply(erule Prf_elims)
- apply(clarify)
- apply(erule Prf_elims)
- apply(clarify)
- by (simp add: retrieve_fuse2)
-
-
-lemma MAIN_decode:
- assumes "\<Turnstile> v : ders s r"
- shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r"
- using assms
-proof (induct s arbitrary: v rule: rev_induct)
- case Nil
- have "\<Turnstile> v : ders [] r" by fact
- then have "\<Turnstile> v : r" by simp
- then have "Some v = decode (retrieve (intern r) v) r"
- using decode_code retrieve_code by auto
- then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r"
- by simp
-next
- case (snoc c s v)
- have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow>
- Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact
- have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact
- then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r"
- by (simp add: Prf_injval ders_append)
- have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))"
- by (simp add: flex_append)
- also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r"
- using asm2 IH by simp
- also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r"
- using asm by (simp_all add: bder_retrieve ders_append)
- finally show "Some (flex r id (s @ [c]) v) =
- decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append)
-qed
-
-definition blexer where
- "blexer r s \<equiv> if bnullable (bders (intern r) s) then
- decode (bmkeps (bders (intern r) s)) r else None"
-
-lemma blexer_correctness:
- shows "blexer r s = lexer r s"
-proof -
- { define bds where "bds \<equiv> bders (intern r) s"
- define ds where "ds \<equiv> ders s r"
- assume asm: "nullable ds"
- have era: "erase bds = ds"
- unfolding ds_def bds_def by simp
- have mke: "\<Turnstile> mkeps ds : ds"
- using asm by (simp add: mkeps_nullable)
- have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r"
- using bmkeps_retrieve
- using asm era
- using bnullable_correctness by force
- also have "... = Some (flex r id s (mkeps ds))"
- using mke by (simp_all add: MAIN_decode ds_def bds_def)
- finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))"
- unfolding bds_def ds_def .
- }
- then show "blexer r s = lexer r s"
- unfolding blexer_def lexer_flex
- by (auto simp add: bnullable_correctness[symmetric])
-qed
-
-
-unused_thms
-
-end