|
1 |
|
2 theory SizeBound5CT |
|
3 imports "Lexer" "PDerivs" |
|
4 begin |
|
5 |
|
6 section \<open>Bit-Encodings\<close> |
|
7 |
|
8 datatype bit = Z | S |
|
9 |
|
10 fun code :: "val \<Rightarrow> bit list" |
|
11 where |
|
12 "code Void = []" |
|
13 | "code (Char c) = []" |
|
14 | "code (Left v) = Z # (code v)" |
|
15 | "code (Right v) = S # (code v)" |
|
16 | "code (Seq v1 v2) = (code v1) @ (code v2)" |
|
17 | "code (Stars []) = [S]" |
|
18 | "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)" |
|
19 |
|
20 |
|
21 fun |
|
22 Stars_add :: "val \<Rightarrow> val \<Rightarrow> val" |
|
23 where |
|
24 "Stars_add v (Stars vs) = Stars (v # vs)" |
|
25 |
|
26 function |
|
27 decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)" |
|
28 where |
|
29 "decode' bs ZERO = (undefined, bs)" |
|
30 | "decode' bs ONE = (Void, bs)" |
|
31 | "decode' bs (CH d) = (Char d, bs)" |
|
32 | "decode' [] (ALT r1 r2) = (Void, [])" |
|
33 | "decode' (Z # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r1 in (Left v, bs'))" |
|
34 | "decode' (S # bs) (ALT r1 r2) = (let (v, bs') = decode' bs r2 in (Right v, bs'))" |
|
35 | "decode' bs (SEQ r1 r2) = (let (v1, bs') = decode' bs r1 in |
|
36 let (v2, bs'') = decode' bs' r2 in (Seq v1 v2, bs''))" |
|
37 | "decode' [] (STAR r) = (Void, [])" |
|
38 | "decode' (S # bs) (STAR r) = (Stars [], bs)" |
|
39 | "decode' (Z # bs) (STAR r) = (let (v, bs') = decode' bs r in |
|
40 let (vs, bs'') = decode' bs' (STAR r) |
|
41 in (Stars_add v vs, bs''))" |
|
42 by pat_completeness auto |
|
43 |
|
44 lemma decode'_smaller: |
|
45 assumes "decode'_dom (bs, r)" |
|
46 shows "length (snd (decode' bs r)) \<le> length bs" |
|
47 using assms |
|
48 apply(induct bs r) |
|
49 apply(auto simp add: decode'.psimps split: prod.split) |
|
50 using dual_order.trans apply blast |
|
51 by (meson dual_order.trans le_SucI) |
|
52 |
|
53 termination "decode'" |
|
54 apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))") |
|
55 apply(auto dest!: decode'_smaller) |
|
56 by (metis less_Suc_eq_le snd_conv) |
|
57 |
|
58 definition |
|
59 decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option" |
|
60 where |
|
61 "decode ds r \<equiv> (let (v, ds') = decode' ds r |
|
62 in (if ds' = [] then Some v else None))" |
|
63 |
|
64 lemma decode'_code_Stars: |
|
65 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []" |
|
66 shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)" |
|
67 using assms |
|
68 apply(induct vs) |
|
69 apply(auto) |
|
70 done |
|
71 |
|
72 lemma decode'_code: |
|
73 assumes "\<Turnstile> v : r" |
|
74 shows "decode' ((code v) @ ds) r = (v, ds)" |
|
75 using assms |
|
76 apply(induct v r arbitrary: ds) |
|
77 apply(auto) |
|
78 using decode'_code_Stars by blast |
|
79 |
|
80 lemma decode_code: |
|
81 assumes "\<Turnstile> v : r" |
|
82 shows "decode (code v) r = Some v" |
|
83 using assms unfolding decode_def |
|
84 by (smt append_Nil2 decode'_code old.prod.case) |
|
85 |
|
86 |
|
87 section {* Annotated Regular Expressions *} |
|
88 |
|
89 datatype arexp = |
|
90 AZERO |
|
91 | AONE "bit list" |
|
92 | ACHAR "bit list" char |
|
93 | ASEQ "bit list" arexp arexp |
|
94 | AALTs "bit list" "arexp list" |
|
95 | ASTAR "bit list" arexp |
|
96 |
|
97 abbreviation |
|
98 "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]" |
|
99 |
|
100 fun asize :: "arexp \<Rightarrow> nat" where |
|
101 "asize AZERO = 1" |
|
102 | "asize (AONE cs) = 1" |
|
103 | "asize (ACHAR cs c) = 1" |
|
104 | "asize (AALTs cs rs) = Suc (sum_list (map asize rs))" |
|
105 | "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)" |
|
106 | "asize (ASTAR cs r) = Suc (asize r)" |
|
107 |
|
108 fun |
|
109 erase :: "arexp \<Rightarrow> rexp" |
|
110 where |
|
111 "erase AZERO = ZERO" |
|
112 | "erase (AONE _) = ONE" |
|
113 | "erase (ACHAR _ c) = CH c" |
|
114 | "erase (AALTs _ []) = ZERO" |
|
115 | "erase (AALTs _ [r]) = (erase r)" |
|
116 | "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))" |
|
117 | "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)" |
|
118 | "erase (ASTAR _ r) = STAR (erase r)" |
|
119 |
|
120 |
|
121 fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where |
|
122 "fuse bs AZERO = AZERO" |
|
123 | "fuse bs (AONE cs) = AONE (bs @ cs)" |
|
124 | "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c" |
|
125 | "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs" |
|
126 | "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2" |
|
127 | "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r" |
|
128 |
|
129 lemma fuse_append: |
|
130 shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)" |
|
131 apply(induct r) |
|
132 apply(auto) |
|
133 done |
|
134 |
|
135 |
|
136 fun intern :: "rexp \<Rightarrow> arexp" where |
|
137 "intern ZERO = AZERO" |
|
138 | "intern ONE = AONE []" |
|
139 | "intern (CH c) = ACHAR [] c" |
|
140 | "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1)) |
|
141 (fuse [S] (intern r2))" |
|
142 | "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)" |
|
143 | "intern (STAR r) = ASTAR [] (intern r)" |
|
144 |
|
145 |
|
146 fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where |
|
147 "retrieve (AONE bs) Void = bs" |
|
148 | "retrieve (ACHAR bs c) (Char d) = bs" |
|
149 | "retrieve (AALTs bs [r]) v = bs @ retrieve r v" |
|
150 | "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v" |
|
151 | "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v" |
|
152 | "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2" |
|
153 | "retrieve (ASTAR bs r) (Stars []) = bs @ [S]" |
|
154 | "retrieve (ASTAR bs r) (Stars (v#vs)) = |
|
155 bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)" |
|
156 |
|
157 |
|
158 |
|
159 fun |
|
160 bnullable :: "arexp \<Rightarrow> bool" |
|
161 where |
|
162 "bnullable (AZERO) = False" |
|
163 | "bnullable (AONE bs) = True" |
|
164 | "bnullable (ACHAR bs c) = False" |
|
165 | "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)" |
|
166 | "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)" |
|
167 | "bnullable (ASTAR bs r) = True" |
|
168 |
|
169 abbreviation |
|
170 bnullables :: "arexp list \<Rightarrow> bool" |
|
171 where |
|
172 "bnullables rs \<equiv> (\<exists>r \<in> set rs. bnullable r)" |
|
173 |
|
174 fun |
|
175 bmkeps :: "arexp \<Rightarrow> bit list" and |
|
176 bmkepss :: "arexp list \<Rightarrow> bit list" |
|
177 where |
|
178 "bmkeps(AONE bs) = bs" |
|
179 | "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)" |
|
180 | "bmkeps(AALTs bs rs) = bs @ (bmkepss rs)" |
|
181 | "bmkeps(ASTAR bs r) = bs @ [S]" |
|
182 | "bmkepss [] = []" |
|
183 | "bmkepss (r # rs) = (if bnullable(r) then (bmkeps r) else (bmkepss rs))" |
|
184 |
|
185 lemma bmkepss1: |
|
186 assumes "\<not> bnullables rs1" |
|
187 shows "bmkepss (rs1 @ rs2) = bmkepss rs2" |
|
188 using assms |
|
189 by (induct rs1) (auto) |
|
190 |
|
191 lemma bmkepss2: |
|
192 assumes "bnullables rs1" |
|
193 shows "bmkepss (rs1 @ rs2) = bmkepss rs1" |
|
194 using assms |
|
195 by (induct rs1) (auto) |
|
196 |
|
197 |
|
198 fun |
|
199 bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp" |
|
200 where |
|
201 "bder c (AZERO) = AZERO" |
|
202 | "bder c (AONE bs) = AZERO" |
|
203 | "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)" |
|
204 | "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)" |
|
205 | "bder c (ASEQ bs r1 r2) = |
|
206 (if bnullable r1 |
|
207 then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2)) |
|
208 else ASEQ bs (bder c r1) r2)" |
|
209 | "bder c (ASTAR bs r) = ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)" |
|
210 |
|
211 |
|
212 fun |
|
213 bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
214 where |
|
215 "bders r [] = r" |
|
216 | "bders r (c#s) = bders (bder c r) s" |
|
217 |
|
218 lemma bders_append: |
|
219 "bders c (s1 @ s2) = bders (bders c s1) s2" |
|
220 apply(induct s1 arbitrary: c s2) |
|
221 apply(simp_all) |
|
222 done |
|
223 |
|
224 lemma bnullable_correctness: |
|
225 shows "nullable (erase r) = bnullable r" |
|
226 apply(induct r rule: erase.induct) |
|
227 apply(simp_all) |
|
228 done |
|
229 |
|
230 lemma erase_fuse: |
|
231 shows "erase (fuse bs r) = erase r" |
|
232 apply(induct r rule: erase.induct) |
|
233 apply(simp_all) |
|
234 done |
|
235 |
|
236 lemma erase_intern [simp]: |
|
237 shows "erase (intern r) = r" |
|
238 apply(induct r) |
|
239 apply(simp_all add: erase_fuse) |
|
240 done |
|
241 |
|
242 lemma erase_bder [simp]: |
|
243 shows "erase (bder a r) = der a (erase r)" |
|
244 apply(induct r rule: erase.induct) |
|
245 apply(simp_all add: erase_fuse bnullable_correctness) |
|
246 done |
|
247 |
|
248 lemma erase_bders [simp]: |
|
249 shows "erase (bders r s) = ders s (erase r)" |
|
250 apply(induct s arbitrary: r ) |
|
251 apply(simp_all) |
|
252 done |
|
253 |
|
254 lemma bnullable_fuse: |
|
255 shows "bnullable (fuse bs r) = bnullable r" |
|
256 apply(induct r arbitrary: bs) |
|
257 apply(auto) |
|
258 done |
|
259 |
|
260 lemma retrieve_encode_STARS: |
|
261 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v" |
|
262 shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)" |
|
263 using assms |
|
264 apply(induct vs) |
|
265 apply(simp_all) |
|
266 done |
|
267 |
|
268 lemma retrieve_fuse2: |
|
269 assumes "\<Turnstile> v : (erase r)" |
|
270 shows "retrieve (fuse bs r) v = bs @ retrieve r v" |
|
271 using assms |
|
272 apply(induct r arbitrary: v bs) |
|
273 apply(auto elim: Prf_elims)[4] |
|
274 apply(case_tac x2a) |
|
275 apply(simp) |
|
276 using Prf_elims(1) apply blast |
|
277 apply(case_tac x2a) |
|
278 apply(simp) |
|
279 apply(simp) |
|
280 apply(case_tac list) |
|
281 apply(simp) |
|
282 apply(simp) |
|
283 apply (smt (verit, best) Prf_elims(3) append_assoc retrieve.simps(4) retrieve.simps(5)) |
|
284 apply(simp) |
|
285 using retrieve_encode_STARS |
|
286 apply(auto elim!: Prf_elims)[1] |
|
287 apply(case_tac vs) |
|
288 apply(simp) |
|
289 apply(simp) |
|
290 done |
|
291 |
|
292 lemma retrieve_fuse: |
|
293 assumes "\<Turnstile> v : r" |
|
294 shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v" |
|
295 using assms |
|
296 by (simp_all add: retrieve_fuse2) |
|
297 |
|
298 |
|
299 lemma retrieve_code: |
|
300 assumes "\<Turnstile> v : r" |
|
301 shows "code v = retrieve (intern r) v" |
|
302 using assms |
|
303 apply(induct v r ) |
|
304 apply(simp_all add: retrieve_fuse retrieve_encode_STARS) |
|
305 done |
|
306 |
|
307 |
|
308 lemma retrieve_AALTs_bnullable1: |
|
309 assumes "bnullable r" |
|
310 shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs)))) |
|
311 = bs @ retrieve r (mkeps (erase r))" |
|
312 using assms |
|
313 apply(case_tac rs) |
|
314 apply(auto simp add: bnullable_correctness) |
|
315 done |
|
316 |
|
317 lemma retrieve_AALTs_bnullable2: |
|
318 assumes "\<not>bnullable r" "bnullables rs" |
|
319 shows "retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs)))) |
|
320 = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))" |
|
321 using assms |
|
322 apply(induct rs arbitrary: r bs) |
|
323 apply(auto) |
|
324 using bnullable_correctness apply blast |
|
325 apply(case_tac rs) |
|
326 apply(auto) |
|
327 using bnullable_correctness apply blast |
|
328 apply(case_tac rs) |
|
329 apply(auto) |
|
330 done |
|
331 |
|
332 lemma bmkeps_retrieve_AALTs: |
|
333 assumes "\<forall>r \<in> set rs. bnullable r \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))" |
|
334 "bnullables rs" |
|
335 shows "bs @ bmkepss rs = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))" |
|
336 using assms |
|
337 apply(induct rs arbitrary: bs) |
|
338 apply(auto) |
|
339 using retrieve_AALTs_bnullable1 apply presburger |
|
340 apply (metis retrieve_AALTs_bnullable2) |
|
341 apply (simp add: retrieve_AALTs_bnullable1) |
|
342 by (metis retrieve_AALTs_bnullable2) |
|
343 |
|
344 |
|
345 lemma bmkeps_retrieve: |
|
346 assumes "bnullable r" |
|
347 shows "bmkeps r = retrieve r (mkeps (erase r))" |
|
348 using assms |
|
349 apply(induct r) |
|
350 apply(auto) |
|
351 using bmkeps_retrieve_AALTs by auto |
|
352 |
|
353 lemma bder_retrieve: |
|
354 assumes "\<Turnstile> v : der c (erase r)" |
|
355 shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)" |
|
356 using assms |
|
357 apply(induct r arbitrary: v rule: erase.induct) |
|
358 using Prf_elims(1) apply auto[1] |
|
359 using Prf_elims(1) apply auto[1] |
|
360 apply(auto)[1] |
|
361 apply (metis Prf_elims(4) injval.simps(1) retrieve.simps(1) retrieve.simps(2)) |
|
362 using Prf_elims(1) apply blast |
|
363 (* AALTs case *) |
|
364 apply(simp) |
|
365 apply(erule Prf_elims) |
|
366 apply(simp) |
|
367 apply(simp) |
|
368 apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v) |
|
369 apply(erule Prf_elims) |
|
370 apply(simp) |
|
371 apply(simp) |
|
372 apply(case_tac rs) |
|
373 apply(simp) |
|
374 apply(simp) |
|
375 using Prf_elims(3) apply fastforce |
|
376 (* ASEQ case *) |
|
377 apply(simp) |
|
378 apply(case_tac "nullable (erase r1)") |
|
379 apply(simp) |
|
380 apply(erule Prf_elims) |
|
381 using Prf_elims(2) bnullable_correctness apply force |
|
382 apply (simp add: bmkeps_retrieve bnullable_correctness retrieve_fuse2) |
|
383 apply (simp add: bmkeps_retrieve bnullable_correctness retrieve_fuse2) |
|
384 using Prf_elims(2) apply force |
|
385 (* ASTAR case *) |
|
386 apply(rename_tac bs r v) |
|
387 apply(simp) |
|
388 apply(erule Prf_elims) |
|
389 apply(clarify) |
|
390 apply(erule Prf_elims) |
|
391 apply(clarify) |
|
392 by (simp add: retrieve_fuse2) |
|
393 |
|
394 |
|
395 lemma MAIN_decode: |
|
396 assumes "\<Turnstile> v : ders s r" |
|
397 shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" |
|
398 using assms |
|
399 proof (induct s arbitrary: v rule: rev_induct) |
|
400 case Nil |
|
401 have "\<Turnstile> v : ders [] r" by fact |
|
402 then have "\<Turnstile> v : r" by simp |
|
403 then have "Some v = decode (retrieve (intern r) v) r" |
|
404 using decode_code retrieve_code by auto |
|
405 then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r" |
|
406 by simp |
|
407 next |
|
408 case (snoc c s v) |
|
409 have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow> |
|
410 Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact |
|
411 have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact |
|
412 then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r" |
|
413 by (simp add: Prf_injval ders_append) |
|
414 have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))" |
|
415 by (simp add: flex_append) |
|
416 also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r" |
|
417 using asm2 IH by simp |
|
418 also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r" |
|
419 using asm by (simp_all add: bder_retrieve ders_append) |
|
420 finally show "Some (flex r id (s @ [c]) v) = |
|
421 decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append) |
|
422 qed |
|
423 |
|
424 definition blexer where |
|
425 "blexer r s \<equiv> if bnullable (bders (intern r) s) then |
|
426 decode (bmkeps (bders (intern r) s)) r else None" |
|
427 |
|
428 lemma blexer_correctness: |
|
429 shows "blexer r s = lexer r s" |
|
430 proof - |
|
431 { define bds where "bds \<equiv> bders (intern r) s" |
|
432 define ds where "ds \<equiv> ders s r" |
|
433 assume asm: "nullable ds" |
|
434 have era: "erase bds = ds" |
|
435 unfolding ds_def bds_def by simp |
|
436 have mke: "\<Turnstile> mkeps ds : ds" |
|
437 using asm by (simp add: mkeps_nullable) |
|
438 have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r" |
|
439 using bmkeps_retrieve |
|
440 using asm era |
|
441 using bnullable_correctness by force |
|
442 also have "... = Some (flex r id s (mkeps ds))" |
|
443 using mke by (simp_all add: MAIN_decode ds_def bds_def) |
|
444 finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))" |
|
445 unfolding bds_def ds_def . |
|
446 } |
|
447 then show "blexer r s = lexer r s" |
|
448 unfolding blexer_def lexer_flex |
|
449 by (auto simp add: bnullable_correctness[symmetric]) |
|
450 qed |
|
451 |
|
452 |
|
453 fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list" |
|
454 where |
|
455 "distinctBy [] f acc = []" |
|
456 | "distinctBy (x#xs) f acc = |
|
457 (if (f x) \<in> acc then distinctBy xs f acc |
|
458 else x # (distinctBy xs f ({f x} \<union> acc)))" |
|
459 |
|
460 |
|
461 |
|
462 fun flts :: "arexp list \<Rightarrow> arexp list" |
|
463 where |
|
464 "flts [] = []" |
|
465 | "flts (AZERO # rs) = flts rs" |
|
466 | "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs" |
|
467 | "flts (r1 # rs) = r1 # flts rs" |
|
468 |
|
469 |
|
470 |
|
471 fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp" |
|
472 where |
|
473 "bsimp_ASEQ _ AZERO _ = AZERO" |
|
474 | "bsimp_ASEQ _ _ AZERO = AZERO" |
|
475 | "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2" |
|
476 | "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2" |
|
477 |
|
478 lemma bsimp_ASEQ0[simp]: |
|
479 shows "bsimp_ASEQ bs r1 AZERO = AZERO" |
|
480 by (case_tac r1)(simp_all) |
|
481 |
|
482 lemma bsimp_ASEQ1: |
|
483 assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<nexists>bs. r1 = AONE bs" |
|
484 shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2" |
|
485 using assms |
|
486 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
487 apply(auto) |
|
488 done |
|
489 |
|
490 lemma bsimp_ASEQ2[simp]: |
|
491 shows "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2" |
|
492 by (case_tac r2) (simp_all) |
|
493 |
|
494 |
|
495 fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp" |
|
496 where |
|
497 "bsimp_AALTs _ [] = AZERO" |
|
498 | "bsimp_AALTs bs1 [r] = fuse bs1 r" |
|
499 | "bsimp_AALTs bs1 rs = AALTs bs1 rs" |
|
500 |
|
501 |
|
502 fun bsimp :: "arexp \<Rightarrow> arexp" |
|
503 where |
|
504 "bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" |
|
505 | "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {}) " |
|
506 | "bsimp r = r" |
|
507 |
|
508 |
|
509 fun |
|
510 bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
511 where |
|
512 "bders_simp r [] = r" |
|
513 | "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s" |
|
514 |
|
515 definition blexer_simp where |
|
516 "blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then |
|
517 decode (bmkeps (bders_simp (intern r) s)) r else None" |
|
518 |
|
519 |
|
520 |
|
521 lemma bders_simp_append: |
|
522 shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2" |
|
523 apply(induct s1 arbitrary: r s2) |
|
524 apply(simp_all) |
|
525 done |
|
526 |
|
527 |
|
528 lemma bmkeps_fuse: |
|
529 assumes "bnullable r" |
|
530 shows "bmkeps (fuse bs r) = bs @ bmkeps r" |
|
531 using assms |
|
532 by (metis bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2) |
|
533 |
|
534 lemma bmkepss_fuse: |
|
535 assumes "bnullables rs" |
|
536 shows "bmkepss (map (fuse bs) rs) = bs @ bmkepss rs" |
|
537 using assms |
|
538 apply(induct rs arbitrary: bs) |
|
539 apply(auto simp add: bmkeps_fuse bnullable_fuse) |
|
540 done |
|
541 |
|
542 lemma bder_fuse: |
|
543 shows "bder c (fuse bs a) = fuse bs (bder c a)" |
|
544 apply(induct a arbitrary: bs c) |
|
545 apply(simp_all) |
|
546 done |
|
547 |
|
548 |
|
549 |
|
550 |
|
551 inductive |
|
552 rrewrite:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99) |
|
553 and |
|
554 srewrite:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ s\<leadsto> _" [100, 100] 100) |
|
555 where |
|
556 bs1: "ASEQ bs AZERO r2 \<leadsto> AZERO" |
|
557 | bs2: "ASEQ bs r1 AZERO \<leadsto> AZERO" |
|
558 | bs3: "ASEQ bs1 (AONE bs2) r \<leadsto> fuse (bs1@bs2) r" |
|
559 | bs4: "r1 \<leadsto> r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r2 r3" |
|
560 | bs5: "r3 \<leadsto> r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r1 r4" |
|
561 | bs6: "AALTs bs [] \<leadsto> AZERO" |
|
562 | bs7: "AALTs bs [r] \<leadsto> fuse bs r" |
|
563 | bs8: "rs1 s\<leadsto> rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto> AALTs bs rs2" |
|
564 (*| ss1: "[] s\<leadsto> []"*) |
|
565 | ss2: "rs1 s\<leadsto> rs2 \<Longrightarrow> (r # rs1) s\<leadsto> (r # rs2)" |
|
566 | ss3: "r1 \<leadsto> r2 \<Longrightarrow> (r1 # rs) s\<leadsto> (r2 # rs)" |
|
567 | ss4: "(AZERO # rs) s\<leadsto> rs" |
|
568 | ss5: "(AALTs bs1 rs1 # rsb) s\<leadsto> ((map (fuse bs1) rs1) @ rsb)" |
|
569 | ss6: "erase a1 = erase a2 \<Longrightarrow> (rsa@[a1]@rsb@[a2]@rsc) s\<leadsto> (rsa@[a1]@rsb@rsc)" |
|
570 |
|
571 |
|
572 inductive |
|
573 rrewrites:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100) |
|
574 where |
|
575 rs1[intro, simp]:"r \<leadsto>* r" |
|
576 | rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3" |
|
577 |
|
578 inductive |
|
579 srewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" ("_ s\<leadsto>* _" [100, 100] 100) |
|
580 where |
|
581 sss1[intro, simp]:"rs s\<leadsto>* rs" |
|
582 | sss2[intro]: "\<lbrakk>rs1 s\<leadsto> rs2; rs2 s\<leadsto>* rs3\<rbrakk> \<Longrightarrow> rs1 s\<leadsto>* rs3" |
|
583 |
|
584 |
|
585 lemma r_in_rstar: |
|
586 shows "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2" |
|
587 using rrewrites.intros(1) rrewrites.intros(2) by blast |
|
588 |
|
589 lemma rrewrites_trans[trans]: |
|
590 assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3" |
|
591 shows "r1 \<leadsto>* r3" |
|
592 using a2 a1 |
|
593 apply(induct r2 r3 arbitrary: r1 rule: rrewrites.induct) |
|
594 apply(auto) |
|
595 done |
|
596 |
|
597 lemma srewrites_trans[trans]: |
|
598 assumes a1: "r1 s\<leadsto>* r2" and a2: "r2 s\<leadsto>* r3" |
|
599 shows "r1 s\<leadsto>* r3" |
|
600 using a1 a2 |
|
601 apply(induct r1 r2 arbitrary: r3 rule: srewrites.induct) |
|
602 apply(auto) |
|
603 done |
|
604 |
|
605 |
|
606 |
|
607 lemma contextrewrites0: |
|
608 "rs1 s\<leadsto>* rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto>* AALTs bs rs2" |
|
609 apply(induct rs1 rs2 rule: srewrites.inducts) |
|
610 apply simp |
|
611 using bs8 r_in_rstar rrewrites_trans by blast |
|
612 |
|
613 lemma contextrewrites1: |
|
614 "r \<leadsto>* r' \<Longrightarrow> AALTs bs (r # rs) \<leadsto>* AALTs bs (r' # rs)" |
|
615 apply(induct r r' rule: rrewrites.induct) |
|
616 apply simp |
|
617 using bs8 ss3 by blast |
|
618 |
|
619 lemma srewrite1: |
|
620 shows "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto> (rs @ rs2)" |
|
621 apply(induct rs) |
|
622 apply(auto) |
|
623 using ss2 by auto |
|
624 |
|
625 lemma srewrites1: |
|
626 shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto>* (rs @ rs2)" |
|
627 apply(induct rs1 rs2 rule: srewrites.induct) |
|
628 apply(auto) |
|
629 using srewrite1 by blast |
|
630 |
|
631 lemma srewrite2: |
|
632 shows "r1 \<leadsto> r2 \<Longrightarrow> True" |
|
633 and "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)" |
|
634 apply(induct rule: rrewrite_srewrite.inducts) |
|
635 apply(auto) |
|
636 apply (metis append_Cons append_Nil srewrites1) |
|
637 apply(meson srewrites.simps ss3) |
|
638 apply (meson srewrites.simps ss4) |
|
639 apply (meson srewrites.simps ss5) |
|
640 by (metis append_Cons append_Nil srewrites.simps ss6) |
|
641 |
|
642 |
|
643 lemma srewrites3: |
|
644 shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)" |
|
645 apply(induct rs1 rs2 arbitrary: rs rule: srewrites.induct) |
|
646 apply(auto) |
|
647 by (meson srewrite2(2) srewrites_trans) |
|
648 |
|
649 (* |
|
650 lemma srewrites4: |
|
651 assumes "rs3 s\<leadsto>* rs4" "rs1 s\<leadsto>* rs2" |
|
652 shows "(rs1 @ rs3) s\<leadsto>* (rs2 @ rs4)" |
|
653 using assms |
|
654 apply(induct rs3 rs4 arbitrary: rs1 rs2 rule: srewrites.induct) |
|
655 apply (simp add: srewrites3) |
|
656 using srewrite1 by blast |
|
657 *) |
|
658 |
|
659 lemma srewrites6: |
|
660 assumes "r1 \<leadsto>* r2" |
|
661 shows "[r1] s\<leadsto>* [r2]" |
|
662 using assms |
|
663 apply(induct r1 r2 rule: rrewrites.induct) |
|
664 apply(auto) |
|
665 by (meson srewrites.simps srewrites_trans ss3) |
|
666 |
|
667 lemma srewrites7: |
|
668 assumes "rs3 s\<leadsto>* rs4" "r1 \<leadsto>* r2" |
|
669 shows "(r1 # rs3) s\<leadsto>* (r2 # rs4)" |
|
670 using assms |
|
671 by (smt (verit, del_insts) append.simps srewrites1 srewrites3 srewrites6 srewrites_trans) |
|
672 |
|
673 lemma ss6_stronger_aux: |
|
674 shows "(rs1 @ rs2) s\<leadsto>* (rs1 @ distinctBy rs2 erase (set (map erase rs1)))" |
|
675 apply(induct rs2 arbitrary: rs1) |
|
676 apply(auto) |
|
677 apply (smt (verit, best) append.assoc append.right_neutral append_Cons append_Nil split_list srewrite2(2) srewrites_trans ss6) |
|
678 apply(drule_tac x="rs1 @ [a]" in meta_spec) |
|
679 apply(simp) |
|
680 done |
|
681 |
|
682 lemma ss6_stronger: |
|
683 shows "rs1 s\<leadsto>* distinctBy rs1 erase {}" |
|
684 using ss6_stronger_aux[of "[]" _] by auto |
|
685 |
|
686 lemma rewrite_preserves_fuse: |
|
687 shows "r2 \<leadsto> r3 \<Longrightarrow> fuse bs r2 \<leadsto> fuse bs r3" |
|
688 and "rs2 s\<leadsto> rs3 \<Longrightarrow> map (fuse bs) rs2 s\<leadsto> map (fuse bs) rs3" |
|
689 proof(induct rule: rrewrite_srewrite.inducts) |
|
690 case (bs3 bs1 bs2 r) |
|
691 then show "fuse bs (ASEQ bs1 (AONE bs2) r) \<leadsto> fuse bs (fuse (bs1 @ bs2) r)" |
|
692 by (metis fuse.simps(5) fuse_append rrewrite_srewrite.bs3) |
|
693 next |
|
694 case (bs7 bs1 r) |
|
695 then show "fuse bs (AALTs bs1 [r]) \<leadsto> fuse bs (fuse bs1 r)" |
|
696 by (metis fuse.simps(4) fuse_append rrewrite_srewrite.bs7) |
|
697 next |
|
698 case (ss2 rs1 rs2 r) |
|
699 then show "map (fuse bs) (r # rs1) s\<leadsto> map (fuse bs) (r # rs2)" |
|
700 by (simp add: rrewrite_srewrite.ss2) |
|
701 next |
|
702 case (ss3 r1 r2 rs) |
|
703 then show "map (fuse bs) (r1 # rs) s\<leadsto> map (fuse bs) (r2 # rs)" |
|
704 by (simp add: rrewrite_srewrite.ss3) |
|
705 next |
|
706 case (ss5 bs1 rs1 rsb) |
|
707 have "map (fuse bs) (AALTs bs1 rs1 # rsb) = AALTs (bs @ bs1) rs1 # (map (fuse bs) rsb)" by simp |
|
708 also have "... s\<leadsto> ((map (fuse (bs @ bs1)) rs1) @ (map (fuse bs) rsb))" |
|
709 by (simp add: rrewrite_srewrite.ss5) |
|
710 finally show "map (fuse bs) (AALTs bs1 rs1 # rsb) s\<leadsto> map (fuse bs) (map (fuse bs1) rs1 @ rsb)" |
|
711 by (simp add: comp_def fuse_append) |
|
712 next |
|
713 case (ss6 a1 a2 rsa rsb rsc) |
|
714 then show "map (fuse bs) (rsa @ [a1] @ rsb @ [a2] @ rsc) s\<leadsto> map (fuse bs) (rsa @ [a1] @ rsb @ rsc)" |
|
715 apply(simp) |
|
716 apply(rule rrewrite_srewrite.ss6[simplified]) |
|
717 apply(simp add: erase_fuse) |
|
718 done |
|
719 qed (auto intro: rrewrite_srewrite.intros) |
|
720 |
|
721 lemma rewrites_fuse: |
|
722 assumes "r1 \<leadsto>* r2" |
|
723 shows "fuse bs r1 \<leadsto>* fuse bs r2" |
|
724 using assms |
|
725 apply(induction r1 r2 arbitrary: bs rule: rrewrites.induct) |
|
726 apply(auto intro: rewrite_preserves_fuse) |
|
727 done |
|
728 |
|
729 |
|
730 lemma star_seq: |
|
731 assumes "r1 \<leadsto>* r2" |
|
732 shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r2 r3" |
|
733 using assms |
|
734 apply(induct r1 r2 arbitrary: r3 rule: rrewrites.induct) |
|
735 apply(auto intro: rrewrite_srewrite.intros) |
|
736 done |
|
737 |
|
738 lemma star_seq2: |
|
739 assumes "r3 \<leadsto>* r4" |
|
740 shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r1 r4" |
|
741 using assms |
|
742 apply(induct r3 r4 arbitrary: r1 rule: rrewrites.induct) |
|
743 apply(auto intro: rrewrite_srewrite.intros) |
|
744 done |
|
745 |
|
746 lemma continuous_rewrite: |
|
747 assumes "r1 \<leadsto>* AZERO" |
|
748 shows "ASEQ bs1 r1 r2 \<leadsto>* AZERO" |
|
749 using assms bs1 star_seq by blast |
|
750 |
|
751 (* |
|
752 lemma continuous_rewrite2: |
|
753 assumes "r1 \<leadsto>* AONE bs" |
|
754 shows "ASEQ bs1 r1 r2 \<leadsto>* (fuse (bs1 @ bs) r2)" |
|
755 using assms by (meson bs3 rrewrites.simps star_seq) |
|
756 *) |
|
757 |
|
758 lemma bsimp_aalts_simpcases: |
|
759 shows "AONE bs \<leadsto>* bsimp (AONE bs)" |
|
760 and "AZERO \<leadsto>* bsimp AZERO" |
|
761 and "ACHAR bs c \<leadsto>* bsimp (ACHAR bs c)" |
|
762 by (simp_all) |
|
763 |
|
764 lemma bsimp_AALTs_rewrites: |
|
765 shows "AALTs bs1 rs \<leadsto>* bsimp_AALTs bs1 rs" |
|
766 by (smt (verit) bs6 bs7 bsimp_AALTs.elims rrewrites.simps) |
|
767 |
|
768 lemma trivialbsimp_srewrites: |
|
769 assumes "\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x" |
|
770 shows "rs s\<leadsto>* (map f rs)" |
|
771 using assms |
|
772 apply(induction rs) |
|
773 apply(simp_all add: srewrites7) |
|
774 done |
|
775 |
|
776 lemma fltsfrewrites: "rs s\<leadsto>* flts rs" |
|
777 apply(induction rs rule: flts.induct) |
|
778 apply(auto intro: rrewrite_srewrite.intros) |
|
779 apply (meson srewrites.simps srewrites1 ss5) |
|
780 using rs1 srewrites7 apply presburger |
|
781 using srewrites7 apply force |
|
782 apply (simp add: srewrites7) |
|
783 by (simp add: srewrites7) |
|
784 |
|
785 lemma bnullable0: |
|
786 shows "r1 \<leadsto> r2 \<Longrightarrow> bnullable r1 = bnullable r2" |
|
787 and "rs1 s\<leadsto> rs2 \<Longrightarrow> bnullables rs1 = bnullables rs2" |
|
788 apply(induct rule: rrewrite_srewrite.inducts) |
|
789 apply(auto simp add: bnullable_fuse) |
|
790 apply (meson UnCI bnullable_fuse imageI) |
|
791 by (metis bnullable_correctness) |
|
792 |
|
793 |
|
794 lemma rewrites_bnullable_eq: |
|
795 assumes "r1 \<leadsto>* r2" |
|
796 shows "bnullable r1 = bnullable r2" |
|
797 using assms |
|
798 apply(induction r1 r2 rule: rrewrites.induct) |
|
799 apply simp |
|
800 using bnullable0(1) by auto |
|
801 |
|
802 lemma rewrite_bmkeps_aux: |
|
803 shows "r1 \<leadsto> r2 \<Longrightarrow> bnullable r1 \<Longrightarrow> bmkeps r1 = bmkeps r2" |
|
804 and "rs1 s\<leadsto> rs2 \<Longrightarrow> bnullables rs1 \<Longrightarrow> bmkepss rs1 = bmkepss rs2" |
|
805 proof (induct rule: rrewrite_srewrite.inducts) |
|
806 case (bs3 bs1 bs2 r) |
|
807 have IH2: "bnullable (ASEQ bs1 (AONE bs2) r)" by fact |
|
808 then show "bmkeps (ASEQ bs1 (AONE bs2) r) = bmkeps (fuse (bs1 @ bs2) r)" |
|
809 by (simp add: bmkeps_fuse) |
|
810 next |
|
811 case (bs7 bs r) |
|
812 have IH2: "bnullable (AALTs bs [r])" by fact |
|
813 then show "bmkeps (AALTs bs [r]) = bmkeps (fuse bs r)" |
|
814 by (simp add: bmkeps_fuse) |
|
815 next |
|
816 case (ss3 r1 r2 rs) |
|
817 have IH1: "bnullable r1 \<Longrightarrow> bmkeps r1 = bmkeps r2" by fact |
|
818 have as: "r1 \<leadsto> r2" by fact |
|
819 from IH1 as show "bmkepss (r1 # rs) = bmkepss (r2 # rs)" |
|
820 by (simp add: bnullable0) |
|
821 next |
|
822 case (ss5 bs1 rs1 rsb) |
|
823 have "bnullables (AALTs bs1 rs1 # rsb)" by fact |
|
824 then show "bmkepss (AALTs bs1 rs1 # rsb) = bmkepss (map (fuse bs1) rs1 @ rsb)" |
|
825 by (simp add: bmkepss1 bmkepss2 bmkepss_fuse bnullable_fuse) |
|
826 next |
|
827 case (ss6 a1 a2 rsa rsb rsc) |
|
828 have as1: "erase a1 = erase a2" by fact |
|
829 have as3: "bnullables (rsa @ [a1] @ rsb @ [a2] @ rsc)" by fact |
|
830 show "bmkepss (rsa @ [a1] @ rsb @ [a2] @ rsc) = bmkepss (rsa @ [a1] @ rsb @ rsc)" using as1 as3 |
|
831 by (smt (verit, best) append_Cons bmkeps.simps(3) bmkepss.simps(2) bmkepss1 bmkepss2 bnullable_correctness) |
|
832 qed (auto) |
|
833 |
|
834 lemma rewrites_bmkeps: |
|
835 assumes "r1 \<leadsto>* r2" "bnullable r1" |
|
836 shows "bmkeps r1 = bmkeps r2" |
|
837 using assms |
|
838 proof(induction r1 r2 rule: rrewrites.induct) |
|
839 case (rs1 r) |
|
840 then show "bmkeps r = bmkeps r" by simp |
|
841 next |
|
842 case (rs2 r1 r2 r3) |
|
843 then have IH: "bmkeps r1 = bmkeps r2" by simp |
|
844 have a1: "bnullable r1" by fact |
|
845 have a2: "r1 \<leadsto>* r2" by fact |
|
846 have a3: "r2 \<leadsto> r3" by fact |
|
847 have a4: "bnullable r2" using a1 a2 by (simp add: rewrites_bnullable_eq) |
|
848 then have "bmkeps r2 = bmkeps r3" |
|
849 using a3 bnullable0(1) rewrite_bmkeps_aux(1) by blast |
|
850 then show "bmkeps r1 = bmkeps r3" using IH by simp |
|
851 qed |
|
852 |
|
853 |
|
854 lemma rewrites_to_bsimp: |
|
855 shows "r \<leadsto>* bsimp r" |
|
856 proof (induction r rule: bsimp.induct) |
|
857 case (1 bs1 r1 r2) |
|
858 have IH1: "r1 \<leadsto>* bsimp r1" by fact |
|
859 have IH2: "r2 \<leadsto>* bsimp r2" by fact |
|
860 { assume as: "bsimp r1 = AZERO \<or> bsimp r2 = AZERO" |
|
861 with IH1 IH2 have "r1 \<leadsto>* AZERO \<or> r2 \<leadsto>* AZERO" by auto |
|
862 then have "ASEQ bs1 r1 r2 \<leadsto>* AZERO" |
|
863 by (metis bs2 continuous_rewrite rrewrites.simps star_seq2) |
|
864 then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" using as by auto |
|
865 } |
|
866 moreover |
|
867 { assume "\<exists>bs. bsimp r1 = AONE bs" |
|
868 then obtain bs where as: "bsimp r1 = AONE bs" by blast |
|
869 with IH1 have "r1 \<leadsto>* AONE bs" by simp |
|
870 then have "ASEQ bs1 r1 r2 \<leadsto>* fuse (bs1 @ bs) r2" using bs3 star_seq by blast |
|
871 with IH2 have "ASEQ bs1 r1 r2 \<leadsto>* fuse (bs1 @ bs) (bsimp r2)" |
|
872 using rewrites_fuse by (meson rrewrites_trans) |
|
873 then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 (AONE bs) r2)" by simp |
|
874 then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by (simp add: as) |
|
875 } |
|
876 moreover |
|
877 { assume as1: "bsimp r1 \<noteq> AZERO" "bsimp r2 \<noteq> AZERO" and as2: "(\<nexists>bs. bsimp r1 = AONE bs)" |
|
878 then have "bsimp_ASEQ bs1 (bsimp r1) (bsimp r2) = ASEQ bs1 (bsimp r1) (bsimp r2)" |
|
879 by (simp add: bsimp_ASEQ1) |
|
880 then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" using as1 as2 IH1 IH2 |
|
881 by (metis rrewrites_trans star_seq star_seq2) |
|
882 then have "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by simp |
|
883 } |
|
884 ultimately show "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" by blast |
|
885 next |
|
886 case (2 bs1 rs) |
|
887 have IH: "\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* bsimp x" by fact |
|
888 then have "rs s\<leadsto>* (map bsimp rs)" by (simp add: trivialbsimp_srewrites) |
|
889 also have "... s\<leadsto>* flts (map bsimp rs)" by (simp add: fltsfrewrites) |
|
890 also have "... s\<leadsto>* distinctBy (flts (map bsimp rs)) erase {}" by (simp add: ss6_stronger) |
|
891 finally have "AALTs bs1 rs \<leadsto>* AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {})" |
|
892 using contextrewrites0 by blast |
|
893 also have "... \<leadsto>* bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {})" |
|
894 by (simp add: bsimp_AALTs_rewrites) |
|
895 finally show "AALTs bs1 rs \<leadsto>* bsimp (AALTs bs1 rs)" by simp |
|
896 qed (simp_all) |
|
897 |
|
898 |
|
899 lemma to_zero_in_alt: |
|
900 shows "AALT bs (ASEQ [] AZERO r) r2 \<leadsto> AALT bs AZERO r2" |
|
901 by (simp add: bs1 bs8 ss3) |
|
902 |
|
903 |
|
904 |
|
905 lemma bder_fuse_list: |
|
906 shows "map (bder c \<circ> fuse bs1) rs1 = map (fuse bs1 \<circ> bder c) rs1" |
|
907 apply(induction rs1) |
|
908 apply(simp_all add: bder_fuse) |
|
909 done |
|
910 |
|
911 lemma rewrite_preserves_bder: |
|
912 shows "r1 \<leadsto> r2 \<Longrightarrow> bder c r1 \<leadsto>* bder c r2" |
|
913 and "rs1 s\<leadsto> rs2 \<Longrightarrow> map (bder c) rs1 s\<leadsto>* map (bder c) rs2" |
|
914 proof(induction rule: rrewrite_srewrite.inducts) |
|
915 case (bs1 bs r2) |
|
916 show "bder c (ASEQ bs AZERO r2) \<leadsto>* bder c AZERO" |
|
917 by (simp add: continuous_rewrite) |
|
918 next |
|
919 case (bs2 bs r1) |
|
920 show "bder c (ASEQ bs r1 AZERO) \<leadsto>* bder c AZERO" |
|
921 apply(auto) |
|
922 apply (meson bs6 contextrewrites0 rrewrite_srewrite.bs2 rs2 ss3 ss4 sss1 sss2) |
|
923 by (simp add: r_in_rstar rrewrite_srewrite.bs2) |
|
924 next |
|
925 case (bs3 bs1 bs2 r) |
|
926 show "bder c (ASEQ bs1 (AONE bs2) r) \<leadsto>* bder c (fuse (bs1 @ bs2) r)" |
|
927 apply(simp) |
|
928 by (metis (no_types, lifting) bder_fuse bs8 bs7 fuse_append rrewrites.simps ss4 to_zero_in_alt) |
|
929 next |
|
930 case (bs4 r1 r2 bs r3) |
|
931 have as: "r1 \<leadsto> r2" by fact |
|
932 have IH: "bder c r1 \<leadsto>* bder c r2" by fact |
|
933 from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r2 r3)" |
|
934 by (metis bder.simps(5) bnullable0(1) contextrewrites1 rewrite_bmkeps_aux(1) star_seq) |
|
935 next |
|
936 case (bs5 r3 r4 bs r1) |
|
937 have as: "r3 \<leadsto> r4" by fact |
|
938 have IH: "bder c r3 \<leadsto>* bder c r4" by fact |
|
939 from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r1 r4)" |
|
940 apply(simp) |
|
941 apply(auto) |
|
942 using contextrewrites0 r_in_rstar rewrites_fuse srewrites6 srewrites7 star_seq2 apply presburger |
|
943 using star_seq2 by blast |
|
944 next |
|
945 case (bs6 bs) |
|
946 show "bder c (AALTs bs []) \<leadsto>* bder c AZERO" |
|
947 using rrewrite_srewrite.bs6 by force |
|
948 next |
|
949 case (bs7 bs r) |
|
950 show "bder c (AALTs bs [r]) \<leadsto>* bder c (fuse bs r)" |
|
951 by (simp add: bder_fuse r_in_rstar rrewrite_srewrite.bs7) |
|
952 next |
|
953 case (bs8 rs1 rs2 bs) |
|
954 have IH1: "map (bder c) rs1 s\<leadsto>* map (bder c) rs2" by fact |
|
955 then show "bder c (AALTs bs rs1) \<leadsto>* bder c (AALTs bs rs2)" |
|
956 using contextrewrites0 by force |
|
957 (*next |
|
958 case ss1 |
|
959 show "map (bder c) [] s\<leadsto>* map (bder c) []" by simp*) |
|
960 next |
|
961 case (ss2 rs1 rs2 r) |
|
962 have IH1: "map (bder c) rs1 s\<leadsto>* map (bder c) rs2" by fact |
|
963 then show "map (bder c) (r # rs1) s\<leadsto>* map (bder c) (r # rs2)" |
|
964 by (simp add: srewrites7) |
|
965 next |
|
966 case (ss3 r1 r2 rs) |
|
967 have IH: "bder c r1 \<leadsto>* bder c r2" by fact |
|
968 then show "map (bder c) (r1 # rs) s\<leadsto>* map (bder c) (r2 # rs)" |
|
969 by (simp add: srewrites7) |
|
970 next |
|
971 case (ss4 rs) |
|
972 show "map (bder c) (AZERO # rs) s\<leadsto>* map (bder c) rs" |
|
973 using rrewrite_srewrite.ss4 by fastforce |
|
974 next |
|
975 case (ss5 bs1 rs1 rsb) |
|
976 show "map (bder c) (AALTs bs1 rs1 # rsb) s\<leadsto>* map (bder c) (map (fuse bs1) rs1 @ rsb)" |
|
977 apply(simp) |
|
978 using bder_fuse_list map_map rrewrite_srewrite.ss5 srewrites.simps by blast |
|
979 next |
|
980 case (ss6 a1 a2 bs rsa rsb) |
|
981 have as: "erase a1 = erase a2" by fact |
|
982 show "map (bder c) (bs @ [a1] @ rsa @ [a2] @ rsb) s\<leadsto>* map (bder c) (bs @ [a1] @ rsa @ rsb)" |
|
983 apply(simp only: map_append) |
|
984 by (smt (verit, best) erase_bder list.simps(8) list.simps(9) as rrewrite_srewrite.ss6 srewrites.simps) |
|
985 qed |
|
986 |
|
987 lemma rewrites_preserves_bder: |
|
988 assumes "r1 \<leadsto>* r2" |
|
989 shows "bder c r1 \<leadsto>* bder c r2" |
|
990 using assms |
|
991 apply(induction r1 r2 rule: rrewrites.induct) |
|
992 apply(simp_all add: rewrite_preserves_bder rrewrites_trans) |
|
993 done |
|
994 |
|
995 |
|
996 lemma central: |
|
997 shows "bders r s \<leadsto>* bders_simp r s" |
|
998 proof(induct s arbitrary: r rule: rev_induct) |
|
999 case Nil |
|
1000 then show "bders r [] \<leadsto>* bders_simp r []" by simp |
|
1001 next |
|
1002 case (snoc x xs) |
|
1003 have IH: "\<And>r. bders r xs \<leadsto>* bders_simp r xs" by fact |
|
1004 have "bders r (xs @ [x]) = bders (bders r xs) [x]" by (simp add: bders_append) |
|
1005 also have "... \<leadsto>* bders (bders_simp r xs) [x]" using IH |
|
1006 by (simp add: rewrites_preserves_bder) |
|
1007 also have "... \<leadsto>* bders_simp (bders_simp r xs) [x]" using IH |
|
1008 by (simp add: rewrites_to_bsimp) |
|
1009 finally show "bders r (xs @ [x]) \<leadsto>* bders_simp r (xs @ [x])" |
|
1010 by (simp add: bders_simp_append) |
|
1011 qed |
|
1012 |
|
1013 lemma main_aux: |
|
1014 assumes "bnullable (bders r s)" |
|
1015 shows "bmkeps (bders r s) = bmkeps (bders_simp r s)" |
|
1016 proof - |
|
1017 have "bders r s \<leadsto>* bders_simp r s" by (rule central) |
|
1018 then |
|
1019 show "bmkeps (bders r s) = bmkeps (bders_simp r s)" using assms |
|
1020 by (rule rewrites_bmkeps) |
|
1021 qed |
|
1022 |
|
1023 |
|
1024 theorem main_blexer_simp: |
|
1025 shows "blexer r s = blexer_simp r s" |
|
1026 unfolding blexer_def blexer_simp_def |
|
1027 by (metis central main_aux rewrites_bnullable_eq) |
|
1028 |
|
1029 |
|
1030 theorem blexersimp_correctness: |
|
1031 shows "lexer r s = blexer_simp r s" |
|
1032 using blexer_correctness main_blexer_simp by simp |
|
1033 |
|
1034 |
|
1035 (* some tests *) |
|
1036 |
|
1037 lemma asize_fuse: |
|
1038 shows "asize (fuse bs r) = asize r" |
|
1039 apply(induct r arbitrary: bs) |
|
1040 apply(auto) |
|
1041 done |
|
1042 |
|
1043 lemma asize_rewrite2: |
|
1044 shows "r1 \<leadsto> r2 \<Longrightarrow> asize r1 \<ge> asize r2" |
|
1045 and "rs1 s\<leadsto> rs2 \<Longrightarrow> (sum_list (map asize rs1)) \<ge> (sum_list (map asize rs2))" |
|
1046 apply(induct rule: rrewrite_srewrite.inducts) |
|
1047 apply(auto simp add: asize_fuse comp_def) |
|
1048 done |
|
1049 |
|
1050 lemma asize_rrewrites: |
|
1051 assumes "r1 \<leadsto>* r2" |
|
1052 shows "asize r1 \<ge> asize r2" |
|
1053 using assms |
|
1054 apply(induct rule: rrewrites.induct) |
|
1055 apply(auto) |
|
1056 using asize_rewrite2(1) le_trans by blast |
|
1057 |
|
1058 |
|
1059 |
|
1060 fun asize2 :: "arexp \<Rightarrow> nat" where |
|
1061 "asize2 AZERO = 1" |
|
1062 | "asize2 (AONE cs) = 1" |
|
1063 | "asize2 (ACHAR cs c) = 1" |
|
1064 | "asize2 (AALTs cs rs) = Suc (Suc (sum_list (map asize2 rs)))" |
|
1065 | "asize2 (ASEQ cs r1 r2) = Suc (asize2 r1 + asize2 r2)" |
|
1066 | "asize2 (ASTAR cs r) = Suc (asize2 r)" |
|
1067 |
|
1068 |
|
1069 lemma asize2_fuse: |
|
1070 shows "asize2 (fuse bs r) = asize2 r" |
|
1071 apply(induct r arbitrary: bs) |
|
1072 apply(auto) |
|
1073 done |
|
1074 |
|
1075 lemma asize2_not_zero: |
|
1076 shows "0 < asize2 r" |
|
1077 apply(induct r) |
|
1078 apply(auto) |
|
1079 done |
|
1080 |
|
1081 lemma asize_rewrite: |
|
1082 shows "r1 \<leadsto> r2 \<Longrightarrow> asize2 r1 > asize2 r2" |
|
1083 and "rs1 s\<leadsto> rs2 \<Longrightarrow> (sum_list (map asize2 rs1)) > (sum_list (map asize2 rs2))" |
|
1084 apply(induct rule: rrewrite_srewrite.inducts) |
|
1085 apply(auto simp add: asize2_fuse comp_def) |
|
1086 apply(simp add: asize2_not_zero) |
|
1087 done |
|
1088 |
|
1089 lemma asize2_bsimp_ASEQ: |
|
1090 shows "asize2 (bsimp_ASEQ bs r1 r2) \<le> Suc (asize2 r1 + asize2 r2)" |
|
1091 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
1092 apply(auto) |
|
1093 done |
|
1094 |
|
1095 lemma asize2_bsimp_AALTs: |
|
1096 shows "asize2 (bsimp_AALTs bs rs) \<le> Suc (Suc (sum_list (map asize2 rs)))" |
|
1097 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
1098 apply(auto simp add: asize2_fuse) |
|
1099 done |
|
1100 |
|
1101 lemma distinctBy_asize2: |
|
1102 shows "sum_list (map asize2 (distinctBy rs f acc)) \<le> sum_list (map asize2 rs)" |
|
1103 apply(induct rs f acc rule: distinctBy.induct) |
|
1104 apply(auto) |
|
1105 done |
|
1106 |
|
1107 lemma flts_asize2: |
|
1108 shows "sum_list (map asize2 (flts rs)) \<le> sum_list (map asize2 rs)" |
|
1109 apply(induct rs rule: flts.induct) |
|
1110 apply(auto simp add: comp_def asize2_fuse) |
|
1111 done |
|
1112 |
|
1113 lemma sumlist_asize2: |
|
1114 assumes "\<And>x. x \<in> set rs \<Longrightarrow> asize2 (f x) \<le> asize2 x" |
|
1115 shows "sum_list (map asize2 (map f rs)) \<le> sum_list (map asize2 rs)" |
|
1116 using assms |
|
1117 apply(induct rs) |
|
1118 apply(auto simp add: comp_def) |
|
1119 by (simp add: add_le_mono) |
|
1120 |
|
1121 lemma test0: |
|
1122 assumes "r1 \<leadsto>* r2" |
|
1123 shows "r1 = r2 \<or> (\<exists>r3. r1 \<leadsto> r3 \<and> r3 \<leadsto>* r2)" |
|
1124 using assms |
|
1125 apply(induct r1 r2 rule: rrewrites.induct) |
|
1126 apply(auto) |
|
1127 done |
|
1128 |
|
1129 lemma test2: |
|
1130 assumes "r1 \<leadsto>* r2" |
|
1131 shows "asize2 r1 \<ge> asize2 r2" |
|
1132 using assms |
|
1133 apply(induct r1 r2 rule: rrewrites.induct) |
|
1134 apply(auto) |
|
1135 using asize_rewrite(1) by fastforce |
|
1136 |
|
1137 |
|
1138 lemma test3: |
|
1139 shows "r = bsimp r \<or> (asize2 (bsimp r) < asize2 r)" |
|
1140 proof - |
|
1141 have "r \<leadsto>* bsimp r" |
|
1142 by (simp add: rewrites_to_bsimp) |
|
1143 then have "r = bsimp r \<or> (\<exists>r3. r \<leadsto> r3 \<and> r3 \<leadsto>* bsimp r)" |
|
1144 using test0 by blast |
|
1145 then show ?thesis |
|
1146 by (meson asize_rewrite(1) dual_order.strict_trans2 test2) |
|
1147 qed |
|
1148 |
|
1149 lemma test3Q: |
|
1150 shows "r = bsimp r \<or> (asize (bsimp r) \<le> asize r)" |
|
1151 proof - |
|
1152 have "r \<leadsto>* bsimp r" |
|
1153 by (simp add: rewrites_to_bsimp) |
|
1154 then have "r = bsimp r \<or> (\<exists>r3. r \<leadsto> r3 \<and> r3 \<leadsto>* bsimp r)" |
|
1155 using test0 by blast |
|
1156 then show ?thesis |
|
1157 using asize_rewrite2(1) asize_rrewrites le_trans by blast |
|
1158 qed |
|
1159 |
|
1160 lemma test4: |
|
1161 shows "asize2 (bsimp (bsimp r)) \<le> asize2 (bsimp r)" |
|
1162 apply(induct r rule: bsimp.induct) |
|
1163 apply(auto) |
|
1164 using rewrites_to_bsimp test2 apply fastforce |
|
1165 using rewrites_to_bsimp test2 by presburger |
|
1166 |
|
1167 lemma test4Q: |
|
1168 shows "asize (bsimp (bsimp r)) \<le> asize (bsimp r)" |
|
1169 apply(induct r rule: bsimp.induct) |
|
1170 apply(auto) |
|
1171 apply (metis order_refl test3Q) |
|
1172 by (metis le_refl test3Q) |
|
1173 |
|
1174 |
|
1175 |
|
1176 lemma testb0: |
|
1177 shows "fuse bs1 (bsimp_ASEQ bs r1 r2) = bsimp_ASEQ (bs1 @ bs) r1 r2" |
|
1178 apply(induct bs r1 r2 arbitrary: bs1 rule: bsimp_ASEQ.induct) |
|
1179 apply(auto) |
|
1180 done |
|
1181 |
|
1182 lemma testb1: |
|
1183 shows "fuse bs1 (bsimp_AALTs bs rs) = bsimp_AALTs (bs1 @ bs) rs" |
|
1184 apply(induct bs rs arbitrary: bs1 rule: bsimp_AALTs.induct) |
|
1185 apply(auto simp add: fuse_append) |
|
1186 done |
|
1187 |
|
1188 lemma testb2: |
|
1189 shows "bsimp (bsimp_ASEQ bs r1 r2) = bsimp_ASEQ bs (bsimp r1) (bsimp r2)" |
|
1190 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
1191 apply(auto simp add: testb0 testb1) |
|
1192 done |
|
1193 |
|
1194 lemma testb3: |
|
1195 shows "\<nexists>r'. (bsimp r \<leadsto> r') \<and> asize2 (bsimp r) > asize2 r'" |
|
1196 apply(induct r rule: bsimp.induct) |
|
1197 apply(auto) |
|
1198 defer |
|
1199 defer |
|
1200 using rrewrite.cases apply blast |
|
1201 using rrewrite.cases apply blast |
|
1202 using rrewrite.cases apply blast |
|
1203 using rrewrite.cases apply blast |
|
1204 oops |
|
1205 |
|
1206 lemma testb4: |
|
1207 assumes "sum_list (map asize rs1) \<le> sum_list (map asize rs2)" |
|
1208 shows "asize (bsimp_AALTs bs1 rs1) \<le> Suc (asize (bsimp_AALTs bs1 rs2))" |
|
1209 using assms |
|
1210 apply(induct bs1 rs2 arbitrary: rs1 rule: bsimp_AALTs.induct) |
|
1211 apply(auto) |
|
1212 apply(case_tac rs1) |
|
1213 apply(auto) |
|
1214 using asize2.elims apply auto[1] |
|
1215 apply (metis One_nat_def Zero_not_Suc asize.elims) |
|
1216 apply(case_tac rs1) |
|
1217 apply(auto) |
|
1218 apply(case_tac list) |
|
1219 apply(auto) |
|
1220 using asize_fuse apply force |
|
1221 apply (simp add: asize_fuse) |
|
1222 by (smt (verit, ccfv_threshold) One_nat_def add.right_neutral asize.simps(1) asize.simps(4) asize_fuse bsimp_AALTs.elims le_Suc_eq list.map(1) list.map(2) not_less_eq_eq sum_list_simps(1) sum_list_simps(2)) |
|
1223 |
|
1224 lemma flts_asize: |
|
1225 shows "sum_list (map asize (flts rs)) \<le> sum_list (map asize rs)" |
|
1226 apply(induct rs rule: flts.induct) |
|
1227 apply(auto simp add: comp_def asize_fuse) |
|
1228 done |
|
1229 |
|
1230 |
|
1231 lemma test5: |
|
1232 shows "asize2 r \<ge> asize2 (bsimp r)" |
|
1233 apply(induct r rule: bsimp.induct) |
|
1234 apply(auto) |
|
1235 apply (meson Suc_le_mono add_le_mono asize2_bsimp_ASEQ order_trans) |
|
1236 apply(rule order_trans) |
|
1237 apply(rule asize2_bsimp_AALTs) |
|
1238 apply(simp) |
|
1239 apply(rule order_trans) |
|
1240 apply(rule distinctBy_asize2) |
|
1241 apply(rule order_trans) |
|
1242 apply(rule flts_asize2) |
|
1243 using sumlist_asize2 by force |
|
1244 |
|
1245 |
|
1246 fun awidth :: "arexp \<Rightarrow> nat" where |
|
1247 "awidth AZERO = 1" |
|
1248 | "awidth (AONE cs) = 1" |
|
1249 | "awidth (ACHAR cs c) = 1" |
|
1250 | "awidth (AALTs cs rs) = (sum_list (map awidth rs))" |
|
1251 | "awidth (ASEQ cs r1 r2) = (awidth r1 + awidth r2)" |
|
1252 | "awidth (ASTAR cs r) = (awidth r)" |
|
1253 |
|
1254 |
|
1255 |
|
1256 lemma |
|
1257 shows "s \<notin> L r \<Longrightarrow> blexer_simp r s = None" |
|
1258 by (simp add: blexersimp_correctness lexer_correct_None) |
|
1259 |
|
1260 lemma g1: |
|
1261 "bders_simp AZERO s = AZERO" |
|
1262 apply(induct s) |
|
1263 apply(simp) |
|
1264 apply(simp) |
|
1265 done |
|
1266 |
|
1267 lemma g2: |
|
1268 "s \<noteq> Nil \<Longrightarrow> bders_simp (AONE bs) s = AZERO" |
|
1269 apply(induct s) |
|
1270 apply(simp) |
|
1271 apply(simp) |
|
1272 apply(case_tac s) |
|
1273 apply(simp) |
|
1274 apply(simp) |
|
1275 done |
|
1276 |
|
1277 lemma finite_pder: |
|
1278 shows "finite (pder c r)" |
|
1279 apply(induct c r rule: pder.induct) |
|
1280 apply(auto) |
|
1281 done |
|
1282 |
|
1283 |
|
1284 |
|
1285 lemma awidth_fuse: |
|
1286 shows "awidth (fuse bs r) = awidth r" |
|
1287 apply(induct r arbitrary: bs) |
|
1288 apply(auto) |
|
1289 done |
|
1290 |
|
1291 lemma pders_SEQs: |
|
1292 assumes "finite A" |
|
1293 shows "card (SEQs A (STAR r)) \<le> card A" |
|
1294 using assms |
|
1295 by (simp add: SEQs_eq_image card_image_le) |
|
1296 |
|
1297 lemma binullable_intern: |
|
1298 shows "bnullable (intern r) = nullable r" |
|
1299 apply(induct r) |
|
1300 apply(auto simp add: bnullable_fuse) |
|
1301 done |
|
1302 |
|
1303 lemma |
|
1304 "card (pder c r) \<le> awidth (bder c (intern r))" |
|
1305 apply(induct c r rule: pder.induct) |
|
1306 apply(simp) |
|
1307 apply(simp) |
|
1308 apply(simp) |
|
1309 apply(simp) |
|
1310 apply(rule order_trans) |
|
1311 apply(rule card_Un_le) |
|
1312 apply (simp add: awidth_fuse bder_fuse) |
|
1313 defer |
|
1314 apply(simp) |
|
1315 apply(rule order_trans) |
|
1316 apply(rule pders_SEQs) |
|
1317 using finite_pder apply presburger |
|
1318 apply (simp add: awidth_fuse) |
|
1319 apply(auto) |
|
1320 apply(rule order_trans) |
|
1321 apply(rule card_Un_le) |
|
1322 apply(simp add: awidth_fuse) |
|
1323 defer |
|
1324 using binullable_intern apply blast |
|
1325 using binullable_intern apply blast |
|
1326 apply (smt (verit, best) SEQs_eq_image add.commute add_Suc_right card_image_le dual_order.trans finite_pder trans_le_add2) |
|
1327 apply(subgoal_tac "card (SEQs (pder c r1) r2) \<le> card (pder c r1)") |
|
1328 apply(linarith) |
|
1329 by (simp add: UNION_singleton_eq_range card_image_le finite_pder) |
|
1330 |
|
1331 lemma |
|
1332 "card (pder c r) \<le> asize (bder c (intern r))" |
|
1333 apply(induct c r rule: pder.induct) |
|
1334 apply(simp) |
|
1335 apply(simp) |
|
1336 apply(simp) |
|
1337 apply(simp) |
|
1338 apply (metis add_mono_thms_linordered_semiring(1) asize_fuse bder_fuse card_Un_le le_Suc_eq order_trans) |
|
1339 defer |
|
1340 apply(simp) |
|
1341 apply(rule order_trans) |
|
1342 apply(rule pders_SEQs) |
|
1343 using finite_pder apply presburger |
|
1344 apply (simp add: asize_fuse) |
|
1345 apply(simp) |
|
1346 apply(auto) |
|
1347 apply(rule order_trans) |
|
1348 apply(rule card_Un_le) |
|
1349 apply (smt (z3) SEQs_eq_image add.commute add_Suc_right add_mono_thms_linordered_semiring(1) asize_fuse card_image_le dual_order.trans finite_pder le_add1) |
|
1350 apply(rule order_trans) |
|
1351 apply(rule card_Un_le) |
|
1352 using binullable_intern apply blast |
|
1353 using binullable_intern apply blast |
|
1354 by (smt (verit, best) SEQs_eq_image add.commute add_Suc_right card_image_le dual_order.trans finite_pder trans_le_add2) |
|
1355 |
|
1356 lemma |
|
1357 "card (pder c r) \<le> asize (bsimp (bder c (intern r)))" |
|
1358 apply(induct c r rule: pder.induct) |
|
1359 apply(simp) |
|
1360 apply(simp) |
|
1361 apply(simp) |
|
1362 apply(simp) |
|
1363 apply(rule order_trans) |
|
1364 apply(rule card_Un_le) |
|
1365 prefer 3 |
|
1366 apply(simp) |
|
1367 apply(rule order_trans) |
|
1368 apply(rule pders_SEQs) |
|
1369 using finite_pder apply blast |
|
1370 oops |
|
1371 |
|
1372 |
|
1373 (* below is the idempotency of bsimp *) |
|
1374 |
|
1375 lemma bsimp_ASEQ_fuse: |
|
1376 shows "fuse bs1 (bsimp_ASEQ bs2 r1 r2) = bsimp_ASEQ (bs1 @ bs2) r1 r2" |
|
1377 apply(induct r1 r2 arbitrary: bs1 bs2 rule: bsimp_ASEQ.induct) |
|
1378 apply(auto) |
|
1379 done |
|
1380 |
|
1381 lemma bsimp_AALTs_fuse: |
|
1382 assumes "\<forall>r \<in> set rs. fuse bs1 (fuse bs2 r) = fuse (bs1 @ bs2) r" |
|
1383 shows "fuse bs1 (bsimp_AALTs bs2 rs) = bsimp_AALTs (bs1 @ bs2) rs" |
|
1384 using assms |
|
1385 apply(induct bs2 rs arbitrary: bs1 rule: bsimp_AALTs.induct) |
|
1386 apply(auto) |
|
1387 done |
|
1388 |
|
1389 lemma bsimp_fuse: |
|
1390 shows "fuse bs (bsimp r) = bsimp (fuse bs r)" |
|
1391 apply(induct r arbitrary: bs) |
|
1392 apply(simp_all add: bsimp_ASEQ_fuse bsimp_AALTs_fuse fuse_append) |
|
1393 done |
|
1394 |
|
1395 lemma bsimp_ASEQ_idem: |
|
1396 assumes "bsimp (bsimp r1) = bsimp r1" "bsimp (bsimp r2) = bsimp r2" |
|
1397 shows "bsimp (bsimp_ASEQ x1 (bsimp r1) (bsimp r2)) = bsimp_ASEQ x1 (bsimp r1) (bsimp r2)" |
|
1398 using assms |
|
1399 apply(case_tac "bsimp r1 = AZERO") |
|
1400 apply(simp) |
|
1401 apply(case_tac "bsimp r2 = AZERO") |
|
1402 apply(simp) |
|
1403 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
1404 apply(auto)[1] |
|
1405 apply (metis bsimp_fuse) |
|
1406 apply(simp add: bsimp_ASEQ1) |
|
1407 done |
|
1408 |
|
1409 lemma bsimp_AALTs_idem: |
|
1410 assumes "\<forall>r \<in> set rs. bsimp (bsimp r) = bsimp r" |
|
1411 shows "bsimp (bsimp_AALTs bs rs) = bsimp_AALTs bs (map bsimp rs)" |
|
1412 using assms |
|
1413 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
1414 apply(simp) |
|
1415 apply(simp) |
|
1416 using bsimp_fuse apply presburger |
|
1417 oops |
|
1418 |
|
1419 lemma bsimp_idem_rev: |
|
1420 shows "\<nexists>r2. bsimp r1 \<leadsto> r2" |
|
1421 apply(induct r1 rule: bsimp.induct) |
|
1422 apply(auto) |
|
1423 defer |
|
1424 defer |
|
1425 using rrewrite.simps apply blast |
|
1426 using rrewrite.cases apply blast |
|
1427 using rrewrite.simps apply blast |
|
1428 using rrewrite.cases apply blast |
|
1429 apply(case_tac "bsimp r1 = AZERO") |
|
1430 apply(simp) |
|
1431 apply(case_tac "bsimp r2 = AZERO") |
|
1432 apply(simp) |
|
1433 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
1434 apply(auto)[1] |
|
1435 prefer 2 |
|
1436 apply (smt (verit, best) arexp.distinct(25) arexp.inject(3) bsimp_ASEQ1 rrewrite.simps) |
|
1437 defer |
|
1438 oops |
|
1439 |
|
1440 lemma bsimp_idem: |
|
1441 shows "bsimp (bsimp r) = bsimp r" |
|
1442 apply(induct r rule: bsimp.induct) |
|
1443 apply(auto) |
|
1444 using bsimp_ASEQ_idem apply presburger |
|
1445 oops |
|
1446 |
|
1447 lemma neg: |
|
1448 shows " \<not>(\<exists>r2. r1 \<leadsto> r2 \<and> (r2 \<leadsto>* bsimp r1) )" |
|
1449 apply(rule notI) |
|
1450 apply(erule exE) |
|
1451 apply(erule conjE) |
|
1452 oops |
|
1453 |
|
1454 |
|
1455 |
|
1456 |
|
1457 lemma reduction_always_in_bsimp: |
|
1458 shows " \<lbrakk> r1 \<leadsto> r2 ; \<not>(r2 \<leadsto>* bsimp r1)\<rbrakk> \<Longrightarrow> False" |
|
1459 apply(erule rrewrite.cases) |
|
1460 apply simp |
|
1461 apply auto |
|
1462 |
|
1463 oops |
|
1464 |
|
1465 (* |
|
1466 AALTs [] [AZERO, AALTs(bs1, [a, b]) ] |
|
1467 rewrite seq 1: \<leadsto> AALTs [] [ AALTs(bs1, [a, b]) ] \<leadsto> |
|
1468 fuse [] (AALTs bs1, [a, b]) |
|
1469 rewrite seq 2: \<leadsto> AALTs [] [AZERO, (fuse bs1 a), (fuse bs1 b)]) ] |
|
1470 |
|
1471 *) |
|
1472 |
|
1473 lemma normal_bsimp: |
|
1474 shows "\<nexists>r'. bsimp r \<leadsto> r'" |
|
1475 oops |
|
1476 |
|
1477 (*r' size bsimp r > size r' |
|
1478 r' \<leadsto>* bsimp bsimp r |
|
1479 size bsimp r > size r' \<ge> size bsimp bsimp r*) |
|
1480 |
|
1481 export_code blexer_simp blexer lexer bders bders_simp in Scala module_name VerifiedLexers |
|
1482 |
|
1483 |
|
1484 unused_thms |
|
1485 |
|
1486 |
|
1487 inductive aggressive:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>? _" [99, 99] 99) |
|
1488 where |
|
1489 "ASEQ bs (AALTs bs1 rs) r \<leadsto>? AALTs (bs@bs1) (map (\<lambda>r'. ASEQ [] r' r) rs) " |
|
1490 |
|
1491 |
|
1492 |
|
1493 end |