thys/Paper/Paper.thy
changeset 99 f76c250906d5
parent 98 8b4c8cdd0b51
child 100 8b919b3d753e
equal deleted inserted replaced
98:8b4c8cdd0b51 99:f76c250906d5
   132   @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
   132   @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
   133       @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
   133       @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
   134   @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
   134   @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
   135       @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   135       @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   136   @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   136   @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   137       & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   137       & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   138   @{thm (lhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   138   @{thm (lhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   139       & @{thm (rhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   139       & @{thm (rhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   140   @{thm (lhs) injval.simps(8)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
   140   @{thm (lhs) injval.simps(8)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
   141       & @{thm (rhs) injval.simps(8)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   141       & @{thm (rhs) injval.simps(8)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   142   @{thm (lhs) injval.simps(9)[of "r" "c" "v" "vs"]} & $\dn$ 
   142   @{thm (lhs) injval.simps(9)[of "r" "c" "v" "vs"]} & $\dn$ 
   258   \mbox{}\bigskip
   258   \mbox{}\bigskip
   259 *}
   259 *}
   260 
   260 
   261 text {*
   261 text {*
   262   \noindent
   262   \noindent
       
   263   Things we have proved about our version of the Sulzmann ordering
       
   264 
       
   265   \begin{center}
       
   266   \begin{tabular}{c}
       
   267   @{thm[mode=IfThen] ValOrd_refl[of "v" "r"]}\medskip\\
       
   268   @{thm[mode=IfThen] ValOrd_total[of "v\<^sub>1" "r" "v\<^sub>2"]}
       
   269   \end{tabular}
       
   270   \end{center}\bigskip  
       
   271 
       
   272   \noindent
   263   Things we like to prove, but cannot:\bigskip
   273   Things we like to prove, but cannot:\bigskip
   264 
   274 
   265   If @{term "s \<in> r \<rightarrow> v\<^sub>1"}, @{term "\<turnstile> v\<^sub>2 : r"}, then @{term "v\<^sub>1 \<succ>r v\<^sub>2"}
   275   If @{term "s \<in> r \<rightarrow> v\<^sub>1"}, @{term "\<turnstile> v\<^sub>2 : r"}, then @{term "v\<^sub>1 \<succ>r v\<^sub>2"}
   266   
   276   
   267 *}
   277 *}