thys3/src/FBound.thy
changeset 496 f493a20feeb3
parent 495 f9cdc295ccf7
child 563 c92a41d9c4da
equal deleted inserted replaced
495:f9cdc295ccf7 496:f493a20feeb3
       
     1 
       
     2 theory FBound
       
     3   imports "BlexerSimp" "ClosedFormsBounds"
       
     4 begin
       
     5 
       
     6 fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list"
       
     7   where
       
     8   "distinctBy [] f acc = []"
       
     9 | "distinctBy (x#xs) f acc = 
       
    10      (if (f x) \<in> acc then distinctBy xs f acc 
       
    11       else x # (distinctBy xs f ({f x} \<union> acc)))"
       
    12 
       
    13 fun rerase :: "arexp \<Rightarrow> rrexp"
       
    14 where
       
    15   "rerase AZERO = RZERO"
       
    16 | "rerase (AONE _) = RONE"
       
    17 | "rerase (ACHAR _ c) = RCHAR c"
       
    18 | "rerase (AALTs bs rs) = RALTS (map rerase rs)"
       
    19 | "rerase (ASEQ _ r1 r2) = RSEQ (rerase r1) (rerase r2)"
       
    20 | "rerase (ASTAR _ r) = RSTAR (rerase r)"
       
    21 
       
    22 lemma eq1_rerase:
       
    23   shows "x ~1 y \<longleftrightarrow> (rerase x) = (rerase y)"
       
    24   apply(induct x y rule: eq1.induct)
       
    25   apply(auto)
       
    26   done
       
    27 
       
    28 
       
    29 lemma distinctBy_distinctWith:
       
    30   shows "distinctBy xs f (f ` acc) = distinctWith xs (\<lambda>x y. f x = f y) acc"
       
    31   apply(induct xs arbitrary: acc)
       
    32   apply(auto)
       
    33   by (metis image_insert)
       
    34 
       
    35 lemma distinctBy_distinctWith2:
       
    36   shows "distinctBy xs rerase {} = distinctWith xs eq1 {}"
       
    37   apply(subst distinctBy_distinctWith[of _ _ "{}", simplified])
       
    38   using eq1_rerase by presburger
       
    39   
       
    40 lemma asize_rsize:
       
    41   shows "rsize (rerase r) = asize r"
       
    42   apply(induct r rule: rerase.induct)
       
    43   apply(auto)
       
    44   apply (metis (mono_tags, lifting) comp_apply map_eq_conv)
       
    45   done
       
    46 
       
    47 lemma rerase_fuse:
       
    48   shows "rerase (fuse bs r) = rerase r"
       
    49   apply(induct r)
       
    50        apply simp+
       
    51   done
       
    52 
       
    53 lemma rerase_bsimp_ASEQ:
       
    54   shows "rerase (bsimp_ASEQ x1 a1 a2) = rsimp_SEQ (rerase a1) (rerase a2)"
       
    55   apply(induct x1 a1 a2 rule: bsimp_ASEQ.induct)
       
    56   apply(auto)
       
    57   done
       
    58 
       
    59 lemma rerase_bsimp_AALTs:
       
    60   shows "rerase (bsimp_AALTs bs rs) = rsimp_ALTs (map rerase rs)"
       
    61   apply(induct bs rs rule: bsimp_AALTs.induct)
       
    62   apply(auto simp add: rerase_fuse)
       
    63   done
       
    64 
       
    65 fun anonalt :: "arexp \<Rightarrow> bool"
       
    66   where
       
    67   "anonalt (AALTs bs2 rs) = False"
       
    68 | "anonalt r = True"
       
    69 
       
    70 
       
    71 fun agood :: "arexp \<Rightarrow> bool" where
       
    72   "agood AZERO = False"
       
    73 | "agood (AONE cs) = True" 
       
    74 | "agood (ACHAR cs c) = True"
       
    75 | "agood (AALTs cs []) = False"
       
    76 | "agood (AALTs cs [r]) = False"
       
    77 | "agood (AALTs cs (r1#r2#rs)) = (distinct (map rerase (r1 # r2 # rs)) \<and>(\<forall>r' \<in> set (r1#r2#rs). agood r' \<and> anonalt r'))"
       
    78 | "agood (ASEQ _ AZERO _) = False"
       
    79 | "agood (ASEQ _ (AONE _) _) = False"
       
    80 | "agood (ASEQ _ _ AZERO) = False"
       
    81 | "agood (ASEQ cs r1 r2) = (agood r1 \<and> agood r2)"
       
    82 | "agood (ASTAR cs r) = True"
       
    83 
       
    84 
       
    85 fun anonnested :: "arexp \<Rightarrow> bool"
       
    86   where
       
    87   "anonnested (AALTs bs2 []) = True"
       
    88 | "anonnested (AALTs bs2 ((AALTs bs1 rs1) # rs2)) = False"
       
    89 | "anonnested (AALTs bs2 (r # rs2)) = anonnested (AALTs bs2 rs2)"
       
    90 | "anonnested r = True"
       
    91 
       
    92 
       
    93 lemma asize0:
       
    94   shows "0 < asize r"
       
    95   apply(induct  r)
       
    96   apply(auto)
       
    97   done
       
    98 
       
    99 lemma rnullable:
       
   100   shows "rnullable (rerase r) = bnullable r"
       
   101   apply(induct r rule: rerase.induct)
       
   102   apply(auto)
       
   103   done
       
   104 
       
   105 lemma rder_bder_rerase:
       
   106   shows "rder c (rerase r ) = rerase (bder c r)"
       
   107   apply (induct r)
       
   108   apply (auto)
       
   109   using rerase_fuse apply presburger
       
   110   using rnullable apply blast
       
   111   using rnullable by blast
       
   112 
       
   113 lemma rerase_map_bsimp:
       
   114   assumes "\<And> r. r \<in> set rs \<Longrightarrow> rerase (bsimp r) = (rsimp \<circ> rerase) r"
       
   115   shows "map rerase (map bsimp rs) =  map (rsimp \<circ> rerase) rs"
       
   116   using assms
       
   117   apply(induct rs)
       
   118   by simp_all
       
   119 
       
   120 
       
   121 lemma rerase_flts:
       
   122   shows "map rerase (flts rs) = rflts (map rerase rs)"
       
   123   apply(induct rs rule: flts.induct)
       
   124   apply(auto simp add: rerase_fuse)
       
   125   done
       
   126 
       
   127 lemma rerase_dB:
       
   128   shows "map rerase (distinctBy rs rerase acc) = rdistinct (map rerase rs) acc"
       
   129   apply(induct rs arbitrary: acc)
       
   130   apply simp+
       
   131   done
       
   132   
       
   133 lemma rerase_earlier_later_same:
       
   134   assumes " \<And>r. r \<in> set rs \<Longrightarrow> rerase (bsimp r) = rsimp (rerase r)"
       
   135   shows " (map rerase (distinctBy (flts (map bsimp rs)) rerase {})) =
       
   136           (rdistinct (rflts (map (rsimp \<circ> rerase) rs)) {})"
       
   137   apply(subst rerase_dB)
       
   138   apply(subst rerase_flts)
       
   139   apply(subst rerase_map_bsimp)
       
   140   apply auto
       
   141   using assms
       
   142   apply simp
       
   143   done
       
   144 
       
   145 lemma bsimp_rerase:
       
   146   shows "rerase (bsimp a) = rsimp (rerase a)"
       
   147   apply(induct a rule: bsimp.induct)
       
   148   apply(auto)
       
   149   using rerase_bsimp_ASEQ apply presburger
       
   150   using distinctBy_distinctWith2 rerase_bsimp_AALTs rerase_earlier_later_same by fastforce
       
   151 
       
   152 lemma rders_simp_size:
       
   153   shows "rders_simp (rerase r) s  = rerase (bders_simp r s)"
       
   154   apply(induct s rule: rev_induct)
       
   155   apply simp
       
   156   by (simp add: bders_simp_append rder_bder_rerase rders_simp_append bsimp_rerase)
       
   157 
       
   158 
       
   159 corollary aders_simp_finiteness:
       
   160   assumes "\<exists>N. \<forall>s. rsize (rders_simp (rerase r) s) \<le> N"
       
   161   shows " \<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
       
   162 proof - 
       
   163   from assms obtain N where "\<forall>s. rsize (rders_simp (rerase r) s) \<le> N"
       
   164     by blast
       
   165   then have "\<forall>s. rsize (rerase (bders_simp r s)) \<le> N"
       
   166     by (simp add: rders_simp_size) 
       
   167   then have "\<forall>s. asize (bders_simp r s) \<le> N"
       
   168     by (simp add: asize_rsize) 
       
   169   then show "\<exists>N. \<forall>s. asize (bders_simp r s) \<le> N" by blast
       
   170 qed
       
   171   
       
   172 theorem annotated_size_bound:
       
   173   shows "\<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
       
   174   apply(insert aders_simp_finiteness)
       
   175   by (simp add: rders_simp_bounded)
       
   176 
       
   177 
       
   178 unused_thms
       
   179 
       
   180 end