|
1 |
|
2 theory BitCoded2 |
|
3 imports "Lexer" |
|
4 begin |
|
5 |
|
6 section \<open>Bit-Encodings\<close> |
|
7 |
|
8 datatype bit = Z | S |
|
9 |
|
10 fun |
|
11 code :: "val \<Rightarrow> bit list" |
|
12 where |
|
13 "code Void = []" |
|
14 | "code (Char c) = []" |
|
15 | "code (Left v) = Z # (code v)" |
|
16 | "code (Right v) = S # (code v)" |
|
17 | "code (Seq v1 v2) = (code v1) @ (code v2)" |
|
18 | "code (Stars []) = [S]" |
|
19 | "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)" |
|
20 |
|
21 |
|
22 fun |
|
23 Stars_add :: "val \<Rightarrow> val \<Rightarrow> val" |
|
24 where |
|
25 "Stars_add v (Stars vs) = Stars (v # vs)" |
|
26 | "Stars_add v _ = Stars [v]" |
|
27 |
|
28 function |
|
29 decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)" |
|
30 where |
|
31 "decode' ds ZERO = (Void, [])" |
|
32 | "decode' ds ONE = (Void, ds)" |
|
33 | "decode' ds (CHAR d) = (Char d, ds)" |
|
34 | "decode' [] (ALT r1 r2) = (Void, [])" |
|
35 | "decode' (Z # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))" |
|
36 | "decode' (S # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))" |
|
37 | "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in |
|
38 let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))" |
|
39 | "decode' [] (STAR r) = (Void, [])" |
|
40 | "decode' (S # ds) (STAR r) = (Stars [], ds)" |
|
41 | "decode' (Z # ds) (STAR r) = (let (v, ds') = decode' ds r in |
|
42 let (vs, ds'') = decode' ds' (STAR r) |
|
43 in (Stars_add v vs, ds''))" |
|
44 by pat_completeness auto |
|
45 |
|
46 lemma decode'_smaller: |
|
47 assumes "decode'_dom (ds, r)" |
|
48 shows "length (snd (decode' ds r)) \<le> length ds" |
|
49 using assms |
|
50 apply(induct ds r) |
|
51 apply(auto simp add: decode'.psimps split: prod.split) |
|
52 using dual_order.trans apply blast |
|
53 by (meson dual_order.trans le_SucI) |
|
54 |
|
55 termination "decode'" |
|
56 apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))") |
|
57 apply(auto dest!: decode'_smaller) |
|
58 by (metis less_Suc_eq_le snd_conv) |
|
59 |
|
60 definition |
|
61 decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option" |
|
62 where |
|
63 "decode ds r \<equiv> (let (v, ds') = decode' ds r |
|
64 in (if ds' = [] then Some v else None))" |
|
65 |
|
66 lemma decode'_code_Stars: |
|
67 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []" |
|
68 shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)" |
|
69 using assms |
|
70 apply(induct vs) |
|
71 apply(auto) |
|
72 done |
|
73 |
|
74 lemma decode'_code: |
|
75 assumes "\<Turnstile> v : r" |
|
76 shows "decode' ((code v) @ ds) r = (v, ds)" |
|
77 using assms |
|
78 apply(induct v r arbitrary: ds) |
|
79 apply(auto) |
|
80 using decode'_code_Stars by blast |
|
81 |
|
82 lemma decode_code: |
|
83 assumes "\<Turnstile> v : r" |
|
84 shows "decode (code v) r = Some v" |
|
85 using assms unfolding decode_def |
|
86 by (smt append_Nil2 decode'_code old.prod.case) |
|
87 |
|
88 |
|
89 section {* Annotated Regular Expressions *} |
|
90 |
|
91 datatype arexp = |
|
92 AZERO |
|
93 | AONE "bit list" |
|
94 | ACHAR "bit list" char |
|
95 | ASEQ "bit list" arexp arexp |
|
96 | AALTs "bit list" "arexp list" |
|
97 | ASTAR "bit list" arexp |
|
98 |
|
99 abbreviation |
|
100 "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]" |
|
101 |
|
102 fun asize :: "arexp \<Rightarrow> nat" where |
|
103 "asize AZERO = 1" |
|
104 | "asize (AONE cs) = 1" |
|
105 | "asize (ACHAR cs c) = 1" |
|
106 | "asize (AALTs cs rs) = Suc (sum_list (map asize rs))" |
|
107 | "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)" |
|
108 | "asize (ASTAR cs r) = Suc (asize r)" |
|
109 |
|
110 fun |
|
111 erase :: "arexp \<Rightarrow> rexp" |
|
112 where |
|
113 "erase AZERO = ZERO" |
|
114 | "erase (AONE _) = ONE" |
|
115 | "erase (ACHAR _ c) = CHAR c" |
|
116 | "erase (AALTs _ []) = ZERO" |
|
117 | "erase (AALTs _ [r]) = (erase r)" |
|
118 | "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))" |
|
119 | "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)" |
|
120 | "erase (ASTAR _ r) = STAR (erase r)" |
|
121 |
|
122 lemma decode_code_erase: |
|
123 assumes "\<Turnstile> v : (erase a)" |
|
124 shows "decode (code v) (erase a) = Some v" |
|
125 using assms |
|
126 by (simp add: decode_code) |
|
127 |
|
128 |
|
129 fun nonalt :: "arexp \<Rightarrow> bool" |
|
130 where |
|
131 "nonalt (AALTs bs2 rs) = False" |
|
132 | "nonalt r = True" |
|
133 |
|
134 |
|
135 fun good :: "arexp \<Rightarrow> bool" where |
|
136 "good AZERO = False" |
|
137 | "good (AONE cs) = True" |
|
138 | "good (ACHAR cs c) = True" |
|
139 | "good (AALTs cs []) = False" |
|
140 | "good (AALTs cs [r]) = False" |
|
141 | "good (AALTs cs (r1#r2#rs)) = (\<forall>r' \<in> set (r1#r2#rs). good r' \<and> nonalt r')" |
|
142 | "good (ASEQ _ AZERO _) = False" |
|
143 | "good (ASEQ _ (AONE _) _) = False" |
|
144 | "good (ASEQ _ _ AZERO) = False" |
|
145 | "good (ASEQ cs r1 r2) = (good r1 \<and> good r2)" |
|
146 | "good (ASTAR cs r) = True" |
|
147 |
|
148 |
|
149 |
|
150 |
|
151 fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where |
|
152 "fuse bs AZERO = AZERO" |
|
153 | "fuse bs (AONE cs) = AONE (bs @ cs)" |
|
154 | "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c" |
|
155 | "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs" |
|
156 | "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2" |
|
157 | "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r" |
|
158 |
|
159 lemma fuse_append: |
|
160 shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)" |
|
161 apply(induct r) |
|
162 apply(auto) |
|
163 done |
|
164 |
|
165 |
|
166 fun intern :: "rexp \<Rightarrow> arexp" where |
|
167 "intern ZERO = AZERO" |
|
168 | "intern ONE = AONE []" |
|
169 | "intern (CHAR c) = ACHAR [] c" |
|
170 | "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1)) |
|
171 (fuse [S] (intern r2))" |
|
172 | "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)" |
|
173 | "intern (STAR r) = ASTAR [] (intern r)" |
|
174 |
|
175 |
|
176 fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where |
|
177 "retrieve (AONE bs) Void = bs" |
|
178 | "retrieve (ACHAR bs c) (Char d) = bs" |
|
179 | "retrieve (AALTs bs [r]) v = bs @ retrieve r v" |
|
180 | "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v" |
|
181 | "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v" |
|
182 | "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2" |
|
183 | "retrieve (ASTAR bs r) (Stars []) = bs @ [S]" |
|
184 | "retrieve (ASTAR bs r) (Stars (v#vs)) = |
|
185 bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)" |
|
186 |
|
187 |
|
188 |
|
189 fun |
|
190 bnullable :: "arexp \<Rightarrow> bool" |
|
191 where |
|
192 "bnullable (AZERO) = False" |
|
193 | "bnullable (AONE bs) = True" |
|
194 | "bnullable (ACHAR bs c) = False" |
|
195 | "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)" |
|
196 | "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)" |
|
197 | "bnullable (ASTAR bs r) = True" |
|
198 |
|
199 fun |
|
200 bmkeps :: "arexp \<Rightarrow> bit list" |
|
201 where |
|
202 "bmkeps(AONE bs) = bs" |
|
203 | "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)" |
|
204 | "bmkeps(AALTs bs [r]) = bs @ (bmkeps r)" |
|
205 | "bmkeps(AALTs bs (r#rs)) = (if bnullable(r) then bs @ (bmkeps r) else (bmkeps (AALTs bs rs)))" |
|
206 | "bmkeps(ASTAR bs r) = bs @ [S]" |
|
207 |
|
208 |
|
209 fun |
|
210 bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp" |
|
211 where |
|
212 "bder c (AZERO) = AZERO" |
|
213 | "bder c (AONE bs) = AZERO" |
|
214 | "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)" |
|
215 | "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)" |
|
216 | "bder c (ASEQ bs r1 r2) = |
|
217 (if bnullable r1 |
|
218 then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2)) |
|
219 else ASEQ bs (bder c r1) r2)" |
|
220 | "bder c (ASTAR bs r) = ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)" |
|
221 |
|
222 |
|
223 fun |
|
224 bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
225 where |
|
226 "bders r [] = r" |
|
227 | "bders r (c#s) = bders (bder c r) s" |
|
228 |
|
229 lemma bders_append: |
|
230 "bders r (s1 @ s2) = bders (bders r s1) s2" |
|
231 apply(induct s1 arbitrary: r s2) |
|
232 apply(simp_all) |
|
233 done |
|
234 |
|
235 lemma bnullable_correctness: |
|
236 shows "nullable (erase r) = bnullable r" |
|
237 apply(induct r rule: erase.induct) |
|
238 apply(simp_all) |
|
239 done |
|
240 |
|
241 lemma erase_fuse: |
|
242 shows "erase (fuse bs r) = erase r" |
|
243 apply(induct r rule: erase.induct) |
|
244 apply(simp_all) |
|
245 done |
|
246 |
|
247 lemma erase_intern [simp]: |
|
248 shows "erase (intern r) = r" |
|
249 apply(induct r) |
|
250 apply(simp_all add: erase_fuse) |
|
251 done |
|
252 |
|
253 lemma erase_bder [simp]: |
|
254 shows "erase (bder a r) = der a (erase r)" |
|
255 apply(induct r rule: erase.induct) |
|
256 apply(simp_all add: erase_fuse bnullable_correctness) |
|
257 done |
|
258 |
|
259 lemma erase_bders [simp]: |
|
260 shows "erase (bders r s) = ders s (erase r)" |
|
261 apply(induct s arbitrary: r ) |
|
262 apply(simp_all) |
|
263 done |
|
264 |
|
265 lemma retrieve_encode_STARS: |
|
266 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v" |
|
267 shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)" |
|
268 using assms |
|
269 apply(induct vs) |
|
270 apply(simp_all) |
|
271 done |
|
272 |
|
273 lemma retrieve_fuse2: |
|
274 assumes "\<Turnstile> v : (erase r)" |
|
275 shows "retrieve (fuse bs r) v = bs @ retrieve r v" |
|
276 using assms |
|
277 apply(induct r arbitrary: v bs) |
|
278 apply(auto elim: Prf_elims)[4] |
|
279 defer |
|
280 using retrieve_encode_STARS |
|
281 apply(auto elim!: Prf_elims)[1] |
|
282 apply(case_tac vs) |
|
283 apply(simp) |
|
284 apply(simp) |
|
285 (* AALTs case *) |
|
286 apply(simp) |
|
287 apply(case_tac x2a) |
|
288 apply(simp) |
|
289 apply(auto elim!: Prf_elims)[1] |
|
290 apply(simp) |
|
291 apply(case_tac list) |
|
292 apply(simp) |
|
293 apply(auto) |
|
294 apply(auto elim!: Prf_elims)[1] |
|
295 done |
|
296 |
|
297 lemma retrieve_fuse: |
|
298 assumes "\<Turnstile> v : r" |
|
299 shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v" |
|
300 using assms |
|
301 by (simp_all add: retrieve_fuse2) |
|
302 |
|
303 |
|
304 lemma retrieve_code: |
|
305 assumes "\<Turnstile> v : r" |
|
306 shows "code v = retrieve (intern r) v" |
|
307 using assms |
|
308 apply(induct v r ) |
|
309 apply(simp_all add: retrieve_fuse retrieve_encode_STARS) |
|
310 done |
|
311 |
|
312 lemma r: |
|
313 assumes "bnullable (AALTs bs (a # rs))" |
|
314 shows "bnullable a \<or> (\<not> bnullable a \<and> bnullable (AALTs bs rs))" |
|
315 using assms |
|
316 apply(induct rs) |
|
317 apply(auto) |
|
318 done |
|
319 |
|
320 lemma r0: |
|
321 assumes "bnullable a" |
|
322 shows "bmkeps (AALTs bs (a # rs)) = bs @ (bmkeps a)" |
|
323 using assms |
|
324 by (metis bmkeps.simps(3) bmkeps.simps(4) list.exhaust) |
|
325 |
|
326 lemma r1: |
|
327 assumes "\<not> bnullable a" "bnullable (AALTs bs rs)" |
|
328 shows "bmkeps (AALTs bs (a # rs)) = bmkeps (AALTs bs rs)" |
|
329 using assms |
|
330 apply(induct rs) |
|
331 apply(auto) |
|
332 done |
|
333 |
|
334 lemma r2: |
|
335 assumes "x \<in> set rs" "bnullable x" |
|
336 shows "bnullable (AALTs bs rs)" |
|
337 using assms |
|
338 apply(induct rs) |
|
339 apply(auto) |
|
340 done |
|
341 |
|
342 lemma r3: |
|
343 assumes "\<not> bnullable r" |
|
344 " \<exists> x \<in> set rs. bnullable x" |
|
345 shows "retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs))) = |
|
346 retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))" |
|
347 using assms |
|
348 apply(induct rs arbitrary: r bs) |
|
349 apply(auto)[1] |
|
350 apply(auto) |
|
351 using bnullable_correctness apply blast |
|
352 apply(auto simp add: bnullable_correctness mkeps_nullable retrieve_fuse2) |
|
353 apply(subst retrieve_fuse2[symmetric]) |
|
354 apply (smt bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable) |
|
355 apply(simp) |
|
356 apply(case_tac "bnullable a") |
|
357 apply (smt append_Nil2 bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) fuse.simps(4) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable retrieve_fuse2) |
|
358 apply(drule_tac x="a" in meta_spec) |
|
359 apply(drule_tac x="bs" in meta_spec) |
|
360 apply(drule meta_mp) |
|
361 apply(simp) |
|
362 apply(drule meta_mp) |
|
363 apply(auto) |
|
364 apply(subst retrieve_fuse2[symmetric]) |
|
365 apply(case_tac rs) |
|
366 apply(simp) |
|
367 apply(auto)[1] |
|
368 apply (simp add: bnullable_correctness) |
|
369 apply (metis append_Nil2 bnullable_correctness erase_fuse fuse.simps(4) list.set_intros(1) mkeps.simps(3) mkeps_nullable nullable.simps(4) r2) |
|
370 apply (simp add: bnullable_correctness) |
|
371 apply (metis append_Nil2 bnullable_correctness erase.simps(6) erase_fuse fuse.simps(4) list.set_intros(2) mkeps.simps(3) mkeps_nullable r2) |
|
372 apply(simp) |
|
373 done |
|
374 |
|
375 |
|
376 lemma t: |
|
377 assumes "\<forall>r \<in> set rs. nullable (erase r) \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))" |
|
378 "nullable (erase (AALTs bs rs))" |
|
379 shows " bmkeps (AALTs bs rs) = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))" |
|
380 using assms |
|
381 apply(induct rs arbitrary: bs) |
|
382 apply(simp) |
|
383 apply(auto simp add: bnullable_correctness) |
|
384 apply(case_tac rs) |
|
385 apply(auto simp add: bnullable_correctness)[2] |
|
386 apply(subst r1) |
|
387 apply(simp) |
|
388 apply(rule r2) |
|
389 apply(assumption) |
|
390 apply(simp) |
|
391 apply(drule_tac x="bs" in meta_spec) |
|
392 apply(drule meta_mp) |
|
393 apply(auto)[1] |
|
394 prefer 2 |
|
395 apply(case_tac "bnullable a") |
|
396 apply(subst r0) |
|
397 apply blast |
|
398 apply(subgoal_tac "nullable (erase a)") |
|
399 prefer 2 |
|
400 using bnullable_correctness apply blast |
|
401 apply (metis (no_types, lifting) erase.simps(5) erase.simps(6) list.exhaust mkeps.simps(3) retrieve.simps(3) retrieve.simps(4)) |
|
402 apply(subst r1) |
|
403 apply(simp) |
|
404 using r2 apply blast |
|
405 apply(drule_tac x="bs" in meta_spec) |
|
406 apply(drule meta_mp) |
|
407 apply(auto)[1] |
|
408 apply(simp) |
|
409 using r3 apply blast |
|
410 apply(auto) |
|
411 using r3 by blast |
|
412 |
|
413 lemma bmkeps_retrieve: |
|
414 assumes "nullable (erase r)" |
|
415 shows "bmkeps r = retrieve r (mkeps (erase r))" |
|
416 using assms |
|
417 apply(induct r) |
|
418 apply(simp) |
|
419 apply(simp) |
|
420 apply(simp) |
|
421 apply(simp) |
|
422 defer |
|
423 apply(simp) |
|
424 apply(rule t) |
|
425 apply(auto) |
|
426 done |
|
427 |
|
428 lemma bder_retrieve: |
|
429 assumes "\<Turnstile> v : der c (erase r)" |
|
430 shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)" |
|
431 using assms |
|
432 apply(induct r arbitrary: v rule: erase.induct) |
|
433 apply(simp) |
|
434 apply(erule Prf_elims) |
|
435 apply(simp) |
|
436 apply(erule Prf_elims) |
|
437 apply(simp) |
|
438 apply(case_tac "c = ca") |
|
439 apply(simp) |
|
440 apply(erule Prf_elims) |
|
441 apply(simp) |
|
442 apply(simp) |
|
443 apply(erule Prf_elims) |
|
444 apply(simp) |
|
445 apply(erule Prf_elims) |
|
446 apply(simp) |
|
447 apply(simp) |
|
448 apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v) |
|
449 apply(erule Prf_elims) |
|
450 apply(simp) |
|
451 apply(simp) |
|
452 apply(case_tac rs) |
|
453 apply(simp) |
|
454 apply(simp) |
|
455 apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) retrieve.simps(4) retrieve.simps(5) same_append_eq) |
|
456 apply(simp) |
|
457 apply(case_tac "nullable (erase r1)") |
|
458 apply(simp) |
|
459 apply(erule Prf_elims) |
|
460 apply(subgoal_tac "bnullable r1") |
|
461 prefer 2 |
|
462 using bnullable_correctness apply blast |
|
463 apply(simp) |
|
464 apply(erule Prf_elims) |
|
465 apply(simp) |
|
466 apply(subgoal_tac "bnullable r1") |
|
467 prefer 2 |
|
468 using bnullable_correctness apply blast |
|
469 apply(simp) |
|
470 apply(simp add: retrieve_fuse2) |
|
471 apply(simp add: bmkeps_retrieve) |
|
472 apply(simp) |
|
473 apply(erule Prf_elims) |
|
474 apply(simp) |
|
475 using bnullable_correctness apply blast |
|
476 apply(rename_tac bs r v) |
|
477 apply(simp) |
|
478 apply(erule Prf_elims) |
|
479 apply(clarify) |
|
480 apply(erule Prf_elims) |
|
481 apply(clarify) |
|
482 apply(subst injval.simps) |
|
483 apply(simp del: retrieve.simps) |
|
484 apply(subst retrieve.simps) |
|
485 apply(subst retrieve.simps) |
|
486 apply(simp) |
|
487 apply(simp add: retrieve_fuse2) |
|
488 done |
|
489 |
|
490 |
|
491 |
|
492 lemma MAIN_decode: |
|
493 assumes "\<Turnstile> v : ders s r" |
|
494 shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" |
|
495 using assms |
|
496 proof (induct s arbitrary: v rule: rev_induct) |
|
497 case Nil |
|
498 have "\<Turnstile> v : ders [] r" by fact |
|
499 then have "\<Turnstile> v : r" by simp |
|
500 then have "Some v = decode (retrieve (intern r) v) r" |
|
501 using decode_code retrieve_code by auto |
|
502 then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r" |
|
503 by simp |
|
504 next |
|
505 case (snoc c s v) |
|
506 have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow> |
|
507 Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact |
|
508 have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact |
|
509 then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r" |
|
510 by (simp add: Prf_injval ders_append) |
|
511 have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))" |
|
512 by (simp add: flex_append) |
|
513 also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r" |
|
514 using asm2 IH by simp |
|
515 also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r" |
|
516 using asm by (simp_all add: bder_retrieve ders_append) |
|
517 finally show "Some (flex r id (s @ [c]) v) = |
|
518 decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append) |
|
519 qed |
|
520 |
|
521 |
|
522 definition blex where |
|
523 "blex a s \<equiv> if bnullable (bders a s) then Some (bmkeps (bders a s)) else None" |
|
524 |
|
525 |
|
526 |
|
527 definition blexer where |
|
528 "blexer r s \<equiv> if bnullable (bders (intern r) s) then |
|
529 decode (bmkeps (bders (intern r) s)) r else None" |
|
530 |
|
531 lemma blexer_correctness: |
|
532 shows "blexer r s = lexer r s" |
|
533 proof - |
|
534 { define bds where "bds \<equiv> bders (intern r) s" |
|
535 define ds where "ds \<equiv> ders s r" |
|
536 assume asm: "nullable ds" |
|
537 have era: "erase bds = ds" |
|
538 unfolding ds_def bds_def by simp |
|
539 have mke: "\<Turnstile> mkeps ds : ds" |
|
540 using asm by (simp add: mkeps_nullable) |
|
541 have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r" |
|
542 using bmkeps_retrieve |
|
543 using asm era by (simp add: bmkeps_retrieve) |
|
544 also have "... = Some (flex r id s (mkeps ds))" |
|
545 using mke by (simp_all add: MAIN_decode ds_def bds_def) |
|
546 finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))" |
|
547 unfolding bds_def ds_def . |
|
548 } |
|
549 then show "blexer r s = lexer r s" |
|
550 unfolding blexer_def lexer_flex |
|
551 apply(subst bnullable_correctness[symmetric]) |
|
552 apply(simp) |
|
553 done |
|
554 qed |
|
555 |
|
556 lemma asize0: |
|
557 shows "0 < asize r" |
|
558 apply(induct r) |
|
559 apply(auto) |
|
560 done |
|
561 |
|
562 lemma asize_fuse: |
|
563 shows "asize (fuse bs r) = asize r" |
|
564 apply(induct r) |
|
565 apply(auto) |
|
566 done |
|
567 |
|
568 lemma bder_fuse: |
|
569 shows "bder c (fuse bs a) = fuse bs (bder c a)" |
|
570 apply(induct a arbitrary: bs c) |
|
571 apply(simp_all) |
|
572 done |
|
573 |
|
574 lemma map_bder_fuse: |
|
575 shows "map (bder c \<circ> fuse bs1) as1 = map (fuse bs1) (map (bder c) as1)" |
|
576 apply(induct as1) |
|
577 apply(auto simp add: bder_fuse) |
|
578 done |
|
579 |
|
580 |
|
581 fun nonnested :: "arexp \<Rightarrow> bool" |
|
582 where |
|
583 "nonnested (AALTs bs2 []) = True" |
|
584 | "nonnested (AALTs bs2 ((AALTs bs1 rs1) # rs2)) = False" |
|
585 | "nonnested (AALTs bs2 (r # rs2)) = nonnested (AALTs bs2 rs2)" |
|
586 | "nonnested r = True" |
|
587 |
|
588 |
|
589 |
|
590 fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list" |
|
591 where |
|
592 "distinctBy [] f acc = []" |
|
593 | "distinctBy (x#xs) f acc = |
|
594 (if (f x) \<in> acc then distinctBy xs f acc |
|
595 else x # (distinctBy xs f ({f x} \<union> acc)))" |
|
596 |
|
597 fun flts :: "arexp list \<Rightarrow> arexp list" |
|
598 where |
|
599 "flts [] = []" |
|
600 | "flts (AZERO # rs) = flts rs" |
|
601 | "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs" |
|
602 | "flts (r1 # rs) = r1 # flts rs" |
|
603 |
|
604 |
|
605 fun spill :: "arexp list \<Rightarrow> arexp list" |
|
606 where |
|
607 "spill [] = []" |
|
608 | "spill ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ spill rs" |
|
609 | "spill (r1 # rs) = r1 # spill rs" |
|
610 |
|
611 lemma spill_Cons: |
|
612 shows "spill (r # rs1) = spill [r] @ spill rs1" |
|
613 apply(induct r arbitrary: rs1) |
|
614 apply(auto) |
|
615 done |
|
616 |
|
617 lemma spill_append: |
|
618 shows "spill (rs1 @ rs2) = spill rs1 @ spill rs2" |
|
619 apply(induct rs1 arbitrary: rs2) |
|
620 apply(auto) |
|
621 by (metis append.assoc spill_Cons) |
|
622 |
|
623 fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp" |
|
624 where |
|
625 "bsimp_ASEQ _ AZERO _ = AZERO" |
|
626 | "bsimp_ASEQ _ _ AZERO = AZERO" |
|
627 | "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2" |
|
628 | "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2" |
|
629 |
|
630 |
|
631 fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp" |
|
632 where |
|
633 "bsimp_AALTs _ [] = AZERO" |
|
634 | "bsimp_AALTs bs1 [r] = fuse bs1 r" |
|
635 | "bsimp_AALTs bs1 rs = AALTs bs1 rs" |
|
636 |
|
637 |
|
638 fun bsimp :: "arexp \<Rightarrow> arexp" |
|
639 where |
|
640 "bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" |
|
641 | "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (flts (map bsimp rs))" |
|
642 | "bsimp r = r" |
|
643 |
|
644 inductive contains :: "arexp \<Rightarrow> bit list \<Rightarrow> bool" ("_ >> _" [51, 50] 50) |
|
645 where |
|
646 "AONE bs >> bs" |
|
647 | "ACHAR bs c >> bs" |
|
648 | "\<lbrakk>a1 >> bs1; a2 >> bs2\<rbrakk> \<Longrightarrow> ASEQ bs a1 a2 >> bs @ bs1 @ bs2" |
|
649 | "r >> bs1 \<Longrightarrow> AALTs bs (r#rs) >> bs @ bs1" |
|
650 | "AALTs bs rs >> bs @ bs1 \<Longrightarrow> AALTs bs (r#rs) >> bs @ bs1" |
|
651 | "ASTAR bs r >> bs @ [S]" |
|
652 | "\<lbrakk>r >> bs1; ASTAR [] r >> bs2\<rbrakk> \<Longrightarrow> ASTAR bs r >> bs @ Z # bs1 @ bs2" |
|
653 |
|
654 lemma contains0: |
|
655 assumes "a >> bs" |
|
656 shows "(fuse bs1 a) >> bs1 @ bs" |
|
657 using assms |
|
658 apply(induct arbitrary: bs1) |
|
659 apply(auto intro: contains.intros) |
|
660 apply (metis append.assoc contains.intros(3)) |
|
661 apply (metis append.assoc contains.intros(4)) |
|
662 apply (metis append.assoc contains.intros(5)) |
|
663 apply (metis append.assoc contains.intros(6)) |
|
664 apply (metis append_assoc contains.intros(7)) |
|
665 done |
|
666 |
|
667 lemma contains1: |
|
668 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> intern r >> code v" |
|
669 shows "ASTAR [] (intern r) >> code (Stars vs)" |
|
670 using assms |
|
671 apply(induct vs) |
|
672 apply(simp) |
|
673 using contains.simps apply blast |
|
674 apply(simp) |
|
675 apply(subst (2) append_Nil[symmetric]) |
|
676 apply(rule contains.intros) |
|
677 apply(auto) |
|
678 done |
|
679 |
|
680 |
|
681 lemma contains2: |
|
682 assumes "\<Turnstile> v : r" |
|
683 shows "(intern r) >> code v" |
|
684 using assms |
|
685 apply(induct) |
|
686 prefer 4 |
|
687 apply(simp) |
|
688 apply(rule contains.intros) |
|
689 prefer 4 |
|
690 apply(simp) |
|
691 apply(rule contains.intros) |
|
692 apply(simp) |
|
693 apply(subst (3) append_Nil[symmetric]) |
|
694 apply(rule contains.intros) |
|
695 apply(simp) |
|
696 apply(simp) |
|
697 apply(simp) |
|
698 apply(subst (9) append_Nil[symmetric]) |
|
699 apply(rule contains.intros) |
|
700 apply (metis append_Cons append_self_conv2 contains0) |
|
701 apply(simp) |
|
702 apply(subst (9) append_Nil[symmetric]) |
|
703 apply(rule contains.intros) |
|
704 back |
|
705 apply(rule contains.intros) |
|
706 apply(drule_tac ?bs1.0="[S]" in contains0) |
|
707 apply(simp) |
|
708 apply(simp) |
|
709 apply(case_tac vs) |
|
710 apply(simp) |
|
711 apply (metis append_Nil contains.intros(6)) |
|
712 using contains1 by blast |
|
713 |
|
714 lemma qq1: |
|
715 assumes "\<exists>r \<in> set rs. bnullable r" |
|
716 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs)" |
|
717 using assms |
|
718 apply(induct rs arbitrary: rs1 bs) |
|
719 apply(simp) |
|
720 apply(simp) |
|
721 by (metis Nil_is_append_conv bmkeps.simps(4) neq_Nil_conv r0 split_list_last) |
|
722 |
|
723 lemma qq2: |
|
724 assumes "\<forall>r \<in> set rs. \<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r" |
|
725 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs1)" |
|
726 using assms |
|
727 apply(induct rs arbitrary: rs1 bs) |
|
728 apply(simp) |
|
729 apply(simp) |
|
730 by (metis append_assoc in_set_conv_decomp r1 r2) |
|
731 |
|
732 lemma qq2a: |
|
733 assumes "\<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r" |
|
734 shows "bmkeps (AALTs bs (r # rs1)) = bmkeps (AALTs bs rs1)" |
|
735 using assms |
|
736 by (simp add: r1) |
|
737 |
|
738 lemma qq3: |
|
739 shows "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)" |
|
740 apply(induct rs arbitrary: bs) |
|
741 apply(simp) |
|
742 apply(simp) |
|
743 done |
|
744 |
|
745 lemma qq4: |
|
746 assumes "bnullable (AALTs bs rs)" |
|
747 shows "bmkeps (AALTs bs rs) = bs @ bmkeps (AALTs [] rs)" |
|
748 by (metis append_Nil2 assms bmkeps_retrieve bnullable_correctness erase_fuse fuse.simps(4) mkeps_nullable retrieve_fuse2) |
|
749 |
|
750 |
|
751 lemma contains3a: |
|
752 assumes "AALTs bs lst >> bs @ bs1" |
|
753 shows "AALTs bs (a # lst) >> bs @ bs1" |
|
754 using assms |
|
755 apply - |
|
756 by (simp add: contains.intros(5)) |
|
757 |
|
758 |
|
759 lemma contains3b: |
|
760 assumes "a >> bs1" |
|
761 shows "AALTs bs (a # lst) >> bs @ bs1" |
|
762 using assms |
|
763 apply - |
|
764 apply(rule contains.intros) |
|
765 apply(simp) |
|
766 done |
|
767 |
|
768 |
|
769 lemma contains3: |
|
770 assumes "\<And>x. \<lbrakk>x \<in> set rs; bnullable x\<rbrakk> \<Longrightarrow> x >> bmkeps x" "x \<in> set rs" "bnullable x" |
|
771 shows "AALTs bs rs >> bmkeps (AALTs bs rs)" |
|
772 using assms |
|
773 apply(induct rs arbitrary: bs x) |
|
774 apply simp |
|
775 by (metis contains.intros(4) contains.intros(5) list.set_intros(1) list.set_intros(2) qq3 qq4 r r0 r1) |
|
776 |
|
777 lemma cont1: |
|
778 assumes "\<And>v. \<Turnstile> v : erase r \<Longrightarrow> r >> retrieve r v" |
|
779 "\<forall>v\<in>set vs. \<Turnstile> v : erase r \<and> flat v \<noteq> []" |
|
780 shows "ASTAR bs r >> retrieve (ASTAR bs r) (Stars vs)" |
|
781 using assms |
|
782 apply(induct vs arbitrary: bs r) |
|
783 apply(simp) |
|
784 using contains.intros(6) apply auto[1] |
|
785 by (simp add: contains.intros(7)) |
|
786 |
|
787 lemma contains4: |
|
788 assumes "bnullable a" |
|
789 shows "a >> bmkeps a" |
|
790 using assms |
|
791 apply(induct a rule: bnullable.induct) |
|
792 apply(auto intro: contains.intros) |
|
793 using contains3 by blast |
|
794 |
|
795 lemma contains5: |
|
796 assumes "\<Turnstile> v : r" |
|
797 shows "(intern r) >> retrieve (intern r) v" |
|
798 using contains2[OF assms] retrieve_code[OF assms] |
|
799 by (simp) |
|
800 |
|
801 lemma contains6: |
|
802 assumes "\<Turnstile> v : (erase r)" |
|
803 shows "r >> retrieve r v" |
|
804 using assms |
|
805 apply(induct r arbitrary: v rule: erase.induct) |
|
806 apply(auto)[1] |
|
807 using Prf_elims(1) apply blast |
|
808 using Prf_elims(4) contains.intros(1) apply force |
|
809 using Prf_elims(5) contains.intros(2) apply force |
|
810 apply(auto)[1] |
|
811 using Prf_elims(1) apply blast |
|
812 apply(auto)[1] |
|
813 using contains3b contains3a apply blast |
|
814 prefer 2 |
|
815 apply(auto)[1] |
|
816 apply (metis Prf_elims(2) contains.intros(3) retrieve.simps(6)) |
|
817 prefer 2 |
|
818 apply(auto)[1] |
|
819 apply (metis Prf_elims(6) cont1) |
|
820 apply(simp) |
|
821 apply(erule Prf_elims) |
|
822 apply(auto) |
|
823 apply (simp add: contains3b) |
|
824 using retrieve_fuse2 contains3b contains3a |
|
825 apply(subst retrieve_fuse2[symmetric]) |
|
826 apply (metis append_Nil2 erase_fuse fuse.simps(4)) |
|
827 apply(simp) |
|
828 by (metis append_Nil2 erase_fuse fuse.simps(4)) |
|
829 |
|
830 lemma contains7: |
|
831 assumes "\<Turnstile> v : der c (erase r)" |
|
832 shows "(bder c r) >> retrieve r (injval (erase r) c v)" |
|
833 using bder_retrieve[OF assms(1)] retrieve_code[OF assms(1)] |
|
834 by (metis assms contains6 erase_bder) |
|
835 |
|
836 |
|
837 lemma contains7a: |
|
838 assumes "\<Turnstile> v : der c (erase r)" |
|
839 shows "r >> retrieve r (injval (erase r) c v)" |
|
840 using assms |
|
841 apply - |
|
842 apply(drule Prf_injval) |
|
843 apply(drule contains6) |
|
844 apply(simp) |
|
845 done |
|
846 |
|
847 fun |
|
848 bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
849 where |
|
850 "bders_simp r [] = r" |
|
851 | "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s" |
|
852 |
|
853 definition blexer_simp where |
|
854 "blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then |
|
855 decode (bmkeps (bders_simp (intern r) s)) r else None" |
|
856 |
|
857 |
|
858 |
|
859 |
|
860 |
|
861 lemma bders_simp_append: |
|
862 shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2" |
|
863 apply(induct s1 arbitrary: r s2) |
|
864 apply(simp) |
|
865 apply(simp) |
|
866 done |
|
867 |
|
868 lemma bsimp_ASEQ_size: |
|
869 shows "asize (bsimp_ASEQ bs r1 r2) \<le> Suc (asize r1 + asize r2)" |
|
870 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
871 apply(auto) |
|
872 done |
|
873 |
|
874 |
|
875 |
|
876 lemma flts_size: |
|
877 shows "sum_list (map asize (flts rs)) \<le> sum_list (map asize rs)" |
|
878 apply(induct rs rule: flts.induct) |
|
879 apply(simp_all) |
|
880 by (simp add: asize_fuse comp_def) |
|
881 |
|
882 |
|
883 lemma bsimp_AALTs_size: |
|
884 shows "asize (bsimp_AALTs bs rs) \<le> Suc (sum_list (map asize rs))" |
|
885 apply(induct rs rule: bsimp_AALTs.induct) |
|
886 apply(auto simp add: asize_fuse) |
|
887 done |
|
888 |
|
889 |
|
890 lemma bsimp_size: |
|
891 shows "asize (bsimp r) \<le> asize r" |
|
892 apply(induct r) |
|
893 apply(simp_all) |
|
894 apply (meson Suc_le_mono add_mono_thms_linordered_semiring(1) bsimp_ASEQ_size le_trans) |
|
895 apply(rule le_trans) |
|
896 apply(rule bsimp_AALTs_size) |
|
897 apply(simp) |
|
898 apply(rule le_trans) |
|
899 apply(rule flts_size) |
|
900 by (simp add: sum_list_mono) |
|
901 |
|
902 lemma bsimp_asize0: |
|
903 shows "(\<Sum>x\<leftarrow>rs. asize (bsimp x)) \<le> sum_list (map asize rs)" |
|
904 apply(induct rs) |
|
905 apply(auto) |
|
906 by (simp add: add_mono bsimp_size) |
|
907 |
|
908 lemma bsimp_AALTs_size2: |
|
909 assumes "\<forall>r \<in> set rs. nonalt r" |
|
910 shows "asize (bsimp_AALTs bs rs) \<ge> sum_list (map asize rs)" |
|
911 using assms |
|
912 apply(induct rs rule: bsimp_AALTs.induct) |
|
913 apply(simp_all add: asize_fuse) |
|
914 done |
|
915 |
|
916 |
|
917 lemma qq: |
|
918 shows "map (asize \<circ> fuse bs) rs = map asize rs" |
|
919 apply(induct rs) |
|
920 apply(auto simp add: asize_fuse) |
|
921 done |
|
922 |
|
923 lemma flts_size2: |
|
924 assumes "\<exists>bs rs'. AALTs bs rs' \<in> set rs" |
|
925 shows "sum_list (map asize (flts rs)) < sum_list (map asize rs)" |
|
926 using assms |
|
927 apply(induct rs) |
|
928 apply(auto simp add: qq) |
|
929 apply (simp add: flts_size less_Suc_eq_le) |
|
930 apply(case_tac a) |
|
931 apply(auto simp add: qq) |
|
932 prefer 2 |
|
933 apply (simp add: flts_size le_imp_less_Suc) |
|
934 using less_Suc_eq by auto |
|
935 |
|
936 lemma bsimp_AALTs_size3: |
|
937 assumes "\<exists>r \<in> set (map bsimp rs). \<not>nonalt r" |
|
938 shows "asize (bsimp (AALTs bs rs)) < asize (AALTs bs rs)" |
|
939 using assms flts_size2 |
|
940 apply - |
|
941 apply(clarify) |
|
942 apply(simp) |
|
943 apply(drule_tac x="map bsimp rs" in meta_spec) |
|
944 apply(drule meta_mp) |
|
945 apply (metis list.set_map nonalt.elims(3)) |
|
946 apply(simp) |
|
947 apply(rule order_class.order.strict_trans1) |
|
948 apply(rule bsimp_AALTs_size) |
|
949 apply(simp) |
|
950 by (smt Suc_leI bsimp_asize0 comp_def le_imp_less_Suc le_trans map_eq_conv not_less_eq) |
|
951 |
|
952 |
|
953 |
|
954 |
|
955 lemma L_bsimp_ASEQ: |
|
956 "L (SEQ (erase r1) (erase r2)) = L (erase (bsimp_ASEQ bs r1 r2))" |
|
957 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
958 apply(simp_all) |
|
959 by (metis erase_fuse fuse.simps(4)) |
|
960 |
|
961 lemma L_bsimp_AALTs: |
|
962 "L (erase (AALTs bs rs)) = L (erase (bsimp_AALTs bs rs))" |
|
963 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
964 apply(simp_all add: erase_fuse) |
|
965 done |
|
966 |
|
967 lemma L_erase_AALTs: |
|
968 shows "L (erase (AALTs bs rs)) = \<Union> (L ` erase ` (set rs))" |
|
969 apply(induct rs) |
|
970 apply(simp) |
|
971 apply(simp) |
|
972 apply(case_tac rs) |
|
973 apply(simp) |
|
974 apply(simp) |
|
975 done |
|
976 |
|
977 lemma L_erase_flts: |
|
978 shows "\<Union> (L ` erase ` (set (flts rs))) = \<Union> (L ` erase ` (set rs))" |
|
979 apply(induct rs rule: flts.induct) |
|
980 apply(simp_all) |
|
981 apply(auto) |
|
982 using L_erase_AALTs erase_fuse apply auto[1] |
|
983 by (simp add: L_erase_AALTs erase_fuse) |
|
984 |
|
985 |
|
986 lemma L_bsimp_erase: |
|
987 shows "L (erase r) = L (erase (bsimp r))" |
|
988 apply(induct r) |
|
989 apply(simp) |
|
990 apply(simp) |
|
991 apply(simp) |
|
992 apply(auto simp add: Sequ_def)[1] |
|
993 apply(subst L_bsimp_ASEQ[symmetric]) |
|
994 apply(auto simp add: Sequ_def)[1] |
|
995 apply(subst (asm) L_bsimp_ASEQ[symmetric]) |
|
996 apply(auto simp add: Sequ_def)[1] |
|
997 apply(simp) |
|
998 apply(subst L_bsimp_AALTs[symmetric]) |
|
999 defer |
|
1000 apply(simp) |
|
1001 apply(subst (2)L_erase_AALTs) |
|
1002 apply(subst L_erase_flts) |
|
1003 apply(auto) |
|
1004 apply (simp add: L_erase_AALTs) |
|
1005 using L_erase_AALTs by blast |
|
1006 |
|
1007 lemma bsimp_ASEQ0: |
|
1008 shows "bsimp_ASEQ bs r1 AZERO = AZERO" |
|
1009 apply(induct r1) |
|
1010 apply(auto) |
|
1011 done |
|
1012 |
|
1013 |
|
1014 |
|
1015 lemma bsimp_ASEQ1: |
|
1016 assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs" |
|
1017 shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2" |
|
1018 using assms |
|
1019 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
1020 apply(auto) |
|
1021 done |
|
1022 |
|
1023 lemma bsimp_ASEQ2: |
|
1024 shows "bsimp_ASEQ bs (AONE bs1) r2 = fuse (bs @ bs1) r2" |
|
1025 apply(induct r2) |
|
1026 apply(auto) |
|
1027 done |
|
1028 |
|
1029 |
|
1030 lemma L_bders_simp: |
|
1031 shows "L (erase (bders_simp r s)) = L (erase (bders r s))" |
|
1032 apply(induct s arbitrary: r rule: rev_induct) |
|
1033 apply(simp) |
|
1034 apply(simp) |
|
1035 apply(simp add: ders_append) |
|
1036 apply(simp add: bders_simp_append) |
|
1037 apply(simp add: L_bsimp_erase[symmetric]) |
|
1038 by (simp add: der_correctness) |
|
1039 |
|
1040 lemma b1: |
|
1041 "bsimp_ASEQ bs1 (AONE bs) r = fuse (bs1 @ bs) r" |
|
1042 apply(induct r) |
|
1043 apply(auto) |
|
1044 done |
|
1045 |
|
1046 lemma b2: |
|
1047 assumes "bnullable r" |
|
1048 shows "bmkeps (fuse bs r) = bs @ bmkeps r" |
|
1049 by (simp add: assms bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2) |
|
1050 |
|
1051 lemma b3: |
|
1052 shows "bnullable r = bnullable (bsimp r)" |
|
1053 using L_bsimp_erase bnullable_correctness nullable_correctness by auto |
|
1054 |
|
1055 |
|
1056 lemma b4: |
|
1057 shows "bnullable (bders_simp r s) = bnullable (bders r s)" |
|
1058 by (metis L_bders_simp bnullable_correctness lexer.simps(1) lexer_correct_None option.distinct(1)) |
|
1059 |
|
1060 lemma q1: |
|
1061 assumes "\<forall>r \<in> set rs. bmkeps(bsimp r) = bmkeps r" |
|
1062 shows "map (\<lambda>r. bmkeps(bsimp r)) rs = map bmkeps rs" |
|
1063 using assms |
|
1064 apply(induct rs) |
|
1065 apply(simp) |
|
1066 apply(simp) |
|
1067 done |
|
1068 |
|
1069 lemma q3: |
|
1070 assumes "\<exists>r \<in> set rs. bnullable r" |
|
1071 shows "bmkeps (AALTs bs rs) = bmkeps (bsimp_AALTs bs rs)" |
|
1072 using assms |
|
1073 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
1074 apply(simp) |
|
1075 apply(simp) |
|
1076 apply (simp add: b2) |
|
1077 apply(simp) |
|
1078 done |
|
1079 |
|
1080 |
|
1081 lemma fuse_empty: |
|
1082 shows "fuse [] r = r" |
|
1083 apply(induct r) |
|
1084 apply(auto) |
|
1085 done |
|
1086 |
|
1087 lemma flts_fuse: |
|
1088 shows "map (fuse bs) (flts rs) = flts (map (fuse bs) rs)" |
|
1089 apply(induct rs arbitrary: bs rule: flts.induct) |
|
1090 apply(auto simp add: fuse_append) |
|
1091 done |
|
1092 |
|
1093 lemma bsimp_ASEQ_fuse: |
|
1094 shows "fuse bs1 (bsimp_ASEQ bs2 r1 r2) = bsimp_ASEQ (bs1 @ bs2) r1 r2" |
|
1095 apply(induct r1 r2 arbitrary: bs1 bs2 rule: bsimp_ASEQ.induct) |
|
1096 apply(auto) |
|
1097 done |
|
1098 |
|
1099 lemma bsimp_AALTs_fuse: |
|
1100 assumes "\<forall>r \<in> set rs. fuse bs1 (fuse bs2 r) = fuse (bs1 @ bs2) r" |
|
1101 shows "fuse bs1 (bsimp_AALTs bs2 rs) = bsimp_AALTs (bs1 @ bs2) rs" |
|
1102 using assms |
|
1103 apply(induct bs2 rs arbitrary: bs1 rule: bsimp_AALTs.induct) |
|
1104 apply(auto) |
|
1105 done |
|
1106 |
|
1107 |
|
1108 |
|
1109 lemma bsimp_fuse: |
|
1110 shows "fuse bs (bsimp r) = bsimp (fuse bs r)" |
|
1111 apply(induct r arbitrary: bs) |
|
1112 apply(simp) |
|
1113 apply(simp) |
|
1114 apply(simp) |
|
1115 prefer 3 |
|
1116 apply(simp) |
|
1117 apply(simp) |
|
1118 apply (simp add: bsimp_ASEQ_fuse) |
|
1119 apply(simp) |
|
1120 by (simp add: bsimp_AALTs_fuse fuse_append) |
|
1121 |
|
1122 lemma bsimp_fuse_AALTs: |
|
1123 shows "fuse bs (bsimp (AALTs [] rs)) = bsimp (AALTs bs rs)" |
|
1124 apply(subst bsimp_fuse) |
|
1125 apply(simp) |
|
1126 done |
|
1127 |
|
1128 lemma bsimp_fuse_AALTs2: |
|
1129 shows "fuse bs (bsimp_AALTs [] rs) = bsimp_AALTs bs rs" |
|
1130 using bsimp_AALTs_fuse fuse_append by auto |
|
1131 |
|
1132 |
|
1133 lemma bsimp_ASEQ_idem: |
|
1134 assumes "bsimp (bsimp r1) = bsimp r1" "bsimp (bsimp r2) = bsimp r2" |
|
1135 shows "bsimp (bsimp_ASEQ x1 (bsimp r1) (bsimp r2)) = bsimp_ASEQ x1 (bsimp r1) (bsimp r2)" |
|
1136 using assms |
|
1137 apply(case_tac "bsimp r1 = AZERO") |
|
1138 apply(simp) |
|
1139 apply(case_tac "bsimp r2 = AZERO") |
|
1140 apply(simp) |
|
1141 apply (metis bnullable.elims(2) bnullable.elims(3) bsimp.simps(3) bsimp_ASEQ.simps(2) bsimp_ASEQ.simps(3) bsimp_ASEQ.simps(4) bsimp_ASEQ.simps(5) bsimp_ASEQ.simps(6)) |
|
1142 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
1143 apply(auto)[1] |
|
1144 apply(subst bsimp_ASEQ2) |
|
1145 apply(subst bsimp_ASEQ2) |
|
1146 apply (metis assms(2) bsimp_fuse) |
|
1147 apply(subst bsimp_ASEQ1) |
|
1148 apply(auto) |
|
1149 done |
|
1150 |
|
1151 |
|
1152 |
|
1153 lemma k0: |
|
1154 shows "flts (r # rs1) = flts [r] @ flts rs1" |
|
1155 apply(induct r arbitrary: rs1) |
|
1156 apply(auto) |
|
1157 done |
|
1158 |
|
1159 lemma k00: |
|
1160 shows "flts (rs1 @ rs2) = flts rs1 @ flts rs2" |
|
1161 apply(induct rs1 arbitrary: rs2) |
|
1162 apply(auto) |
|
1163 by (metis append.assoc k0) |
|
1164 |
|
1165 lemma k0a: |
|
1166 shows "flts [AALTs bs rs] = map (fuse bs) rs" |
|
1167 apply(simp) |
|
1168 done |
|
1169 |
|
1170 |
|
1171 lemma k0b: |
|
1172 assumes "nonalt r" "r \<noteq> AZERO" |
|
1173 shows "flts [r] = [r]" |
|
1174 using assms |
|
1175 apply(case_tac r) |
|
1176 apply(simp_all) |
|
1177 done |
|
1178 |
|
1179 lemma nn1: |
|
1180 assumes "nonnested (AALTs bs rs)" |
|
1181 shows "\<nexists>bs1 rs1. flts rs = [AALTs bs1 rs1]" |
|
1182 using assms |
|
1183 apply(induct rs rule: flts.induct) |
|
1184 apply(auto) |
|
1185 done |
|
1186 |
|
1187 lemma nn1q: |
|
1188 assumes "nonnested (AALTs bs rs)" |
|
1189 shows "\<nexists>bs1 rs1. AALTs bs1 rs1 \<in> set (flts rs)" |
|
1190 using assms |
|
1191 apply(induct rs rule: flts.induct) |
|
1192 apply(auto) |
|
1193 done |
|
1194 |
|
1195 lemma nn1qq: |
|
1196 assumes "nonnested (AALTs bs rs)" |
|
1197 shows "\<nexists>bs1 rs1. AALTs bs1 rs1 \<in> set rs" |
|
1198 using assms |
|
1199 apply(induct rs rule: flts.induct) |
|
1200 apply(auto) |
|
1201 done |
|
1202 |
|
1203 lemma nn10: |
|
1204 assumes "nonnested (AALTs cs rs)" |
|
1205 shows "nonnested (AALTs (bs @ cs) rs)" |
|
1206 using assms |
|
1207 apply(induct rs arbitrary: cs bs) |
|
1208 apply(simp_all) |
|
1209 apply(case_tac a) |
|
1210 apply(simp_all) |
|
1211 done |
|
1212 |
|
1213 lemma nn11a: |
|
1214 assumes "nonalt r" |
|
1215 shows "nonalt (fuse bs r)" |
|
1216 using assms |
|
1217 apply(induct r) |
|
1218 apply(auto) |
|
1219 done |
|
1220 |
|
1221 |
|
1222 lemma nn1a: |
|
1223 assumes "nonnested r" |
|
1224 shows "nonnested (fuse bs r)" |
|
1225 using assms |
|
1226 apply(induct bs r arbitrary: rule: fuse.induct) |
|
1227 apply(simp_all add: nn10) |
|
1228 done |
|
1229 |
|
1230 lemma n0: |
|
1231 shows "nonnested (AALTs bs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. nonalt r)" |
|
1232 apply(induct rs arbitrary: bs) |
|
1233 apply(auto) |
|
1234 apply (metis list.set_intros(1) nn1qq nonalt.elims(3)) |
|
1235 apply (metis list.set_intros(2) nn1qq nonalt.elims(3)) |
|
1236 by (metis nonalt.elims(2) nonnested.simps(3) nonnested.simps(4) nonnested.simps(5) nonnested.simps(6) nonnested.simps(7)) |
|
1237 |
|
1238 |
|
1239 |
|
1240 |
|
1241 lemma nn1c: |
|
1242 assumes "\<forall>r \<in> set rs. nonnested r" |
|
1243 shows "\<forall>r \<in> set (flts rs). nonalt r" |
|
1244 using assms |
|
1245 apply(induct rs rule: flts.induct) |
|
1246 apply(auto) |
|
1247 apply(rule nn11a) |
|
1248 by (metis nn1qq nonalt.elims(3)) |
|
1249 |
|
1250 lemma nn1bb: |
|
1251 assumes "\<forall>r \<in> set rs. nonalt r" |
|
1252 shows "nonnested (bsimp_AALTs bs rs)" |
|
1253 using assms |
|
1254 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
1255 apply(auto) |
|
1256 apply (metis nn11a nonalt.simps(1) nonnested.elims(3)) |
|
1257 using n0 by auto |
|
1258 |
|
1259 lemma nn1b: |
|
1260 shows "nonnested (bsimp r)" |
|
1261 apply(induct r) |
|
1262 apply(simp_all) |
|
1263 apply(case_tac "bsimp r1 = AZERO") |
|
1264 apply(simp) |
|
1265 apply(case_tac "bsimp r2 = AZERO") |
|
1266 apply(simp) |
|
1267 apply(subst bsimp_ASEQ0) |
|
1268 apply(simp) |
|
1269 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
1270 apply(auto)[1] |
|
1271 apply(subst bsimp_ASEQ2) |
|
1272 apply (simp add: nn1a) |
|
1273 apply(subst bsimp_ASEQ1) |
|
1274 apply(auto) |
|
1275 apply(rule nn1bb) |
|
1276 apply(auto) |
|
1277 by (metis (mono_tags, hide_lams) imageE nn1c set_map) |
|
1278 |
|
1279 lemma nn1d: |
|
1280 assumes "bsimp r = AALTs bs rs" |
|
1281 shows "\<forall>r1 \<in> set rs. \<forall> bs. r1 \<noteq> AALTs bs rs2" |
|
1282 using nn1b assms |
|
1283 by (metis nn1qq) |
|
1284 |
|
1285 lemma nn_flts: |
|
1286 assumes "nonnested (AALTs bs rs)" |
|
1287 shows "\<forall>r \<in> set (flts rs). nonalt r" |
|
1288 using assms |
|
1289 apply(induct rs arbitrary: bs rule: flts.induct) |
|
1290 apply(auto) |
|
1291 done |
|
1292 |
|
1293 |
|
1294 |
|
1295 lemma rt: |
|
1296 shows "sum_list (map asize (flts (map bsimp rs))) \<le> sum_list (map asize rs)" |
|
1297 apply(induct rs) |
|
1298 apply(simp) |
|
1299 apply(simp) |
|
1300 apply(subst k0) |
|
1301 apply(simp) |
|
1302 by (smt add_le_cancel_right add_mono bsimp_size flts.simps(1) flts_size k0 le_iff_add list.simps(9) map_append sum_list.Cons sum_list.append trans_le_add1) |
|
1303 |
|
1304 lemma bsimp_AALTs_qq: |
|
1305 assumes "1 < length rs" |
|
1306 shows "bsimp_AALTs bs rs = AALTs bs rs" |
|
1307 using assms |
|
1308 apply(case_tac rs) |
|
1309 apply(simp) |
|
1310 apply(case_tac list) |
|
1311 apply(simp_all) |
|
1312 done |
|
1313 |
|
1314 |
|
1315 lemma bsimp_AALTs1: |
|
1316 assumes "nonalt r" |
|
1317 shows "bsimp_AALTs bs (flts [r]) = fuse bs r" |
|
1318 using assms |
|
1319 apply(case_tac r) |
|
1320 apply(simp_all) |
|
1321 done |
|
1322 |
|
1323 lemma bbbbs: |
|
1324 assumes "good r" "r = AALTs bs1 rs" |
|
1325 shows "bsimp_AALTs bs (flts [r]) = AALTs bs (map (fuse bs1) rs)" |
|
1326 using assms |
|
1327 by (metis (no_types, lifting) Nil_is_map_conv append.left_neutral append_butlast_last_id bsimp_AALTs.elims butlast.simps(2) good.simps(4) good.simps(5) k0a map_butlast) |
|
1328 |
|
1329 lemma bbbbs1: |
|
1330 shows "nonalt r \<or> (\<exists>bs rs. r = AALTs bs rs)" |
|
1331 using nonalt.elims(3) by auto |
|
1332 |
|
1333 |
|
1334 lemma good_fuse: |
|
1335 shows "good (fuse bs r) = good r" |
|
1336 apply(induct r arbitrary: bs) |
|
1337 apply(auto) |
|
1338 apply(case_tac r1) |
|
1339 apply(simp_all) |
|
1340 apply(case_tac r2) |
|
1341 apply(simp_all) |
|
1342 apply(case_tac r2) |
|
1343 apply(simp_all) |
|
1344 apply(case_tac r2) |
|
1345 apply(simp_all) |
|
1346 apply(case_tac r2) |
|
1347 apply(simp_all) |
|
1348 apply(case_tac r1) |
|
1349 apply(simp_all) |
|
1350 apply(case_tac r2) |
|
1351 apply(simp_all) |
|
1352 apply(case_tac r2) |
|
1353 apply(simp_all) |
|
1354 apply(case_tac r2) |
|
1355 apply(simp_all) |
|
1356 apply(case_tac r2) |
|
1357 apply(simp_all) |
|
1358 apply(case_tac x2a) |
|
1359 apply(simp_all) |
|
1360 apply(case_tac list) |
|
1361 apply(simp_all) |
|
1362 apply(case_tac x2a) |
|
1363 apply(simp_all) |
|
1364 apply(case_tac list) |
|
1365 apply(simp_all) |
|
1366 done |
|
1367 |
|
1368 lemma good0: |
|
1369 assumes "rs \<noteq> Nil" "\<forall>r \<in> set rs. nonalt r" |
|
1370 shows "good (bsimp_AALTs bs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. good r)" |
|
1371 using assms |
|
1372 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
1373 apply(auto simp add: good_fuse) |
|
1374 done |
|
1375 |
|
1376 lemma good0a: |
|
1377 assumes "flts (map bsimp rs) \<noteq> Nil" "\<forall>r \<in> set (flts (map bsimp rs)). nonalt r" |
|
1378 shows "good (bsimp (AALTs bs rs)) \<longleftrightarrow> (\<forall>r \<in> set (flts (map bsimp rs)). good r)" |
|
1379 using assms |
|
1380 apply(simp) |
|
1381 apply(auto) |
|
1382 apply(subst (asm) good0) |
|
1383 apply(simp) |
|
1384 apply(auto) |
|
1385 apply(subst good0) |
|
1386 apply(simp) |
|
1387 apply(auto) |
|
1388 done |
|
1389 |
|
1390 lemma flts0: |
|
1391 assumes "r \<noteq> AZERO" "nonalt r" |
|
1392 shows "flts [r] \<noteq> []" |
|
1393 using assms |
|
1394 apply(induct r) |
|
1395 apply(simp_all) |
|
1396 done |
|
1397 |
|
1398 lemma flts1: |
|
1399 assumes "good r" |
|
1400 shows "flts [r] \<noteq> []" |
|
1401 using assms |
|
1402 apply(induct r) |
|
1403 apply(simp_all) |
|
1404 apply(case_tac x2a) |
|
1405 apply(simp) |
|
1406 apply(simp) |
|
1407 done |
|
1408 |
|
1409 lemma flts2: |
|
1410 assumes "good r" |
|
1411 shows "\<forall>r' \<in> set (flts [r]). good r' \<and> nonalt r'" |
|
1412 using assms |
|
1413 apply(induct r) |
|
1414 apply(simp) |
|
1415 apply(simp) |
|
1416 apply(simp) |
|
1417 prefer 2 |
|
1418 apply(simp) |
|
1419 apply(auto)[1] |
|
1420 apply (metis bsimp_AALTs.elims good.simps(4) good.simps(5) good.simps(6) good_fuse) |
|
1421 apply (metis bsimp_AALTs.elims good.simps(4) good.simps(5) good.simps(6) nn11a) |
|
1422 apply fastforce |
|
1423 apply(simp) |
|
1424 done |
|
1425 |
|
1426 |
|
1427 lemma flts3: |
|
1428 assumes "\<forall>r \<in> set rs. good r \<or> r = AZERO" |
|
1429 shows "\<forall>r \<in> set (flts rs). good r" |
|
1430 using assms |
|
1431 apply(induct rs arbitrary: rule: flts.induct) |
|
1432 apply(simp_all) |
|
1433 by (metis UnE flts2 k0a set_map) |
|
1434 |
|
1435 lemma flts3b: |
|
1436 assumes "\<exists>r\<in>set rs. good r" |
|
1437 shows "flts rs \<noteq> []" |
|
1438 using assms |
|
1439 apply(induct rs arbitrary: rule: flts.induct) |
|
1440 apply(simp) |
|
1441 apply(simp) |
|
1442 apply(simp) |
|
1443 apply(auto) |
|
1444 done |
|
1445 |
|
1446 lemma flts4: |
|
1447 assumes "bsimp_AALTs bs (flts rs) = AZERO" |
|
1448 shows "\<forall>r \<in> set rs. \<not> good r" |
|
1449 using assms |
|
1450 apply(induct rs arbitrary: bs rule: flts.induct) |
|
1451 apply(auto) |
|
1452 defer |
|
1453 apply (metis (no_types, lifting) Nil_is_append_conv append_self_conv2 bsimp_AALTs.elims butlast.simps(2) butlast_append flts3b nonalt.simps(1) nonalt.simps(2)) |
|
1454 apply (metis arexp.distinct(7) bsimp_AALTs.elims flts2 good.simps(1) good.simps(2) good0 k0b list.distinct(1) list.inject nonalt.simps(3)) |
|
1455 apply (metis arexp.distinct(3) arexp.distinct(7) bsimp_AALTs.elims fuse.simps(3) list.distinct(1) list.inject) |
|
1456 apply (metis arexp.distinct(7) bsimp_AALTs.elims good.simps(1) good_fuse list.distinct(1) list.inject) |
|
1457 apply (metis arexp.distinct(7) bsimp_AALTs.elims list.distinct(1) list.inject) |
|
1458 apply (metis arexp.distinct(7) bsimp_AALTs.elims flts2 good.simps(1) good.simps(33) good0 k0b list.distinct(1) list.inject nonalt.simps(6)) |
|
1459 by (metis (no_types, lifting) Nil_is_append_conv append_Nil2 arexp.distinct(7) bsimp_AALTs.elims butlast.simps(2) butlast_append flts1 flts2 good.simps(1) good0 k0a) |
|
1460 |
|
1461 |
|
1462 lemma flts_nil: |
|
1463 assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow> |
|
1464 good (bsimp y) \<or> bsimp y = AZERO" |
|
1465 and "\<forall>r\<in>set rs. \<not> good (bsimp r)" |
|
1466 shows "flts (map bsimp rs) = []" |
|
1467 using assms |
|
1468 apply(induct rs) |
|
1469 apply(simp) |
|
1470 apply(simp) |
|
1471 apply(subst k0) |
|
1472 apply(simp) |
|
1473 by force |
|
1474 |
|
1475 lemma flts_nil2: |
|
1476 assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow> |
|
1477 good (bsimp y) \<or> bsimp y = AZERO" |
|
1478 and "bsimp_AALTs bs (flts (map bsimp rs)) = AZERO" |
|
1479 shows "flts (map bsimp rs) = []" |
|
1480 using assms |
|
1481 apply(induct rs arbitrary: bs) |
|
1482 apply(simp) |
|
1483 apply(simp) |
|
1484 apply(subst k0) |
|
1485 apply(simp) |
|
1486 apply(subst (asm) k0) |
|
1487 apply(auto) |
|
1488 apply (metis flts.simps(1) flts.simps(2) flts4 k0 less_add_Suc1 list.set_intros(1)) |
|
1489 by (metis flts.simps(2) flts4 k0 less_add_Suc1 list.set_intros(1)) |
|
1490 |
|
1491 |
|
1492 |
|
1493 lemma good_SEQ: |
|
1494 assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs" |
|
1495 shows "good (ASEQ bs r1 r2) = (good r1 \<and> good r2)" |
|
1496 using assms |
|
1497 apply(case_tac r1) |
|
1498 apply(simp_all) |
|
1499 apply(case_tac r2) |
|
1500 apply(simp_all) |
|
1501 apply(case_tac r2) |
|
1502 apply(simp_all) |
|
1503 apply(case_tac r2) |
|
1504 apply(simp_all) |
|
1505 apply(case_tac r2) |
|
1506 apply(simp_all) |
|
1507 done |
|
1508 |
|
1509 lemma good1: |
|
1510 shows "good (bsimp a) \<or> bsimp a = AZERO" |
|
1511 apply(induct a taking: asize rule: measure_induct) |
|
1512 apply(case_tac x) |
|
1513 apply(simp) |
|
1514 apply(simp) |
|
1515 apply(simp) |
|
1516 prefer 3 |
|
1517 apply(simp) |
|
1518 prefer 2 |
|
1519 (* AALTs case *) |
|
1520 apply(simp only:) |
|
1521 apply(case_tac "x52") |
|
1522 apply(simp) |
|
1523 thm good0a |
|
1524 (* AALTs list at least one - case *) |
|
1525 apply(simp only: ) |
|
1526 apply(frule_tac x="a" in spec) |
|
1527 apply(drule mp) |
|
1528 apply(simp) |
|
1529 (* either first element is good, or AZERO *) |
|
1530 apply(erule disjE) |
|
1531 prefer 2 |
|
1532 apply(simp) |
|
1533 (* in the AZERO case, the size is smaller *) |
|
1534 apply(drule_tac x="AALTs x51 list" in spec) |
|
1535 apply(drule mp) |
|
1536 apply(simp add: asize0) |
|
1537 apply(subst (asm) bsimp.simps) |
|
1538 apply(subst (asm) bsimp.simps) |
|
1539 apply(assumption) |
|
1540 (* in the good case *) |
|
1541 apply(frule_tac x="AALTs x51 list" in spec) |
|
1542 apply(drule mp) |
|
1543 apply(simp add: asize0) |
|
1544 apply(erule disjE) |
|
1545 apply(rule disjI1) |
|
1546 apply(simp add: good0) |
|
1547 apply(subst good0) |
|
1548 apply (metis Nil_is_append_conv flts1 k0) |
|
1549 apply (metis ex_map_conv list.simps(9) nn1b nn1c) |
|
1550 apply(simp) |
|
1551 apply(subst k0) |
|
1552 apply(simp) |
|
1553 apply(auto)[1] |
|
1554 using flts2 apply blast |
|
1555 apply(subst (asm) good0) |
|
1556 prefer 3 |
|
1557 apply(auto)[1] |
|
1558 apply auto[1] |
|
1559 apply (metis ex_map_conv nn1b nn1c) |
|
1560 (* in the AZERO case *) |
|
1561 apply(simp) |
|
1562 apply(frule_tac x="a" in spec) |
|
1563 apply(drule mp) |
|
1564 apply(simp) |
|
1565 apply(erule disjE) |
|
1566 apply(rule disjI1) |
|
1567 apply(subst good0) |
|
1568 apply(subst k0) |
|
1569 using flts1 apply blast |
|
1570 apply(auto)[1] |
|
1571 apply (metis (no_types, hide_lams) ex_map_conv list.simps(9) nn1b nn1c) |
|
1572 apply(auto)[1] |
|
1573 apply(subst (asm) k0) |
|
1574 apply(auto)[1] |
|
1575 using flts2 apply blast |
|
1576 apply(frule_tac x="AALTs x51 list" in spec) |
|
1577 apply(drule mp) |
|
1578 apply(simp add: asize0) |
|
1579 apply(erule disjE) |
|
1580 apply(simp) |
|
1581 apply(simp) |
|
1582 apply (metis add.left_commute flts_nil2 less_add_Suc1 less_imp_Suc_add list.distinct(1) list.set_cases nat.inject) |
|
1583 apply(subst (2) k0) |
|
1584 apply(simp) |
|
1585 (* SEQ case *) |
|
1586 apply(simp) |
|
1587 apply(case_tac "bsimp x42 = AZERO") |
|
1588 apply(simp) |
|
1589 apply(case_tac "bsimp x43 = AZERO") |
|
1590 apply(simp) |
|
1591 apply(subst (2) bsimp_ASEQ0) |
|
1592 apply(simp) |
|
1593 apply(case_tac "\<exists>bs. bsimp x42 = AONE bs") |
|
1594 apply(auto)[1] |
|
1595 apply(subst bsimp_ASEQ2) |
|
1596 using good_fuse apply force |
|
1597 apply(subst bsimp_ASEQ1) |
|
1598 apply(auto) |
|
1599 apply(subst good_SEQ) |
|
1600 apply(simp) |
|
1601 apply(simp) |
|
1602 apply(simp) |
|
1603 using less_add_Suc1 less_add_Suc2 by blast |
|
1604 |
|
1605 lemma good1a: |
|
1606 assumes "L(erase a) \<noteq> {}" |
|
1607 shows "good (bsimp a)" |
|
1608 using good1 assms |
|
1609 using L_bsimp_erase by force |
|
1610 |
|
1611 |
|
1612 |
|
1613 lemma flts_append: |
|
1614 "flts (xs1 @ xs2) = flts xs1 @ flts xs2" |
|
1615 apply(induct xs1 arbitrary: xs2 rule: rev_induct) |
|
1616 apply(auto) |
|
1617 apply(case_tac xs) |
|
1618 apply(auto) |
|
1619 apply(case_tac x) |
|
1620 apply(auto) |
|
1621 apply(case_tac x) |
|
1622 apply(auto) |
|
1623 done |
|
1624 |
|
1625 lemma g1: |
|
1626 assumes "good (bsimp_AALTs bs rs)" |
|
1627 shows "bsimp_AALTs bs rs = AALTs bs rs \<or> (\<exists>r. rs = [r] \<and> bsimp_AALTs bs [r] = fuse bs r)" |
|
1628 using assms |
|
1629 apply(induct rs arbitrary: bs) |
|
1630 apply(simp) |
|
1631 apply(case_tac rs) |
|
1632 apply(simp only:) |
|
1633 apply(simp) |
|
1634 apply(case_tac list) |
|
1635 apply(simp) |
|
1636 by simp |
|
1637 |
|
1638 lemma flts_0: |
|
1639 assumes "nonnested (AALTs bs rs)" |
|
1640 shows "\<forall>r \<in> set (flts rs). r \<noteq> AZERO" |
|
1641 using assms |
|
1642 apply(induct rs arbitrary: bs rule: flts.induct) |
|
1643 apply(simp) |
|
1644 apply(simp) |
|
1645 defer |
|
1646 apply(simp) |
|
1647 apply(simp) |
|
1648 apply(simp) |
|
1649 apply(simp) |
|
1650 apply(rule ballI) |
|
1651 apply(simp) |
|
1652 done |
|
1653 |
|
1654 lemma flts_0a: |
|
1655 assumes "nonnested (AALTs bs rs)" |
|
1656 shows "AZERO \<notin> set (flts rs)" |
|
1657 using assms |
|
1658 using flts_0 by blast |
|
1659 |
|
1660 lemma qqq1: |
|
1661 shows "AZERO \<notin> set (flts (map bsimp rs))" |
|
1662 by (metis ex_map_conv flts3 good.simps(1) good1) |
|
1663 |
|
1664 |
|
1665 fun nonazero :: "arexp \<Rightarrow> bool" |
|
1666 where |
|
1667 "nonazero AZERO = False" |
|
1668 | "nonazero r = True" |
|
1669 |
|
1670 lemma flts_concat: |
|
1671 shows "flts rs = concat (map (\<lambda>r. flts [r]) rs)" |
|
1672 apply(induct rs) |
|
1673 apply(auto) |
|
1674 apply(subst k0) |
|
1675 apply(simp) |
|
1676 done |
|
1677 |
|
1678 lemma flts_single1: |
|
1679 assumes "nonalt r" "nonazero r" |
|
1680 shows "flts [r] = [r]" |
|
1681 using assms |
|
1682 apply(induct r) |
|
1683 apply(auto) |
|
1684 done |
|
1685 |
|
1686 lemma flts_qq: |
|
1687 assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow> good y \<longrightarrow> bsimp y = y" |
|
1688 "\<forall>r'\<in>set rs. good r' \<and> nonalt r'" |
|
1689 shows "flts (map bsimp rs) = rs" |
|
1690 using assms |
|
1691 apply(induct rs) |
|
1692 apply(simp) |
|
1693 apply(simp) |
|
1694 apply(subst k0) |
|
1695 apply(subgoal_tac "flts [bsimp a] = [a]") |
|
1696 prefer 2 |
|
1697 apply(drule_tac x="a" in spec) |
|
1698 apply(drule mp) |
|
1699 apply(simp) |
|
1700 apply(auto)[1] |
|
1701 using good.simps(1) k0b apply blast |
|
1702 apply(auto)[1] |
|
1703 done |
|
1704 |
|
1705 lemma test: |
|
1706 assumes "good r" |
|
1707 shows "bsimp r = r" |
|
1708 using assms |
|
1709 apply(induct r taking: "asize" rule: measure_induct) |
|
1710 apply(erule good.elims) |
|
1711 apply(simp_all) |
|
1712 apply(subst k0) |
|
1713 apply(subst (2) k0) |
|
1714 apply(subst flts_qq) |
|
1715 apply(auto)[1] |
|
1716 apply(auto)[1] |
|
1717 apply (metis append_Cons append_Nil bsimp_AALTs.simps(3) good.simps(1) k0b) |
|
1718 apply force+ |
|
1719 apply (metis (no_types, lifting) add_Suc add_Suc_right asize.simps(5) bsimp.simps(1) bsimp_ASEQ.simps(19) less_add_Suc1 less_add_Suc2) |
|
1720 apply (metis add_Suc add_Suc_right arexp.distinct(5) arexp.distinct(7) asize.simps(4) asize.simps(5) bsimp.simps(1) bsimp.simps(2) bsimp_ASEQ1 good.simps(21) good.simps(8) less_add_Suc1 less_add_Suc2) |
|
1721 apply force+ |
|
1722 apply (metis (no_types, lifting) add_Suc add_Suc_right arexp.distinct(5) arexp.distinct(7) asize.simps(4) asize.simps(5) bsimp.simps(1) bsimp.simps(2) bsimp_ASEQ1 good.simps(25) good.simps(8) less_add_Suc1 less_add_Suc2) |
|
1723 apply (metis add_Suc add_Suc_right arexp.distinct(7) asize.simps(4) bsimp.simps(2) bsimp_ASEQ1 good.simps(26) good.simps(8) less_add_Suc1 less_add_Suc2) |
|
1724 apply force+ |
|
1725 done |
|
1726 |
|
1727 lemma test2: |
|
1728 assumes "good r" |
|
1729 shows "bsimp r = r" |
|
1730 using assms |
|
1731 apply(induct r taking: "asize" rule: measure_induct) |
|
1732 apply(case_tac x) |
|
1733 apply(simp_all) |
|
1734 defer |
|
1735 (* AALT case *) |
|
1736 apply(subgoal_tac "1 < length x52") |
|
1737 prefer 2 |
|
1738 apply(case_tac x52) |
|
1739 apply(simp) |
|
1740 apply(simp) |
|
1741 apply(case_tac list) |
|
1742 apply(simp) |
|
1743 apply(simp) |
|
1744 apply(subst bsimp_AALTs_qq) |
|
1745 prefer 2 |
|
1746 apply(subst flts_qq) |
|
1747 apply(auto)[1] |
|
1748 apply(auto)[1] |
|
1749 apply(case_tac x52) |
|
1750 apply(simp) |
|
1751 apply(simp) |
|
1752 apply(case_tac list) |
|
1753 apply(simp) |
|
1754 apply(simp) |
|
1755 apply(auto)[1] |
|
1756 apply (metis (no_types, lifting) bsimp_AALTs.elims good.simps(6) length_Cons length_pos_if_in_set list.size(3) nat_neq_iff) |
|
1757 apply(simp) |
|
1758 apply(case_tac x52) |
|
1759 apply(simp) |
|
1760 apply(simp) |
|
1761 apply(case_tac list) |
|
1762 apply(simp) |
|
1763 apply(simp) |
|
1764 apply(subst k0) |
|
1765 apply(simp) |
|
1766 apply(subst (2) k0) |
|
1767 apply(simp) |
|
1768 apply (simp add: Suc_lessI flts1 one_is_add) |
|
1769 (* SEQ case *) |
|
1770 apply(case_tac "bsimp x42 = AZERO") |
|
1771 apply simp |
|
1772 apply (metis asize.elims good.simps(10) good.simps(11) good.simps(12) good.simps(2) good.simps(7) good.simps(9) good_SEQ less_add_Suc1) |
|
1773 apply(case_tac "\<exists>bs'. bsimp x42 = AONE bs'") |
|
1774 apply(auto)[1] |
|
1775 defer |
|
1776 apply(case_tac "bsimp x43 = AZERO") |
|
1777 apply(simp) |
|
1778 apply (metis bsimp.elims bsimp.simps(3) good.simps(10) good.simps(11) good.simps(12) good.simps(8) good.simps(9) good_SEQ less_add_Suc2) |
|
1779 apply(auto) |
|
1780 apply (subst bsimp_ASEQ1) |
|
1781 apply(auto)[3] |
|
1782 apply(auto)[1] |
|
1783 apply (metis bsimp.simps(3) good.simps(2) good_SEQ less_add_Suc1) |
|
1784 apply (metis bsimp.simps(3) good.simps(2) good_SEQ less_add_Suc1 less_add_Suc2) |
|
1785 apply (subst bsimp_ASEQ2) |
|
1786 apply(drule_tac x="x42" in spec) |
|
1787 apply(drule mp) |
|
1788 apply(simp) |
|
1789 apply(drule mp) |
|
1790 apply (metis bsimp.elims bsimp.simps(3) good.simps(10) good.simps(11) good.simps(2) good_SEQ) |
|
1791 apply(simp) |
|
1792 done |
|
1793 |
|
1794 |
|
1795 lemma bsimp_idem: |
|
1796 shows "bsimp (bsimp r) = bsimp r" |
|
1797 using test good1 |
|
1798 by force |
|
1799 |
|
1800 |
|
1801 lemma contains_ex1: |
|
1802 assumes "a = AALTs bs1 [AZERO, AONE bs2]" "a >> bs" |
|
1803 shows "bsimp a >> bs" |
|
1804 using assms |
|
1805 apply(simp) |
|
1806 apply(erule contains.cases) |
|
1807 apply(auto) |
|
1808 using contains.simps apply blast |
|
1809 apply(erule contains.cases) |
|
1810 apply(auto) |
|
1811 using contains0 apply fastforce |
|
1812 using contains.simps by blast |
|
1813 |
|
1814 lemma contains_ex2: |
|
1815 assumes "a = AALTs bs1 [AZERO, AONE bs2, AALTs bs5 [AONE bs3, AZERO, AONE bs4]]" "a >> bs" |
|
1816 shows "bsimp a >> bs" |
|
1817 using assms |
|
1818 apply(simp) |
|
1819 apply(erule contains.cases) |
|
1820 apply(auto) |
|
1821 using contains.simps apply blast |
|
1822 apply(erule contains.cases) |
|
1823 apply(auto) |
|
1824 using contains3b apply blast |
|
1825 apply(erule contains.cases) |
|
1826 apply(auto) |
|
1827 apply(erule contains.cases) |
|
1828 apply(auto) |
|
1829 apply (metis append.left_neutral contains.intros(4) contains.intros(5) contains0 fuse.simps(2)) |
|
1830 apply(erule contains.cases) |
|
1831 apply(auto) |
|
1832 using contains.simps apply blast |
|
1833 apply(erule contains.cases) |
|
1834 apply(auto) |
|
1835 apply (metis append.left_neutral contains.intros(4) contains.intros(5) contains0 fuse.simps(2)) |
|
1836 apply(erule contains.cases) |
|
1837 apply(auto) |
|
1838 apply(erule contains.cases) |
|
1839 apply(auto) |
|
1840 done |
|
1841 |
|
1842 lemma contains48: |
|
1843 assumes "\<And>x2aa bs bs1. \<lbrakk>x2aa \<in> set x2a; fuse bs x2aa >> bs @ bs1\<rbrakk> \<Longrightarrow> x2aa >> bs1" |
|
1844 "AALTs (bs @ x1) x2a >> bs @ bs1" |
|
1845 shows "AALTs x1 x2a >> bs1" |
|
1846 using assms |
|
1847 apply(induct x2a arbitrary: bs x1 bs1) |
|
1848 apply(auto) |
|
1849 apply(erule contains.cases) |
|
1850 apply(auto) |
|
1851 apply(erule contains.cases) |
|
1852 apply(auto) |
|
1853 apply (simp add: contains.intros(4)) |
|
1854 using contains.intros(5) by blast |
|
1855 |
|
1856 |
|
1857 lemma contains49: |
|
1858 assumes "fuse bs a >> bs @ bs1" |
|
1859 shows "a >> bs1" |
|
1860 using assms |
|
1861 apply(induct a arbitrary: bs bs1) |
|
1862 apply(auto) |
|
1863 using contains.simps apply blast |
|
1864 apply(erule contains.cases) |
|
1865 apply(auto) |
|
1866 apply(rule contains.intros) |
|
1867 apply(erule contains.cases) |
|
1868 apply(auto) |
|
1869 apply(rule contains.intros) |
|
1870 apply(erule contains.cases) |
|
1871 apply(auto) |
|
1872 apply(rule contains.intros) |
|
1873 apply(auto)[2] |
|
1874 prefer 2 |
|
1875 apply(erule contains.cases) |
|
1876 apply(auto) |
|
1877 apply (simp add: contains.intros(6)) |
|
1878 using contains.intros(7) apply blast |
|
1879 using contains48 by blast |
|
1880 |
|
1881 lemma contains50: |
|
1882 assumes "bsimp_AALTs bs rs2 >> bs @ bs1" |
|
1883 shows "bsimp_AALTs bs (rs1 @ rs2) >> bs @ bs1" |
|
1884 using assms |
|
1885 apply(induct rs1 arbitrary: bs rs2 bs1) |
|
1886 apply(simp) |
|
1887 apply(auto) |
|
1888 apply(case_tac rs1) |
|
1889 apply(simp) |
|
1890 apply(case_tac rs2) |
|
1891 apply(simp) |
|
1892 using contains.simps apply blast |
|
1893 apply(simp) |
|
1894 apply(case_tac list) |
|
1895 apply(simp) |
|
1896 apply(rule contains.intros) |
|
1897 back |
|
1898 apply(rule contains.intros) |
|
1899 using contains49 apply blast |
|
1900 apply(simp) |
|
1901 using contains.intros(5) apply blast |
|
1902 apply(simp) |
|
1903 by (metis bsimp_AALTs.elims contains.intros(4) contains.intros(5) contains49 list.distinct(1)) |
|
1904 |
|
1905 lemma contains51: |
|
1906 assumes "bsimp_AALTs bs [r] >> bs @ bs1" |
|
1907 shows "bsimp_AALTs bs ([r] @ rs2) >> bs @ bs1" |
|
1908 using assms |
|
1909 apply(induct rs2 arbitrary: bs r bs1) |
|
1910 apply(simp) |
|
1911 apply(auto) |
|
1912 using contains.intros(4) contains49 by blast |
|
1913 |
|
1914 lemma contains51a: |
|
1915 assumes "bsimp_AALTs bs rs2 >> bs @ bs1" |
|
1916 shows "bsimp_AALTs bs (rs2 @ [r]) >> bs @ bs1" |
|
1917 using assms |
|
1918 apply(induct rs2 arbitrary: bs r bs1) |
|
1919 apply(simp) |
|
1920 apply(auto) |
|
1921 using contains.simps apply blast |
|
1922 apply(case_tac rs2) |
|
1923 apply(auto) |
|
1924 using contains3b contains49 apply blast |
|
1925 apply(case_tac list) |
|
1926 apply(auto) |
|
1927 apply(erule contains.cases) |
|
1928 apply(auto) |
|
1929 using contains.intros(4) apply auto[1] |
|
1930 apply(erule contains.cases) |
|
1931 apply(auto) |
|
1932 apply (simp add: contains.intros(4) contains.intros(5)) |
|
1933 apply (simp add: contains.intros(5)) |
|
1934 apply(erule contains.cases) |
|
1935 apply(auto) |
|
1936 apply (simp add: contains.intros(4)) |
|
1937 apply(erule contains.cases) |
|
1938 apply(auto) |
|
1939 using contains.intros(4) contains.intros(5) apply blast |
|
1940 using contains.intros(5) by blast |
|
1941 |
|
1942 lemma contains51b: |
|
1943 assumes "bsimp_AALTs bs rs >> bs @ bs1" |
|
1944 shows "bsimp_AALTs bs (rs @ rs2) >> bs @ bs1" |
|
1945 using assms |
|
1946 apply(induct rs2 arbitrary: bs rs bs1) |
|
1947 apply(simp) |
|
1948 using contains51a by fastforce |
|
1949 |
|
1950 |
|
1951 lemma contains51c: |
|
1952 assumes "AALTs (bs @ bs2) rs >> bs @ bs1" |
|
1953 shows "bsimp_AALTs bs (map (fuse bs2) rs) >> bs @ bs1" |
|
1954 using assms |
|
1955 apply(induct rs arbitrary: bs bs1 bs2) |
|
1956 apply(auto) |
|
1957 apply(erule contains.cases) |
|
1958 apply(auto) |
|
1959 apply(erule contains.cases) |
|
1960 apply(auto) |
|
1961 using contains0 contains51 apply auto[1] |
|
1962 by (metis append.left_neutral append_Cons contains50 list.simps(9)) |
|
1963 |
|
1964 |
|
1965 lemma contains51d: |
|
1966 assumes "fuse bs r >> bs @ bs1" |
|
1967 shows "bsimp_AALTs bs (flts [r]) >> bs @ bs1" |
|
1968 using assms |
|
1969 apply(induct r arbitrary: bs bs1) |
|
1970 apply(auto) |
|
1971 by (simp add: contains51c) |
|
1972 |
|
1973 lemma contains52: |
|
1974 assumes "\<exists>r \<in> set rs. (fuse bs r) >> bs @ bs1" |
|
1975 shows "bsimp_AALTs bs (flts rs) >> bs @ bs1" |
|
1976 using assms |
|
1977 apply(induct rs arbitrary: bs bs1) |
|
1978 apply(simp) |
|
1979 apply(auto) |
|
1980 defer |
|
1981 apply (metis contains50 k0) |
|
1982 apply(subst k0) |
|
1983 apply(rule contains51b) |
|
1984 using contains51d by blast |
|
1985 |
|
1986 lemma contains55: |
|
1987 assumes "a >> bs" |
|
1988 shows "bsimp a >> bs" |
|
1989 using assms |
|
1990 apply(induct a bs arbitrary:) |
|
1991 apply(auto intro: contains.intros) |
|
1992 apply(case_tac "bsimp a1 = AZERO") |
|
1993 apply(simp) |
|
1994 using contains.simps apply blast |
|
1995 apply(case_tac "bsimp a2 = AZERO") |
|
1996 apply(simp) |
|
1997 using contains.simps apply blast |
|
1998 apply(case_tac "\<exists>bs. bsimp a1 = AONE bs") |
|
1999 apply(auto)[1] |
|
2000 apply(rotate_tac 1) |
|
2001 apply(erule contains.cases) |
|
2002 apply(auto) |
|
2003 apply (simp add: b1 contains0 fuse_append) |
|
2004 apply (simp add: bsimp_ASEQ1 contains.intros(3)) |
|
2005 prefer 2 |
|
2006 apply(case_tac rs) |
|
2007 apply(simp) |
|
2008 using contains.simps apply blast |
|
2009 apply (metis contains50 k0) |
|
2010 (* AALTS case *) |
|
2011 apply(rule contains52) |
|
2012 apply(rule_tac x="bsimp r" in bexI) |
|
2013 apply(auto) |
|
2014 using contains0 by blast |
|
2015 |
|
2016 |
|
2017 lemma q3a: |
|
2018 assumes "\<exists>r \<in> set rs. bnullable r" |
|
2019 shows "bmkeps (AALTs bs (map (fuse bs1) rs)) = bmkeps (AALTs (bs@bs1) rs)" |
|
2020 using assms |
|
2021 apply(induct rs arbitrary: bs bs1) |
|
2022 apply(simp) |
|
2023 apply(simp) |
|
2024 apply(auto) |
|
2025 apply (metis append_assoc b2 bnullable_correctness erase_fuse r0) |
|
2026 apply(case_tac "bnullable a") |
|
2027 apply (metis append.assoc b2 bnullable_correctness erase_fuse r0) |
|
2028 apply(case_tac rs) |
|
2029 apply(simp) |
|
2030 apply(simp) |
|
2031 apply(auto)[1] |
|
2032 apply (metis bnullable_correctness erase_fuse)+ |
|
2033 done |
|
2034 |
|
2035 |
|
2036 |
|
2037 lemma qq4a: |
|
2038 assumes "\<exists>x\<in>set list. bnullable x" |
|
2039 shows "\<exists>x\<in>set (flts list). bnullable x" |
|
2040 using assms |
|
2041 apply(induct list rule: flts.induct) |
|
2042 apply(auto) |
|
2043 by (metis UnCI bnullable_correctness erase_fuse imageI) |
|
2044 |
|
2045 |
|
2046 lemma qs3: |
|
2047 assumes "\<exists>r \<in> set rs. bnullable r" |
|
2048 shows "bmkeps (AALTs bs rs) = bmkeps (AALTs bs (flts rs))" |
|
2049 using assms |
|
2050 apply(induct rs arbitrary: bs taking: size rule: measure_induct) |
|
2051 apply(case_tac x) |
|
2052 apply(simp) |
|
2053 apply(simp) |
|
2054 apply(case_tac a) |
|
2055 apply(simp) |
|
2056 apply (simp add: r1) |
|
2057 apply(simp) |
|
2058 apply (simp add: r0) |
|
2059 apply(simp) |
|
2060 apply(case_tac "flts list") |
|
2061 apply(simp) |
|
2062 apply (metis L_erase_AALTs L_erase_flts L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(4) mkeps_nullable r2) |
|
2063 apply(simp) |
|
2064 apply (simp add: r1) |
|
2065 prefer 3 |
|
2066 apply(simp) |
|
2067 apply (simp add: r0) |
|
2068 prefer 2 |
|
2069 apply(simp) |
|
2070 apply(case_tac "\<exists>x\<in>set x52. bnullable x") |
|
2071 apply(case_tac "list") |
|
2072 apply(simp) |
|
2073 apply (metis b2 fuse.simps(4) q3a r2) |
|
2074 apply(erule disjE) |
|
2075 apply(subst qq1) |
|
2076 apply(auto)[1] |
|
2077 apply (metis bnullable_correctness erase_fuse) |
|
2078 apply(simp) |
|
2079 apply (metis b2 fuse.simps(4) q3a r2) |
|
2080 apply(simp) |
|
2081 apply(auto)[1] |
|
2082 apply(subst qq1) |
|
2083 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
2084 apply (metis b2 fuse.simps(4) q3a r2) |
|
2085 apply(subst qq1) |
|
2086 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
2087 apply (metis b2 fuse.simps(4) q3a r2) |
|
2088 apply(simp) |
|
2089 apply(subst qq2) |
|
2090 apply (metis bnullable_correctness erase_fuse imageE set_map) |
|
2091 prefer 2 |
|
2092 apply(case_tac "list") |
|
2093 apply(simp) |
|
2094 apply(simp) |
|
2095 apply (simp add: qq4a) |
|
2096 apply(simp) |
|
2097 apply(auto) |
|
2098 apply(case_tac list) |
|
2099 apply(simp) |
|
2100 apply(simp) |
|
2101 apply (simp add: r0) |
|
2102 apply(case_tac "bnullable (ASEQ x41 x42 x43)") |
|
2103 apply(case_tac list) |
|
2104 apply(simp) |
|
2105 apply(simp) |
|
2106 apply (simp add: r0) |
|
2107 apply(simp) |
|
2108 using qq4a r1 r2 by auto |
|
2109 |
|
2110 |
|
2111 |
|
2112 lemma k1: |
|
2113 assumes "\<And>x2aa. \<lbrakk>x2aa \<in> set x2a; bnullable x2aa\<rbrakk> \<Longrightarrow> bmkeps x2aa = bmkeps (bsimp x2aa)" |
|
2114 "\<exists>x\<in>set x2a. bnullable x" |
|
2115 shows "bmkeps (AALTs x1 (flts x2a)) = bmkeps (AALTs x1 (flts (map bsimp x2a)))" |
|
2116 using assms |
|
2117 apply(induct x2a) |
|
2118 apply fastforce |
|
2119 apply(simp) |
|
2120 apply(subst k0) |
|
2121 apply(subst (2) k0) |
|
2122 apply(auto)[1] |
|
2123 apply (metis b3 k0 list.set_intros(1) qs3 r0) |
|
2124 by (smt b3 imageI insert_iff k0 list.set(2) qq3 qs3 r0 r1 set_map) |
|
2125 |
|
2126 |
|
2127 |
|
2128 lemma bmkeps_simp: |
|
2129 assumes "bnullable r" |
|
2130 shows "bmkeps r = bmkeps (bsimp r)" |
|
2131 using assms |
|
2132 apply(induct r) |
|
2133 apply(simp) |
|
2134 apply(simp) |
|
2135 apply(simp) |
|
2136 apply(simp) |
|
2137 prefer 3 |
|
2138 apply(simp) |
|
2139 apply(case_tac "bsimp r1 = AZERO") |
|
2140 apply(simp) |
|
2141 apply(auto)[1] |
|
2142 apply (metis L_bsimp_erase L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(1) mkeps_nullable) |
|
2143 apply(case_tac "bsimp r2 = AZERO") |
|
2144 apply(simp) |
|
2145 apply(auto)[1] |
|
2146 apply (metis L_bsimp_erase L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(1) mkeps_nullable) |
|
2147 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
2148 apply(auto)[1] |
|
2149 apply(subst b1) |
|
2150 apply(subst b2) |
|
2151 apply(simp add: b3[symmetric]) |
|
2152 apply(simp) |
|
2153 apply(subgoal_tac "bsimp_ASEQ x1 (bsimp r1) (bsimp r2) = ASEQ x1 (bsimp r1) (bsimp r2)") |
|
2154 prefer 2 |
|
2155 apply (smt b3 bnullable.elims(2) bsimp_ASEQ.simps(17) bsimp_ASEQ.simps(19) bsimp_ASEQ.simps(20) bsimp_ASEQ.simps(21) bsimp_ASEQ.simps(22) bsimp_ASEQ.simps(24) bsimp_ASEQ.simps(25) bsimp_ASEQ.simps(26) bsimp_ASEQ.simps(27) bsimp_ASEQ.simps(29) bsimp_ASEQ.simps(30) bsimp_ASEQ.simps(31)) |
|
2156 apply(simp) |
|
2157 apply(simp) |
|
2158 thm q3 |
|
2159 apply(subst q3[symmetric]) |
|
2160 apply simp |
|
2161 using b3 qq4a apply auto[1] |
|
2162 apply(subst qs3) |
|
2163 apply simp |
|
2164 using k1 by blast |
|
2165 |
|
2166 thm bmkeps_retrieve bmkeps_simp bder_retrieve |
|
2167 |
|
2168 lemma bmkeps_bder_AALTs: |
|
2169 assumes "\<exists>r \<in> set rs. bnullable (bder c r)" |
|
2170 shows "bmkeps (bder c (bsimp_AALTs bs rs)) = bmkeps (bsimp_AALTs bs (map (bder c) rs))" |
|
2171 using assms |
|
2172 apply(induct rs) |
|
2173 apply(simp) |
|
2174 apply(simp) |
|
2175 apply(auto) |
|
2176 apply(case_tac rs) |
|
2177 apply(simp) |
|
2178 apply (metis (full_types) Prf_injval bder_retrieve bmkeps_retrieve bnullable_correctness erase_bder erase_fuse mkeps_nullable retrieve_fuse2) |
|
2179 apply(simp) |
|
2180 apply(case_tac rs) |
|
2181 apply(simp_all) |
|
2182 done |
|
2183 |
|
2184 lemma bbs0: |
|
2185 shows "blexer_simp r [] = blexer r []" |
|
2186 apply(simp add: blexer_def blexer_simp_def) |
|
2187 done |
|
2188 |
|
2189 lemma bbs1: |
|
2190 shows "blexer_simp r [c] = blexer r [c]" |
|
2191 apply(simp add: blexer_def blexer_simp_def) |
|
2192 apply(auto) |
|
2193 defer |
|
2194 using b3 apply auto[1] |
|
2195 using b3 apply auto[1] |
|
2196 apply(subst bmkeps_simp[symmetric]) |
|
2197 apply(simp) |
|
2198 apply(simp) |
|
2199 done |
|
2200 |
|
2201 lemma oo: |
|
2202 shows "(case (blexer (der c r) s) of None \<Rightarrow> None | Some v \<Rightarrow> Some (injval r c v)) = blexer r (c # s)" |
|
2203 apply(simp add: blexer_correctness) |
|
2204 done |
|
2205 |
|
2206 lemma XXX2_helper: |
|
2207 assumes "\<forall>y. asize y < Suc (sum_list (map asize rs)) \<longrightarrow> good y \<longrightarrow> bsimp y = y" |
|
2208 "\<forall>r'\<in>set rs. good r' \<and> nonalt r'" |
|
2209 shows "flts (map (bsimp \<circ> bder c) (flts (map bsimp rs))) = flts (map (bsimp \<circ> bder c) rs)" |
|
2210 using assms |
|
2211 apply(induct rs arbitrary: c) |
|
2212 apply(simp) |
|
2213 apply(simp) |
|
2214 apply(subst k0) |
|
2215 apply(simp add: flts_append) |
|
2216 apply(subst (2) k0) |
|
2217 apply(simp add: flts_append) |
|
2218 apply(subgoal_tac "flts [a] = [a]") |
|
2219 prefer 2 |
|
2220 using good.simps(1) k0b apply blast |
|
2221 apply(simp) |
|
2222 done |
|
2223 |
|
2224 lemma bmkeps_good: |
|
2225 assumes "good a" |
|
2226 shows "bmkeps (bsimp a) = bmkeps a" |
|
2227 using assms |
|
2228 using test2 by auto |
|
2229 |
|
2230 |
|
2231 lemma xxx_bder: |
|
2232 assumes "good r" |
|
2233 shows "L (erase r) \<noteq> {}" |
|
2234 using assms |
|
2235 apply(induct r rule: good.induct) |
|
2236 apply(auto simp add: Sequ_def) |
|
2237 done |
|
2238 |
|
2239 lemma xxx_bder2: |
|
2240 assumes "L (erase (bsimp r)) = {}" |
|
2241 shows "bsimp r = AZERO" |
|
2242 using assms xxx_bder test2 good1 |
|
2243 by blast |
|
2244 |
|
2245 lemma XXX2aa: |
|
2246 assumes "good a" |
|
2247 shows "bsimp (bder c (bsimp a)) = bsimp (bder c a)" |
|
2248 using assms |
|
2249 by (simp add: test2) |
|
2250 |
|
2251 lemma XXX2aa_ders: |
|
2252 assumes "good a" |
|
2253 shows "bsimp (bders (bsimp a) s) = bsimp (bders a s)" |
|
2254 using assms |
|
2255 by (simp add: test2) |
|
2256 |
|
2257 lemma XXX4a: |
|
2258 shows "good (bders_simp (bsimp r) s) \<or> bders_simp (bsimp r) s = AZERO" |
|
2259 apply(induct s arbitrary: r rule: rev_induct) |
|
2260 apply(simp) |
|
2261 apply (simp add: good1) |
|
2262 apply(simp add: bders_simp_append) |
|
2263 apply (simp add: good1) |
|
2264 done |
|
2265 |
|
2266 lemma XXX4a_good: |
|
2267 assumes "good a" |
|
2268 shows "good (bders_simp a s) \<or> bders_simp a s = AZERO" |
|
2269 using assms |
|
2270 apply(induct s arbitrary: a rule: rev_induct) |
|
2271 apply(simp) |
|
2272 apply(simp add: bders_simp_append) |
|
2273 apply (simp add: good1) |
|
2274 done |
|
2275 |
|
2276 lemma XXX4a_good_cons: |
|
2277 assumes "s \<noteq> []" |
|
2278 shows "good (bders_simp a s) \<or> bders_simp a s = AZERO" |
|
2279 using assms |
|
2280 apply(case_tac s) |
|
2281 apply(auto) |
|
2282 using XXX4a by blast |
|
2283 |
|
2284 lemma XXX4b: |
|
2285 assumes "good a" "L (erase (bders_simp a s)) \<noteq> {}" |
|
2286 shows "good (bders_simp a s)" |
|
2287 using assms |
|
2288 apply(induct s arbitrary: a) |
|
2289 apply(simp) |
|
2290 apply(simp) |
|
2291 apply(subgoal_tac "L (erase (bder a aa)) = {} \<or> L (erase (bder a aa)) \<noteq> {}") |
|
2292 prefer 2 |
|
2293 apply(auto)[1] |
|
2294 apply(erule disjE) |
|
2295 apply(subgoal_tac "bsimp (bder a aa) = AZERO") |
|
2296 prefer 2 |
|
2297 using L_bsimp_erase xxx_bder2 apply auto[1] |
|
2298 apply(simp) |
|
2299 apply (metis L.simps(1) XXX4a erase.simps(1)) |
|
2300 apply(drule_tac x="bsimp (bder a aa)" in meta_spec) |
|
2301 apply(drule meta_mp) |
|
2302 apply simp |
|
2303 apply(rule good1a) |
|
2304 apply(auto) |
|
2305 done |
|
2306 |
|
2307 lemma bders_AZERO: |
|
2308 shows "bders AZERO s = AZERO" |
|
2309 and "bders_simp AZERO s = AZERO" |
|
2310 apply (induct s) |
|
2311 apply(auto) |
|
2312 done |
|
2313 |
|
2314 lemma LA: |
|
2315 assumes "\<Turnstile> v : ders s (erase r)" |
|
2316 shows "retrieve (bders r s) v = retrieve r (flex (erase r) id s v)" |
|
2317 using assms |
|
2318 apply(induct s arbitrary: r v rule: rev_induct) |
|
2319 apply(simp) |
|
2320 apply(simp add: bders_append ders_append) |
|
2321 apply(subst bder_retrieve) |
|
2322 apply(simp) |
|
2323 apply(drule Prf_injval) |
|
2324 by (simp add: flex_append) |
|
2325 |
|
2326 |
|
2327 lemma LB: |
|
2328 assumes "s \<in> (erase r) \<rightarrow> v" |
|
2329 shows "retrieve r v = retrieve r (flex (erase r) id s (mkeps (ders s (erase r))))" |
|
2330 using assms |
|
2331 apply(induct s arbitrary: r v rule: rev_induct) |
|
2332 apply(simp) |
|
2333 apply(subgoal_tac "v = mkeps (erase r)") |
|
2334 prefer 2 |
|
2335 apply (simp add: Posix1(1) Posix_determ Posix_mkeps nullable_correctness) |
|
2336 apply(simp) |
|
2337 apply(simp add: flex_append ders_append) |
|
2338 by (metis Posix_determ Posix_flex Posix_injval Posix_mkeps ders_snoc lexer_correctness(2) lexer_flex) |
|
2339 |
|
2340 lemma LB_sym: |
|
2341 assumes "s \<in> (erase r) \<rightarrow> v" |
|
2342 shows "retrieve r v = retrieve r (flex (erase r) id s (mkeps (erase (bders r s))))" |
|
2343 using assms |
|
2344 by (simp add: LB) |
|
2345 |
|
2346 |
|
2347 lemma LC: |
|
2348 assumes "s \<in> (erase r) \<rightarrow> v" |
|
2349 shows "retrieve r v = retrieve (bders r s) (mkeps (erase (bders r s)))" |
|
2350 apply(simp) |
|
2351 by (metis LA LB Posix1(1) assms lexer_correct_None lexer_flex mkeps_nullable) |
|
2352 |
|
2353 |
|
2354 lemma L0: |
|
2355 assumes "bnullable a" |
|
2356 shows "retrieve (bsimp a) (mkeps (erase (bsimp a))) = retrieve a (mkeps (erase a))" |
|
2357 using assms |
|
2358 by (metis b3 bmkeps_retrieve bmkeps_simp bnullable_correctness) |
|
2359 |
|
2360 thm bmkeps_retrieve |
|
2361 |
|
2362 lemma L0a: |
|
2363 assumes "s \<in> L(erase a)" |
|
2364 shows "retrieve (bsimp (bders a s)) (mkeps (erase (bsimp (bders a s)))) = |
|
2365 retrieve (bders a s) (mkeps (erase (bders a s)))" |
|
2366 using assms |
|
2367 by (metis L0 bnullable_correctness erase_bders lexer_correct_None lexer_flex) |
|
2368 |
|
2369 lemma L0aa: |
|
2370 assumes "s \<in> L (erase a)" |
|
2371 shows "[] \<in> erase (bsimp (bders a s)) \<rightarrow> mkeps (erase (bsimp (bders a s)))" |
|
2372 using assms |
|
2373 by (metis Posix_mkeps b3 bnullable_correctness erase_bders lexer_correct_None lexer_flex) |
|
2374 |
|
2375 lemma L0aaa: |
|
2376 assumes "[c] \<in> L (erase a)" |
|
2377 shows "[c] \<in> (erase a) \<rightarrow> flex (erase a) id [c] (mkeps (erase (bder c a)))" |
|
2378 using assms |
|
2379 by (metis bders.simps(1) bders.simps(2) erase_bders lexer_correct_None lexer_correct_Some lexer_flex option.inject) |
|
2380 |
|
2381 lemma L0aaaa: |
|
2382 assumes "[c] \<in> L (erase a)" |
|
2383 shows "[c] \<in> (erase a) \<rightarrow> flex (erase a) id [c] (mkeps (erase (bders a [c])))" |
|
2384 using assms |
|
2385 using L0aaa by auto |
|
2386 |
|
2387 |
|
2388 lemma L02: |
|
2389 assumes "bnullable (bder c a)" |
|
2390 shows "retrieve (bsimp a) (flex (erase (bsimp a)) id [c] (mkeps (erase (bder c (bsimp a))))) = |
|
2391 retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a))))" |
|
2392 using assms |
|
2393 apply(simp) |
|
2394 using bder_retrieve L0 bmkeps_simp bmkeps_retrieve L0 LA LB |
|
2395 apply(subst bder_retrieve[symmetric]) |
|
2396 apply (metis L_bsimp_erase bnullable_correctness der_correctness erase_bder mkeps_nullable nullable_correctness) |
|
2397 apply(simp) |
|
2398 done |
|
2399 |
|
2400 lemma L02_bders: |
|
2401 assumes "bnullable (bders a s)" |
|
2402 shows "retrieve (bsimp a) (flex (erase (bsimp a)) id s (mkeps (erase (bders (bsimp a) s)))) = |
|
2403 retrieve (bders (bsimp a) s) (mkeps (erase (bders (bsimp a) s)))" |
|
2404 using assms |
|
2405 by (metis LA L_bsimp_erase bnullable_correctness ders_correctness erase_bders mkeps_nullable nullable_correctness) |
|
2406 |
|
2407 |
|
2408 |
|
2409 |
|
2410 lemma L03: |
|
2411 assumes "bnullable (bder c a)" |
|
2412 shows "retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a)))) = |
|
2413 bmkeps (bsimp (bder c (bsimp a)))" |
|
2414 using assms |
|
2415 by (metis L0 L_bsimp_erase bmkeps_retrieve bnullable_correctness der_correctness erase_bder nullable_correctness) |
|
2416 |
|
2417 lemma L04: |
|
2418 assumes "bnullable (bder c a)" |
|
2419 shows "retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a)))) = |
|
2420 retrieve (bsimp (bder c (bsimp a))) (mkeps (erase (bsimp (bder c (bsimp a)))))" |
|
2421 using assms |
|
2422 by (metis L0 L_bsimp_erase bnullable_correctness der_correctness erase_bder nullable_correctness) |
|
2423 |
|
2424 lemma L05: |
|
2425 assumes "bnullable (bder c a)" |
|
2426 shows "retrieve (bder c (bsimp a)) (mkeps (erase (bder c (bsimp a)))) = |
|
2427 retrieve (bsimp (bder c (bsimp a))) (mkeps (erase (bsimp (bder c (bsimp a)))))" |
|
2428 using assms |
|
2429 using L04 by auto |
|
2430 |
|
2431 lemma L06: |
|
2432 assumes "bnullable (bder c a)" |
|
2433 shows "bmkeps (bder c (bsimp a)) = bmkeps (bsimp (bder c (bsimp a)))" |
|
2434 using assms |
|
2435 by (metis L03 L_bsimp_erase bmkeps_retrieve bnullable_correctness der_correctness erase_bder nullable_correctness) |
|
2436 |
|
2437 lemma L07: |
|
2438 assumes "s \<in> L (erase r)" |
|
2439 shows "retrieve r (flex (erase r) id s (mkeps (ders s (erase r)))) |
|
2440 = retrieve (bders r s) (mkeps (erase (bders r s)))" |
|
2441 using assms |
|
2442 using LB LC lexer_correct_Some by auto |
|
2443 |
|
2444 lemma L06_2: |
|
2445 assumes "bnullable (bders a [c,d])" |
|
2446 shows "bmkeps (bders (bsimp a) [c,d]) = bmkeps (bsimp (bders (bsimp a) [c,d]))" |
|
2447 using assms |
|
2448 apply(simp) |
|
2449 by (metis L_bsimp_erase bmkeps_simp bnullable_correctness der_correctness erase_bder nullable_correctness) |
|
2450 |
|
2451 lemma L06_bders: |
|
2452 assumes "bnullable (bders a s)" |
|
2453 shows "bmkeps (bders (bsimp a) s) = bmkeps (bsimp (bders (bsimp a) s))" |
|
2454 using assms |
|
2455 by (metis L_bsimp_erase bmkeps_simp bnullable_correctness ders_correctness erase_bders nullable_correctness) |
|
2456 |
|
2457 lemma LLLL: |
|
2458 shows "L (erase a) = L (erase (bsimp a))" |
|
2459 and "L (erase a) = {flat v | v. \<Turnstile> v: (erase a)}" |
|
2460 and "L (erase a) = {flat v | v. \<Turnstile> v: (erase (bsimp a))}" |
|
2461 using L_bsimp_erase apply(blast) |
|
2462 apply (simp add: L_flat_Prf) |
|
2463 using L_bsimp_erase L_flat_Prf apply(auto)[1] |
|
2464 done |
|
2465 |
|
2466 |
|
2467 |
|
2468 lemma L07XX: |
|
2469 assumes "s \<in> L (erase a)" |
|
2470 shows "s \<in> erase a \<rightarrow> flex (erase a) id s (mkeps (ders s (erase a)))" |
|
2471 using assms |
|
2472 by (meson lexer_correct_None lexer_correctness(1) lexer_flex) |
|
2473 |
|
2474 lemma LX0: |
|
2475 assumes "s \<in> L r" |
|
2476 shows "decode (bmkeps (bders (intern r) s)) r = Some(flex r id s (mkeps (ders s r)))" |
|
2477 by (metis assms blexer_correctness blexer_def lexer_correct_None lexer_flex) |
|
2478 |
|
2479 lemma L1: |
|
2480 assumes "s \<in> r \<rightarrow> v" |
|
2481 shows "decode (bmkeps (bders (intern r) s)) r = Some v" |
|
2482 using assms |
|
2483 by (metis blexer_correctness blexer_def lexer_correctness(1) option.distinct(1)) |
|
2484 |
|
2485 lemma L2: |
|
2486 assumes "s \<in> (der c r) \<rightarrow> v" |
|
2487 shows "decode (bmkeps (bders (intern r) (c # s))) r = Some (injval r c v)" |
|
2488 using assms |
|
2489 apply(subst bmkeps_retrieve) |
|
2490 using Posix1(1) lexer_correct_None lexer_flex apply fastforce |
|
2491 using MAIN_decode |
|
2492 apply(subst MAIN_decode[symmetric]) |
|
2493 apply(simp) |
|
2494 apply (meson Posix1(1) lexer_correct_None lexer_flex mkeps_nullable) |
|
2495 apply(simp) |
|
2496 apply(subgoal_tac "v = flex (der c r) id s (mkeps (ders s (der c r)))") |
|
2497 prefer 2 |
|
2498 apply (metis Posix_determ lexer_correctness(1) lexer_flex option.distinct(1)) |
|
2499 apply(simp) |
|
2500 apply(subgoal_tac "injval r c (flex (der c r) id s (mkeps (ders s (der c r)))) = |
|
2501 (flex (der c r) ((\<lambda>v. injval r c v) o id) s (mkeps (ders s (der c r))))") |
|
2502 apply(simp) |
|
2503 using flex_fun_apply by blast |
|
2504 |
|
2505 lemma L3: |
|
2506 assumes "s2 \<in> (ders s1 r) \<rightarrow> v" |
|
2507 shows "decode (bmkeps (bders (intern r) (s1 @ s2))) r = Some (flex r id s1 v)" |
|
2508 using assms |
|
2509 apply(induct s1 arbitrary: r s2 v rule: rev_induct) |
|
2510 apply(simp) |
|
2511 using L1 apply blast |
|
2512 apply(simp add: ders_append) |
|
2513 apply(drule_tac x="r" in meta_spec) |
|
2514 apply(drule_tac x="x # s2" in meta_spec) |
|
2515 apply(drule_tac x="injval (ders xs r) x v" in meta_spec) |
|
2516 apply(drule meta_mp) |
|
2517 defer |
|
2518 apply(simp) |
|
2519 apply(simp add: flex_append) |
|
2520 by (simp add: Posix_injval) |
|
2521 |
|
2522 |
|
2523 |
|
2524 lemma bders_snoc: |
|
2525 "bder c (bders a s) = bders a (s @ [c])" |
|
2526 apply(simp add: bders_append) |
|
2527 done |
|
2528 |
|
2529 |
|
2530 lemma QQ1: |
|
2531 shows "bsimp (bders (bsimp a) []) = bders_simp (bsimp a) []" |
|
2532 apply(simp) |
|
2533 apply(simp add: bsimp_idem) |
|
2534 done |
|
2535 |
|
2536 lemma QQ2: |
|
2537 shows "bsimp (bders (bsimp a) [c]) = bders_simp (bsimp a) [c]" |
|
2538 apply(simp) |
|
2539 done |
|
2540 |
|
2541 lemma XXX2a_long: |
|
2542 assumes "good a" |
|
2543 shows "bsimp (bder c (bsimp a)) = bsimp (bder c a)" |
|
2544 using assms |
|
2545 apply(induct a arbitrary: c taking: asize rule: measure_induct) |
|
2546 apply(case_tac x) |
|
2547 apply(simp) |
|
2548 apply(simp) |
|
2549 apply(simp) |
|
2550 prefer 3 |
|
2551 apply(simp) |
|
2552 apply(simp) |
|
2553 apply(auto)[1] |
|
2554 apply(case_tac "x42 = AZERO") |
|
2555 apply(simp) |
|
2556 apply(case_tac "x43 = AZERO") |
|
2557 apply(simp) |
|
2558 using test2 apply force |
|
2559 apply(case_tac "\<exists>bs. x42 = AONE bs") |
|
2560 apply(clarify) |
|
2561 apply(simp) |
|
2562 apply(subst bsimp_ASEQ1) |
|
2563 apply(simp) |
|
2564 using b3 apply force |
|
2565 using bsimp_ASEQ0 test2 apply force |
|
2566 thm good_SEQ test2 |
|
2567 apply (simp add: good_SEQ test2) |
|
2568 apply (simp add: good_SEQ test2) |
|
2569 apply(case_tac "x42 = AZERO") |
|
2570 apply(simp) |
|
2571 apply(case_tac "x43 = AZERO") |
|
2572 apply(simp) |
|
2573 apply (simp add: bsimp_ASEQ0) |
|
2574 apply(case_tac "\<exists>bs. x42 = AONE bs") |
|
2575 apply(clarify) |
|
2576 apply(simp) |
|
2577 apply(subst bsimp_ASEQ1) |
|
2578 apply(simp) |
|
2579 using bsimp_ASEQ0 test2 apply force |
|
2580 apply (simp add: good_SEQ test2) |
|
2581 apply (simp add: good_SEQ test2) |
|
2582 apply (simp add: good_SEQ test2) |
|
2583 (* AALTs case *) |
|
2584 apply(simp) |
|
2585 using test2 by fastforce |
|
2586 |
|
2587 |
|
2588 lemma bder_bsimp_AALTs: |
|
2589 shows "bder c (bsimp_AALTs bs rs) = bsimp_AALTs bs (map (bder c) rs)" |
|
2590 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
2591 apply(simp) |
|
2592 apply(simp) |
|
2593 apply (simp add: bder_fuse) |
|
2594 apply(simp) |
|
2595 done |
|
2596 |
|
2597 lemma flts_nothing: |
|
2598 assumes "\<forall>r \<in> set rs. r \<noteq> AZERO" "\<forall>r \<in> set rs. nonalt r" |
|
2599 shows "flts rs = rs" |
|
2600 using assms |
|
2601 apply(induct rs rule: flts.induct) |
|
2602 apply(auto) |
|
2603 done |
|
2604 |
|
2605 lemma flts_flts: |
|
2606 assumes "\<forall>r \<in> set rs. good r" |
|
2607 shows "flts (flts rs) = flts rs" |
|
2608 using assms |
|
2609 apply(induct rs taking: "\<lambda>rs. sum_list (map asize rs)" rule: measure_induct) |
|
2610 apply(case_tac x) |
|
2611 apply(simp) |
|
2612 apply(simp) |
|
2613 apply(case_tac a) |
|
2614 apply(simp_all add: bder_fuse flts_append) |
|
2615 apply(subgoal_tac "\<forall>r \<in> set x52. r \<noteq> AZERO") |
|
2616 prefer 2 |
|
2617 apply (metis Nil_is_append_conv bsimp_AALTs.elims good.simps(1) good.simps(5) good0 list.distinct(1) n0 nn1b split_list_last test2) |
|
2618 apply(subgoal_tac "\<forall>r \<in> set x52. nonalt r") |
|
2619 prefer 2 |
|
2620 apply (metis n0 nn1b test2) |
|
2621 by (metis flts_fuse flts_nothing) |
|
2622 |
|
2623 |
|
2624 lemma iii: |
|
2625 assumes "bsimp_AALTs bs rs \<noteq> AZERO" |
|
2626 shows "rs \<noteq> []" |
|
2627 using assms |
|
2628 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
2629 apply(auto) |
|
2630 done |
|
2631 |
|
2632 lemma CT1_SEQ: |
|
2633 shows "bsimp (ASEQ bs a1 a2) = bsimp (ASEQ bs (bsimp a1) (bsimp a2))" |
|
2634 apply(simp add: bsimp_idem) |
|
2635 done |
|
2636 |
|
2637 lemma CT1: |
|
2638 shows "bsimp (AALTs bs as) = bsimp (AALTs bs (map bsimp as))" |
|
2639 apply(induct as arbitrary: bs) |
|
2640 apply(simp) |
|
2641 apply(simp) |
|
2642 by (simp add: bsimp_idem comp_def) |
|
2643 |
|
2644 lemma CT1a: |
|
2645 shows "bsimp (AALT bs a1 a2) = bsimp(AALT bs (bsimp a1) (bsimp a2))" |
|
2646 by (metis CT1 list.simps(8) list.simps(9)) |
|
2647 |
|
2648 lemma WWW2: |
|
2649 shows "bsimp (bsimp_AALTs bs1 (flts (map bsimp as1))) = |
|
2650 bsimp_AALTs bs1 (flts (map bsimp as1))" |
|
2651 by (metis bsimp.simps(2) bsimp_idem) |
|
2652 |
|
2653 lemma CT1b: |
|
2654 shows "bsimp (bsimp_AALTs bs as) = bsimp (bsimp_AALTs bs (map bsimp as))" |
|
2655 apply(induct bs as rule: bsimp_AALTs.induct) |
|
2656 apply(auto simp add: bsimp_idem) |
|
2657 apply (simp add: bsimp_fuse bsimp_idem) |
|
2658 by (metis bsimp_idem comp_apply) |
|
2659 |
|
2660 |
|
2661 |
|
2662 |
|
2663 (* CT *) |
|
2664 |
|
2665 lemma CTa: |
|
2666 assumes "\<forall>r \<in> set as. nonalt r \<and> r \<noteq> AZERO" |
|
2667 shows "flts as = as" |
|
2668 using assms |
|
2669 apply(induct as) |
|
2670 apply(simp) |
|
2671 apply(case_tac as) |
|
2672 apply(simp) |
|
2673 apply (simp add: k0b) |
|
2674 using flts_nothing by auto |
|
2675 |
|
2676 lemma CT0: |
|
2677 assumes "\<forall>r \<in> set as1. nonalt r \<and> r \<noteq> AZERO" |
|
2678 shows "flts [bsimp_AALTs bs1 as1] = flts (map (fuse bs1) as1)" |
|
2679 using assms CTa |
|
2680 apply(induct as1 arbitrary: bs1) |
|
2681 apply(simp) |
|
2682 apply(simp) |
|
2683 apply(case_tac as1) |
|
2684 apply(simp) |
|
2685 apply(simp) |
|
2686 proof - |
|
2687 fix a :: arexp and as1a :: "arexp list" and bs1a :: "bit list" and aa :: arexp and list :: "arexp list" |
|
2688 assume a1: "nonalt a \<and> a \<noteq> AZERO \<and> nonalt aa \<and> aa \<noteq> AZERO \<and> (\<forall>r\<in>set list. nonalt r \<and> r \<noteq> AZERO)" |
|
2689 assume a2: "\<And>as. \<forall>r\<in>set as. nonalt r \<and> r \<noteq> AZERO \<Longrightarrow> flts as = as" |
|
2690 assume a3: "as1a = aa # list" |
|
2691 have "flts [a] = [a]" |
|
2692 using a1 k0b by blast |
|
2693 then show "fuse bs1a a # fuse bs1a aa # map (fuse bs1a) list = flts (fuse bs1a a # fuse bs1a aa # map (fuse bs1a) list)" |
|
2694 using a3 a2 a1 by (metis (no_types) append.left_neutral append_Cons flts_fuse k00 k0b list.simps(9)) |
|
2695 qed |
|
2696 |
|
2697 |
|
2698 lemma CT01: |
|
2699 assumes "\<forall>r \<in> set as1. nonalt r \<and> r \<noteq> AZERO" "\<forall>r \<in> set as2. nonalt r \<and> r \<noteq> AZERO" |
|
2700 shows "flts [bsimp_AALTs bs1 as1, bsimp_AALTs bs2 as2] = flts ((map (fuse bs1) as1) @ (map (fuse bs2) as2))" |
|
2701 using assms CT0 |
|
2702 by (metis k0 k00) |
|
2703 |
|
2704 |
|
2705 |
|
2706 lemma CT_exp: |
|
2707 assumes "\<forall>a \<in> set as. bsimp (bder c (bsimp a)) = bsimp (bder c a)" |
|
2708 shows "map bsimp (map (bder c) as) = map bsimp (map (bder c) (map bsimp as))" |
|
2709 using assms |
|
2710 apply(induct as) |
|
2711 apply(auto) |
|
2712 done |
|
2713 |
|
2714 lemma asize_set: |
|
2715 assumes "a \<in> set as" |
|
2716 shows "asize a < Suc (sum_list (map asize as))" |
|
2717 using assms |
|
2718 apply(induct as arbitrary: a) |
|
2719 apply(auto) |
|
2720 using le_add2 le_less_trans not_less_eq by blast |
|
2721 |
|
2722 lemma L_erase_bder_simp: |
|
2723 shows "L (erase (bsimp (bder a r))) = L (der a (erase (bsimp r)))" |
|
2724 using L_bsimp_erase der_correctness by auto |
|
2725 |
|
2726 lemma PPP0: |
|
2727 assumes "s \<in> r \<rightarrow> v" |
|
2728 shows "(bders (intern r) s) >> code v" |
|
2729 using assms |
|
2730 by (smt L07 L1 LX0 Posix1(1) Posix_Prf contains6 erase_bders erase_intern lexer_correct_None lexer_flex mkeps_nullable option.inject retrieve_code) |
|
2731 |
|
2732 thm L07 L1 LX0 Posix1(1) Posix_Prf contains6 erase_bders erase_intern lexer_correct_None lexer_flex mkeps_nullable option.inject retrieve_code |
|
2733 |
|
2734 |
|
2735 lemma PPP0_isar: |
|
2736 assumes "s \<in> r \<rightarrow> v" |
|
2737 shows "(bders (intern r) s) >> code v" |
|
2738 proof - |
|
2739 from assms have a1: "\<Turnstile> v : r" using Posix_Prf by simp |
|
2740 |
|
2741 from assms have "s \<in> L r" using Posix1(1) by auto |
|
2742 then have "[] \<in> L (ders s r)" by (simp add: ders_correctness Ders_def) |
|
2743 then have a2: "\<Turnstile> mkeps (ders s r) : ders s r" |
|
2744 by (simp add: mkeps_nullable nullable_correctness) |
|
2745 |
|
2746 have "retrieve (bders (intern r) s) (mkeps (ders s r)) = |
|
2747 retrieve (intern r) (flex r id s (mkeps (ders s r)))" using a2 LA LB bder_retrieve by simp |
|
2748 also have "... = retrieve (intern r) v" |
|
2749 using LB assms by auto |
|
2750 also have "... = code v" using a1 by (simp add: retrieve_code) |
|
2751 finally have "retrieve (bders (intern r) s) (mkeps (ders s r)) = code v" by simp |
|
2752 moreover |
|
2753 have "\<Turnstile> mkeps (ders s r) : erase (bders (intern r) s)" using a2 by simp |
|
2754 then have "bders (intern r) s >> retrieve (bders (intern r) s) (mkeps (ders s r))" |
|
2755 by (rule contains6) |
|
2756 ultimately |
|
2757 show "(bders (intern r) s) >> code v" by simp |
|
2758 qed |
|
2759 |
|
2760 lemma PPP0b: |
|
2761 assumes "s \<in> r \<rightarrow> v" |
|
2762 shows "(intern r) >> code v" |
|
2763 using assms |
|
2764 using Posix_Prf contains2 by auto |
|
2765 |
|
2766 lemma PPP0_eq: |
|
2767 assumes "s \<in> r \<rightarrow> v" |
|
2768 shows "(intern r >> code v) = (bders (intern r) s >> code v)" |
|
2769 using assms |
|
2770 using PPP0_isar PPP0b by blast |
|
2771 |
|
2772 lemma f_cont1: |
|
2773 assumes "fuse bs1 a >> bs" |
|
2774 shows "\<exists>bs2. bs = bs1 @ bs2" |
|
2775 using assms |
|
2776 apply(induct a arbitrary: bs1 bs) |
|
2777 apply(auto elim: contains.cases) |
|
2778 done |
|
2779 |
|
2780 |
|
2781 lemma f_cont2: |
|
2782 assumes "bsimp_AALTs bs1 as >> bs" |
|
2783 shows "\<exists>bs2. bs = bs1 @ bs2" |
|
2784 using assms |
|
2785 apply(induct bs1 as arbitrary: bs rule: bsimp_AALTs.induct) |
|
2786 apply(auto elim: contains.cases f_cont1) |
|
2787 done |
|
2788 |
|
2789 lemma contains_SEQ1: |
|
2790 assumes "bsimp_ASEQ bs r1 r2 >> bsX" |
|
2791 shows "\<exists>bs1 bs2. r1 >> bs1 \<and> r2 >> bs2 \<and> bsX = bs @ bs1 @ bs2" |
|
2792 using assms |
|
2793 apply(auto) |
|
2794 apply(case_tac "r1 = AZERO") |
|
2795 apply(auto) |
|
2796 using contains.simps apply blast |
|
2797 apply(case_tac "r2 = AZERO") |
|
2798 apply(auto) |
|
2799 apply(simp add: bsimp_ASEQ0) |
|
2800 using contains.simps apply blast |
|
2801 apply(case_tac "\<exists>bsX. r1 = AONE bsX") |
|
2802 apply(auto) |
|
2803 apply(simp add: bsimp_ASEQ2) |
|
2804 apply (metis append_assoc contains.intros(1) contains49 f_cont1) |
|
2805 apply(simp add: bsimp_ASEQ1) |
|
2806 apply(erule contains.cases) |
|
2807 apply(auto) |
|
2808 done |
|
2809 |
|
2810 lemma contains59: |
|
2811 assumes "AALTs bs rs >> bs2" |
|
2812 shows "\<exists>r \<in> set rs. (fuse bs r) >> bs2" |
|
2813 using assms |
|
2814 apply(induct rs arbitrary: bs bs2) |
|
2815 apply(auto) |
|
2816 apply(erule contains.cases) |
|
2817 apply(auto) |
|
2818 apply(erule contains.cases) |
|
2819 apply(auto) |
|
2820 using contains0 by blast |
|
2821 |
|
2822 lemma contains60: |
|
2823 assumes "\<exists>r \<in> set rs. fuse bs r >> bs2" |
|
2824 shows "AALTs bs rs >> bs2" |
|
2825 using assms |
|
2826 apply(induct rs arbitrary: bs bs2) |
|
2827 apply(auto) |
|
2828 apply (metis contains3b contains49 f_cont1) |
|
2829 using contains.intros(5) f_cont1 by blast |
|
2830 |
|
2831 |
|
2832 |
|
2833 lemma contains61: |
|
2834 assumes "bsimp_AALTs bs rs >> bs2" |
|
2835 shows "\<exists>r \<in> set rs. (fuse bs r) >> bs2" |
|
2836 using assms |
|
2837 apply(induct arbitrary: bs2 rule: bsimp_AALTs.induct) |
|
2838 apply(auto) |
|
2839 using contains.simps apply blast |
|
2840 using contains59 by fastforce |
|
2841 |
|
2842 lemma contains61b: |
|
2843 assumes "bsimp_AALTs bs rs >> bs2" |
|
2844 shows "\<exists>r \<in> set (flts rs). (fuse bs r) >> bs2" |
|
2845 using assms |
|
2846 apply(induct bs rs arbitrary: bs2 rule: bsimp_AALTs.induct) |
|
2847 apply(auto) |
|
2848 using contains.simps apply blast |
|
2849 using contains51d contains61 f_cont1 apply blast |
|
2850 by (metis bsimp_AALTs.simps(3) contains52 contains61 f_cont2) |
|
2851 |
|
2852 |
|
2853 |
|
2854 lemma contains61a: |
|
2855 assumes "\<exists>r \<in> set rs. (fuse bs r) >> bs2" |
|
2856 shows "bsimp_AALTs bs rs >> bs2" |
|
2857 using assms |
|
2858 apply(induct rs arbitrary: bs2 bs) |
|
2859 apply(auto) |
|
2860 apply (metis bsimp_AALTs.elims contains60 list.distinct(1) list.inject list.set_intros(1)) |
|
2861 by (metis append_Cons append_Nil contains50 f_cont2) |
|
2862 |
|
2863 lemma contains62: |
|
2864 assumes "bsimp_AALTs bs (rs1 @ rs2) >> bs2" |
|
2865 shows "bsimp_AALTs bs rs1 >> bs2 \<or> bsimp_AALTs bs rs2 >> bs2" |
|
2866 using assms |
|
2867 apply - |
|
2868 apply(drule contains61) |
|
2869 apply(auto) |
|
2870 apply(case_tac rs1) |
|
2871 apply(auto) |
|
2872 apply(case_tac list) |
|
2873 apply(auto) |
|
2874 apply (simp add: contains60) |
|
2875 apply(case_tac list) |
|
2876 apply(auto) |
|
2877 apply (simp add: contains60) |
|
2878 apply (meson contains60 list.set_intros(2)) |
|
2879 apply(case_tac rs2) |
|
2880 apply(auto) |
|
2881 apply(case_tac list) |
|
2882 apply(auto) |
|
2883 apply (simp add: contains60) |
|
2884 apply(case_tac list) |
|
2885 apply(auto) |
|
2886 apply (simp add: contains60) |
|
2887 apply (meson contains60 list.set_intros(2)) |
|
2888 done |
|
2889 |
|
2890 lemma contains63: |
|
2891 assumes "AALTs bs (map (fuse bs1) rs) >> bs3" |
|
2892 shows "AALTs (bs @ bs1) rs >> bs3" |
|
2893 using assms |
|
2894 apply(induct rs arbitrary: bs bs1 bs3) |
|
2895 apply(auto elim: contains.cases) |
|
2896 apply(erule contains.cases) |
|
2897 apply(auto) |
|
2898 apply (simp add: contains0 contains60 fuse_append) |
|
2899 by (metis contains.intros(5) contains59 f_cont1) |
|
2900 |
|
2901 lemma contains64: |
|
2902 assumes "bsimp_AALTs bs (flts rs1 @ flts rs2) >> bs2" "\<forall>r \<in> set rs2. \<not> fuse bs r >> bs2" |
|
2903 shows "bsimp_AALTs bs (flts rs1) >> bs2" |
|
2904 using assms |
|
2905 apply(induct rs2 arbitrary: rs1 bs bs2) |
|
2906 apply(auto) |
|
2907 apply(drule_tac x="rs1" in meta_spec) |
|
2908 apply(drule_tac x="bs" in meta_spec) |
|
2909 apply(drule_tac x="bs2" in meta_spec) |
|
2910 apply(drule meta_mp) |
|
2911 apply(drule contains61) |
|
2912 apply(auto) |
|
2913 using contains51b contains61a f_cont1 apply blast |
|
2914 apply(subst (asm) k0) |
|
2915 apply(auto) |
|
2916 prefer 2 |
|
2917 using contains50 contains61a f_cont1 apply blast |
|
2918 apply(case_tac a) |
|
2919 apply(auto) |
|
2920 by (metis contains60 fuse_append) |
|
2921 |
|
2922 |
|
2923 |
|
2924 lemma contains65: |
|
2925 assumes "bsimp_AALTs bs (flts rs) >> bs2" |
|
2926 shows "\<exists>r \<in> set rs. (fuse bs r) >> bs2" |
|
2927 using assms |
|
2928 apply(induct rs arbitrary: bs bs2 taking: "\<lambda>rs. sum_list (map asize rs)" rule: measure_induct) |
|
2929 apply(case_tac x) |
|
2930 apply(auto elim: contains.cases) |
|
2931 apply(case_tac list) |
|
2932 apply(auto elim: contains.cases) |
|
2933 apply(case_tac a) |
|
2934 apply(auto elim: contains.cases) |
|
2935 apply(drule contains61) |
|
2936 apply(auto) |
|
2937 apply (metis contains60 fuse_append) |
|
2938 apply(case_tac lista) |
|
2939 apply(auto elim: contains.cases) |
|
2940 apply(subst (asm) k0) |
|
2941 apply(drule contains62) |
|
2942 apply(auto) |
|
2943 apply(case_tac a) |
|
2944 apply(auto elim: contains.cases) |
|
2945 apply(case_tac x52) |
|
2946 apply(auto elim: contains.cases) |
|
2947 apply(case_tac list) |
|
2948 apply(auto elim: contains.cases) |
|
2949 apply (simp add: contains60 fuse_append) |
|
2950 apply(erule contains.cases) |
|
2951 apply(auto) |
|
2952 apply (metis append.left_neutral contains0 contains60 fuse.simps(4) in_set_conv_decomp) |
|
2953 apply(erule contains.cases) |
|
2954 apply(auto) |
|
2955 apply (metis contains0 contains60 fuse.simps(4) list.set_intros(1) list.set_intros(2)) |
|
2956 apply (simp add: contains.intros(5) contains63) |
|
2957 apply(case_tac aa) |
|
2958 apply(auto) |
|
2959 apply (meson contains60 contains61 contains63) |
|
2960 apply(subst (asm) k0) |
|
2961 apply(drule contains64) |
|
2962 apply(auto)[1] |
|
2963 by (metis append_Nil2 bsimp_AALTs.simps(2) contains50 contains61a contains64 f_cont2 flts.simps(1)) |
|
2964 |
|
2965 |
|
2966 lemma contains55a: |
|
2967 assumes "bsimp r >> bs" |
|
2968 shows "r >> bs" |
|
2969 using assms |
|
2970 apply(induct r arbitrary: bs) |
|
2971 apply(auto) |
|
2972 apply(frule contains_SEQ1) |
|
2973 apply(auto) |
|
2974 apply (simp add: contains.intros(3)) |
|
2975 apply(frule f_cont2) |
|
2976 apply(auto) |
|
2977 apply(drule contains65) |
|
2978 apply(auto) |
|
2979 using contains0 contains49 contains60 by blast |
|
2980 |
|
2981 |
|
2982 lemma PPP1_eq: |
|
2983 shows "bsimp r >> bs \<longleftrightarrow> r >> bs" |
|
2984 using contains55 contains55a by blast |
|
2985 |
|
2986 lemma retrieve_code_bder: |
|
2987 assumes "\<Turnstile> v : der c r" |
|
2988 shows "code (injval r c v) = retrieve (bder c (intern r)) v" |
|
2989 using assms |
|
2990 by (simp add: Prf_injval bder_retrieve retrieve_code) |
|
2991 |
|
2992 lemma Etrans: |
|
2993 assumes "a >> s" "s = t" |
|
2994 shows "a >> t" |
|
2995 using assms by simp |
|
2996 |
|
2997 |
|
2998 |
|
2999 lemma retrieve_code_bders: |
|
3000 assumes "\<Turnstile> v : ders s r" |
|
3001 shows "code (flex r id s v) = retrieve (bders (intern r) s) v" |
|
3002 using assms |
|
3003 apply(induct s arbitrary: v r rule: rev_induct) |
|
3004 apply(auto simp add: ders_append flex_append bders_append) |
|
3005 apply (simp add: retrieve_code) |
|
3006 apply(frule Prf_injval) |
|
3007 apply(drule_tac meta_spec)+ |
|
3008 apply(drule meta_mp) |
|
3009 apply(assumption) |
|
3010 apply(simp) |
|
3011 apply(subst bder_retrieve) |
|
3012 apply(simp) |
|
3013 apply(simp) |
|
3014 done |
|
3015 |
|
3016 thm LA LB |
|
3017 |
|
3018 lemma contains70: |
|
3019 assumes "s \<in> L(r)" |
|
3020 shows "bders (intern r) s >> code (flex r id s (mkeps (ders s r)))" |
|
3021 apply(subst PPP0_eq[symmetric]) |
|
3022 apply (meson assms lexer_correct_None lexer_correctness(1) lexer_flex) |
|
3023 by (metis L07XX PPP0b assms erase_intern) |
|
3024 |
|
3025 |
|
3026 |
|
3027 |
|
3028 definition PV where |
|
3029 "PV r s v = flex r id s v" |
|
3030 |
|
3031 definition PX where |
|
3032 "PX r s = PV r s (mkeps (ders s r))" |
|
3033 |
|
3034 lemma PV_id[simp]: |
|
3035 shows "PV r [] v = v" |
|
3036 by (simp add: PV_def) |
|
3037 |
|
3038 lemma PX_id[simp]: |
|
3039 shows "PX r [] = mkeps r" |
|
3040 by (simp add: PX_def) |
|
3041 |
|
3042 lemma PV_cons: |
|
3043 shows "PV r (c # s) v = injval r c (PV (der c r) s v)" |
|
3044 apply(simp add: PV_def flex_fun_apply) |
|
3045 done |
|
3046 |
|
3047 lemma PX_cons: |
|
3048 shows "PX r (c # s) = injval r c (PX (der c r) s)" |
|
3049 apply(simp add: PX_def PV_cons) |
|
3050 done |
|
3051 |
|
3052 lemma PV_append: |
|
3053 shows "PV r (s1 @ s2) v = PV r s1 (PV (ders s1 r) s2 v)" |
|
3054 apply(simp add: PV_def flex_append) |
|
3055 by (simp add: flex_fun_apply2) |
|
3056 |
|
3057 lemma PX_append: |
|
3058 shows "PX r (s1 @ s2) = PV r s1 (PX (ders s1 r) s2)" |
|
3059 by (simp add: PV_append PX_def ders_append) |
|
3060 |
|
3061 lemma code_PV0: |
|
3062 shows "PV r (c # s) v = injval r c (PV (der c r) s v)" |
|
3063 unfolding PX_def PV_def |
|
3064 apply(simp) |
|
3065 by (simp add: flex_injval) |
|
3066 |
|
3067 lemma code_PX0: |
|
3068 shows "PX r (c # s) = injval r c (PX (der c r) s)" |
|
3069 unfolding PX_def |
|
3070 apply(simp add: code_PV0) |
|
3071 done |
|
3072 |
|
3073 lemma Prf_PV: |
|
3074 assumes "\<Turnstile> v : ders s r" |
|
3075 shows "\<Turnstile> PV r s v : r" |
|
3076 using assms unfolding PX_def PV_def |
|
3077 apply(induct s arbitrary: v r) |
|
3078 apply(simp) |
|
3079 apply(simp) |
|
3080 by (simp add: Prf_injval flex_injval) |
|
3081 |
|
3082 |
|
3083 lemma Prf_PX: |
|
3084 assumes "s \<in> L r" |
|
3085 shows "\<Turnstile> PX r s : r" |
|
3086 using assms unfolding PX_def PV_def |
|
3087 using L1 LX0 Posix_Prf lexer_correct_Some by fastforce |
|
3088 |
|
3089 lemma PV1: |
|
3090 assumes "\<Turnstile> v : ders s r" |
|
3091 shows "(intern r) >> code (PV r s v)" |
|
3092 using assms |
|
3093 by (simp add: Prf_PV contains2) |
|
3094 |
|
3095 lemma PX1: |
|
3096 assumes "s \<in> L r" |
|
3097 shows "(intern r) >> code (PX r s)" |
|
3098 using assms |
|
3099 by (simp add: Prf_PX contains2) |
|
3100 |
|
3101 lemma PX2: |
|
3102 assumes "s \<in> L (der c r)" |
|
3103 shows "bder c (intern r) >> code (injval r c (PX (der c r) s))" |
|
3104 using assms |
|
3105 by (simp add: Prf_PX contains6 retrieve_code_bder) |
|
3106 |
|
3107 lemma PX2a: |
|
3108 assumes "c # s \<in> L r" |
|
3109 shows "bder c (intern r) >> code (injval r c (PX (der c r) s))" |
|
3110 using assms |
|
3111 using PX2 lexer_correct_None by force |
|
3112 |
|
3113 lemma PX2b: |
|
3114 assumes "c # s \<in> L r" |
|
3115 shows "bder c (intern r) >> code (PX r (c # s))" |
|
3116 using assms unfolding PX_def PV_def |
|
3117 by (metis Der_def L07XX PV_def PX2a PX_def Posix_determ Posix_injval der_correctness erase_intern mem_Collect_eq) |
|
3118 |
|
3119 lemma PV3: |
|
3120 assumes "\<Turnstile> v : ders s r" |
|
3121 shows "bders (intern r) s >> code (PV r s v)" |
|
3122 using assms |
|
3123 using PX_def PV_def contains70 |
|
3124 by (simp add: contains6 retrieve_code_bders) |
|
3125 |
|
3126 lemma PX3: |
|
3127 assumes "s \<in> L r" |
|
3128 shows "bders (intern r) s >> code (PX r s)" |
|
3129 using assms |
|
3130 using PX_def PV_def contains70 by auto |
|
3131 |
|
3132 lemma PV_bders_iff: |
|
3133 assumes "\<Turnstile> v : ders s r" |
|
3134 shows "bders (intern r) s >> code (PV r s v) \<longleftrightarrow> (intern r) >> code (PV r s v)" |
|
3135 by (simp add: PV1 PV3 assms) |
|
3136 |
|
3137 lemma PX_bders_iff: |
|
3138 assumes "s \<in> L r" |
|
3139 shows "bders (intern r) s >> code (PX r s) \<longleftrightarrow> (intern r) >> code (PX r s)" |
|
3140 by (simp add: PX1 PX3 assms) |
|
3141 |
|
3142 lemma PX4: |
|
3143 assumes "(s1 @ s2) \<in> L r" |
|
3144 shows "bders (intern r) (s1 @ s2) >> code (PX r (s1 @ s2))" |
|
3145 using assms |
|
3146 by (simp add: PX3) |
|
3147 |
|
3148 lemma PX_bders_iff2: |
|
3149 assumes "(s1 @ s2) \<in> L r" |
|
3150 shows "bders (intern r) (s1 @ s2) >> code (PX r (s1 @ s2)) \<longleftrightarrow> |
|
3151 (intern r) >> code (PX r (s1 @ s2))" |
|
3152 by (simp add: PX1 PX3 assms) |
|
3153 |
|
3154 lemma PV_bders_iff3: |
|
3155 assumes "\<Turnstile> v : ders (s1 @ s2) r" |
|
3156 shows "bders (intern r) (s1 @ s2) >> code (PV r (s1 @ s2) v) \<longleftrightarrow> |
|
3157 bders (intern r) s1 >> code (PV r (s1 @ s2) v)" |
|
3158 by (metis PV3 PV_append Prf_PV assms ders_append) |
|
3159 |
|
3160 |
|
3161 |
|
3162 lemma PX_bders_iff3: |
|
3163 assumes "(s1 @ s2) \<in> L r" |
|
3164 shows "bders (intern r) (s1 @ s2) >> code (PX r (s1 @ s2)) \<longleftrightarrow> |
|
3165 bders (intern r) s1 >> code (PX r (s1 @ s2))" |
|
3166 by (metis Ders_def L07XX PV_append PV_def PX4 PX_def Posix_Prf assms contains6 ders_append ders_correctness erase_bders erase_intern mem_Collect_eq retrieve_code_bders) |
|
3167 |
|
3168 lemma PV_bder_iff: |
|
3169 assumes "\<Turnstile> v : ders (s1 @ [c]) r" |
|
3170 shows "bder c (bders (intern r) s1) >> code (PV r (s1 @ [c]) v) \<longleftrightarrow> |
|
3171 bders (intern r) s1 >> code (PV r (s1 @ [c]) v)" |
|
3172 by (simp add: PV_bders_iff3 assms bders_snoc) |
|
3173 |
|
3174 lemma PV_bder_IFF: |
|
3175 assumes "\<Turnstile> v : ders (s1 @ c # s2) r" |
|
3176 shows "bder c (bders (intern r) s1) >> code (PV r (s1 @ c # s2) v) \<longleftrightarrow> |
|
3177 bders (intern r) s1 >> code (PV r (s1 @ c # s2) v)" |
|
3178 by (metis LA PV3 PV_def Prf_PV assms bders_append code_PV0 contains7 ders.simps(2) erase_bders erase_intern retrieve_code_bders) |
|
3179 |
|
3180 |
|
3181 lemma PX_bder_iff: |
|
3182 assumes "(s1 @ [c]) \<in> L r" |
|
3183 shows "bder c (bders (intern r) s1) >> code (PX r (s1 @ [c])) \<longleftrightarrow> |
|
3184 bders (intern r) s1 >> code (PX r (s1 @ [c]))" |
|
3185 by (simp add: PX_bders_iff3 assms bders_snoc) |
|
3186 |
|
3187 lemma PV_bder_iff2: |
|
3188 assumes "\<Turnstile> v : ders (c # s1) r" |
|
3189 shows "bders (bder c (intern r)) s1 >> code (PV r (c # s1) v) \<longleftrightarrow> |
|
3190 bder c (intern r) >> code (PV r (c # s1) v)" |
|
3191 by (metis PV3 Prf_PV assms bders.simps(2) code_PV0 contains7 ders.simps(2) erase_intern retrieve_code) |
|
3192 |
|
3193 |
|
3194 lemma PX_bder_iff2: |
|
3195 assumes "(c # s1) \<in> L r" |
|
3196 shows "bders (bder c (intern r)) s1 >> code (PX r (c # s1)) \<longleftrightarrow> |
|
3197 bder c (intern r) >> code (PX r (c # s1))" |
|
3198 using PX2b PX3 assms by force |
|
3199 |
|
3200 |
|
3201 |
|
3202 |
|
3203 |
|
3204 |
|
3205 definition EQ where |
|
3206 "EQ a1 a2 \<equiv> (\<forall>bs. a1 >> bs \<longleftrightarrow> a2 >> bs)" |
|
3207 |
|
3208 lemma EQ1: |
|
3209 assumes "EQ (intern r1) (intern r2)" |
|
3210 "bders (intern r1) s >> code (PX r1 s)" |
|
3211 "s \<in> L r1" "s \<in> L r2" |
|
3212 shows "bders (intern r2) s >> code (PX r1 s)" |
|
3213 using assms unfolding EQ_def |
|
3214 thm PX_bders_iff |
|
3215 apply(subst (asm) PX_bders_iff) |
|
3216 apply(assumption) |
|
3217 apply(subgoal_tac "intern r2 >> code (PX r1 s)") |
|
3218 prefer 2 |
|
3219 apply(auto) |
|
3220 |
|
3221 |
|
3222 lemma AA1: |
|
3223 assumes "[c] \<in> L r" |
|
3224 assumes "bder c (intern r) >> code (PX r [c])" |
|
3225 shows "bder c (bsimp (intern r)) >> code (PX r [c])" |
|
3226 using assms |
|
3227 |
|
3228 apply(induct a arbitrary: c bs1 bs2 rs) |
|
3229 apply(auto elim: contains.cases) |
|
3230 apply(case_tac "c = x2a") |
|
3231 apply(simp) |
|
3232 apply(case_tac rs) |
|
3233 apply(auto) |
|
3234 using contains0 apply fastforce |
|
3235 apply(case_tac list) |
|
3236 apply(auto) |
|
3237 |
|
3238 prefer 2 |
|
3239 apply(erule contains.cases) |
|
3240 apply(auto) |
|
3241 |
|
3242 |
|
3243 |
|
3244 lemma TEST: |
|
3245 assumes "bder c a >> bs" |
|
3246 shows "bder c (bsimp a) >> bs" |
|
3247 using assms |
|
3248 apply(induct a arbitrary: c bs) |
|
3249 apply(auto elim: contains.cases) |
|
3250 prefer 2 |
|
3251 apply(erule contains.cases) |
|
3252 apply(auto) |
|
3253 |
|
3254 |
|
3255 |
|
3256 |
|
3257 |
|
3258 lemma PX_bder_simp_iff: |
|
3259 assumes "\<Turnstile> v: ders (s1 @ s2) r" |
|
3260 shows "bders (bsimp (bders (intern r) s1)) s2 >> code (PV r (s1 @ s2) v) \<longleftrightarrow> |
|
3261 bders (intern r) s1 >> code (PV r (s1 @ s2) v)" |
|
3262 using assms |
|
3263 apply(induct s2 arbitrary: r s1 v) |
|
3264 apply(simp) |
|
3265 apply (simp add: PV3 contains55) |
|
3266 apply(drule_tac x="r" in meta_spec) |
|
3267 apply(drule_tac x="s1 @ [a]" in meta_spec) |
|
3268 apply(drule_tac x="v" in meta_spec) |
|
3269 apply(simp) |
|
3270 apply(simp add: bders_append) |
|
3271 apply(subst (asm) PV_bder_IFF) |
|
3272 |
|
3273 definition EXs where |
|
3274 "EXs a s \<equiv> \<forall>v \<in> \<lbrace>= v : ders s (erase a). |
|
3275 |
|
3276 lemma |
|
3277 assumes "s \<in> L r" |
|
3278 shows "(bders_simp (intern r) s >> code (PX r s)) \<longleftrightarrow> ((intern r) >> code (PX r s))" |
|
3279 using assms |
|
3280 apply(induct s arbitrary: r rule: rev_induct) |
|
3281 apply(simp) |
|
3282 apply(simp add: bders_simp_append) |
|
3283 apply(simp add: PPP1_eq) |
|
3284 |
|
3285 |
|
3286 find_theorems "retrieve (bders _ _) _" |
|
3287 find_theorems "_ >> retrieve _ _" |
|
3288 find_theorems "bsimp _ >> _" |
|
3289 |
|
3290 |
|
3291 |
|
3292 lemma PX4a: |
|
3293 assumes "(s1 @ s2) \<in> L r" |
|
3294 shows "bders (intern r) (s1 @ s2) >> code (PV r s1 (PX (ders s1 r) s2))" |
|
3295 using PX4[OF assms] |
|
3296 apply(simp add: PX_append) |
|
3297 done |
|
3298 |
|
3299 lemma PV5: |
|
3300 assumes "s2 \<in> (ders s1 r) \<rightarrow> v" |
|
3301 shows "bders (intern r) (s1 @ s2) >> code (PV r s1 v)" |
|
3302 by (simp add: PPP0_isar PV_def Posix_flex assms) |
|
3303 |
|
3304 lemma PV6: |
|
3305 assumes "s2 \<in> (ders s1 r) \<rightarrow> v" |
|
3306 shows "bders (bders (intern r) s1) s2 >> code (PV r s1 v)" |
|
3307 using PV5 assms bders_append by auto |
|
3308 |
|
3309 find_theorems "retrieve (bders _ _) _" |
|
3310 find_theorems "_ >> retrieve _ _" |
|
3311 find_theorems "bder _ _ >> _" |
|
3312 |
|
3313 |
|
3314 |
|
3315 lemma PV6: |
|
3316 assumes "s @[c] \<in> L r" |
|
3317 shows"bder s1 (bders (intern r) s2) >> code (PX r (c # s))" |
|
3318 apply(subst PX_bders_iff) |
|
3319 apply(rule contains7) |
|
3320 apply(simp) |
|
3321 apply(rule assms) |
|
3322 apply(subst retrieve_code) |
|
3323 |
|
3324 apply(simp add: PV_def) |
|
3325 apply(simp) |
|
3326 apply(drule_tac x="r" in meta_spec) |
|
3327 apply(drule_tac x="s1 @ [a]" in meta_spec) |
|
3328 apply(simp add: bders_append) |
|
3329 apply(subst PV_cons) |
|
3330 apply(drule_tac x="injval r a v" in meta_spec) |
|
3331 apply(drule meta_mp) |
|
3332 |
|
3333 |
|
3334 lemma PV8: |
|
3335 assumes "(s1 @ s2) \<in> L r" |
|
3336 shows "bders (bders_simp (intern r) s1) s2 >> code (PX r (s1 @ s2))" |
|
3337 using assms |
|
3338 apply(induct s1 arbitrary: r s2 rule: rev_induct) |
|
3339 apply(simp add: PX3) |
|
3340 apply(simp) |
|
3341 apply(simp add: bders_simp_append) |
|
3342 apply(drule_tac x="r" in meta_spec) |
|
3343 apply(drule_tac x="x # s2" in meta_spec) |
|
3344 apply(simp add: bders_simp_append) |
|
3345 apply(rule iffI) |
|
3346 defer |
|
3347 |
|
3348 apply(simp add: PX_append) |
|
3349 apply(simp add: bders_append) |
|
3350 |
|
3351 lemma PV6: |
|
3352 assumes "\<Turnstile> v : ders s r" |
|
3353 shows "bders (intern r) s >> code (PV r s v)" |
|
3354 using assms |
|
3355 by (simp add: PV_def contains6 retrieve_code_bders) |
|
3356 |
|
3357 lemma OO0_PX: |
|
3358 assumes "s \<in> L r" |
|
3359 shows "bders (intern r) s >> code (PX r s)" |
|
3360 using assms |
|
3361 by (simp add: PX3) |
|
3362 |
|
3363 |
|
3364 lemma OO1: |
|
3365 assumes "[c] \<in> r \<rightarrow> v" |
|
3366 shows "bder c (intern r) >> code v" |
|
3367 using assms |
|
3368 using PPP0_isar by force |
|
3369 |
|
3370 lemma OO1a: |
|
3371 assumes "[c] \<in> L r" |
|
3372 shows "bder c (intern r) >> code (PX r [c])" |
|
3373 using assms unfolding PX_def PV_def |
|
3374 using contains70 by fastforce |
|
3375 |
|
3376 lemma OO12: |
|
3377 assumes "[c1, c2] \<in> L r" |
|
3378 shows "bders (intern r) [c1, c2] >> code (PX r [c1, c2])" |
|
3379 using assms |
|
3380 using PX_def PV_def contains70 by presburger |
|
3381 |
|
3382 lemma OO2: |
|
3383 assumes "[c] \<in> L r" |
|
3384 shows "bders_simp (intern r) [c] >> code (PX r [c])" |
|
3385 using assms |
|
3386 using OO1a Posix1(1) contains55 by auto |
|
3387 |
|
3388 |
|
3389 lemma OO22: |
|
3390 assumes "[c1, c2] \<in> L r" |
|
3391 shows "bders_simp (intern r) [c1, c2] >> code (PX r [c1, c2])" |
|
3392 using assms |
|
3393 apply(simp) |
|
3394 apply(rule contains55) |
|
3395 apply(rule Etrans) |
|
3396 thm contains7 |
|
3397 apply(rule contains7) |
|
3398 |
|
3399 |
|
3400 |
|
3401 lemma contains70: |
|
3402 assumes "s \<in> L(r)" |
|
3403 shows "bders_simp (intern r) s >> code (flex r id s (mkeps (ders s r)))" |
|
3404 using assms |
|
3405 apply(induct s arbitrary: r rule: rev_induct) |
|
3406 apply(simp) |
|
3407 apply (simp add: contains2 mkeps_nullable nullable_correctness) |
|
3408 apply(simp add: bders_simp_append flex_append) |
|
3409 apply(simp add: PPP1_eq) |
|
3410 apply(rule Etrans) |
|
3411 apply(rule_tac v="flex r id xs (mkeps (ders (xs @ [x]) r))" in contains7) |
|
3412 |
|
3413 |
|
3414 |
|
3415 thm L07XX PPP0b erase_intern |
|
3416 |
|
3417 find_theorems "retrieve (bders _ _) _" |
|
3418 find_theorems "_ >> retrieve _ _" |
|
3419 find_theorems "bder _ _ >> _" |
|
3420 |
|
3421 |
|
3422 proof - |
|
3423 from assms have "\<Turnstile> v : erase (bder c r)" by simp |
|
3424 then have "bder c r >> retrieve (bder c r) v" |
|
3425 by (simp add: contains6) |
|
3426 moreover have "retrieve (bder c r) v = retrieve r (injval (erase r) c v)" |
|
3427 using assms bder_retrieve by blast |
|
3428 ultimately have "bder c r >> code (injval (erase r) c v)" |
|
3429 apply - |
|
3430 apply(subst retrieve_code_bder) |
|
3431 apply(simp add: assms) |
|
3432 oops |
|
3433 |
|
3434 find_theorems "code _ = retrieve _ _" |
|
3435 find_theorems "_ >> retrieve _ _" |
|
3436 find_theorems "bder _ _ >> _" |
|
3437 |
|
3438 lemma |
|
3439 assumes "s \<in> r \<rightarrow> v" "s = [c1, c2]" |
|
3440 shows "bders_simp (intern r) s >> bs \<longleftrightarrow> bders (intern r) s >> bs" |
|
3441 using assms |
|
3442 apply(simp add: PPP1_eq) |
|
3443 |
|
3444 |
|
3445 |
|
3446 lemma PPP10: |
|
3447 assumes "s \<in> r \<rightarrow> v" |
|
3448 shows "bders_simp (intern r) s >> retrieve (intern r) v \<longleftrightarrow> bders (intern r) s >> retrieve (intern r) v" |
|
3449 using assms |
|
3450 apply(induct s arbitrary: r v rule: rev_induct) |
|
3451 apply(auto) |
|
3452 apply(simp_all add: PPP1_eq bders_append bders_simp_append) |
|
3453 |
|
3454 find_theorems "bder _ _ >> _" |
|
3455 |
|
3456 lemma |
|
3457 shows "bder |
|
3458 |
|
3459 |
|
3460 find_theorems "bsimp _ >> _" |
|
3461 |
|
3462 fun get where |
|
3463 "get (Some v) = v" |
|
3464 |
|
3465 |
|
3466 lemma decode9: |
|
3467 assumes "decode' bs (STAR r) = (v, bsX)" "bs \<noteq> []" |
|
3468 shows "\<exists>vs. v = Stars vs" |
|
3469 using assms |
|
3470 apply(induct bs\<equiv>"bs" r\<equiv>"STAR r" arbitrary: bs r v bsX rule: decode'.induct) |
|
3471 apply(auto) |
|
3472 apply(case_tac "decode' ds r") |
|
3473 apply(auto) |
|
3474 apply(case_tac "decode' b (STAR r)") |
|
3475 apply(auto) |
|
3476 apply(case_tac aa) |
|
3477 apply(auto) |
|
3478 done |
|
3479 |
|
3480 lemma decode10_Stars: |
|
3481 assumes "decode' bs (STAR r) = (Stars vs, bs1)" "\<Turnstile> Stars vs : (STAR r)" "vs \<noteq> []" |
|
3482 shows "decode' (bs @ bsX) (STAR r) = (Stars vs, bs1 @ bsX)" |
|
3483 using assms |
|
3484 apply(induct vs arbitrary: bs r bs1 bsX) |
|
3485 apply(auto elim!: Prf_elims) |
|
3486 apply(case_tac vs) |
|
3487 apply(auto) |
|
3488 apply(case_tac bs) |
|
3489 apply(auto) |
|
3490 apply(case_tac aa) |
|
3491 apply(auto) |
|
3492 apply(case_tac "decode' list r") |
|
3493 apply(auto) |
|
3494 apply(case_tac "decode' b (STAR r)") |
|
3495 apply(auto) |
|
3496 apply(case_tac "decode' (list @ bsX) r") |
|
3497 apply(auto) |
|
3498 apply(case_tac "decode' ba (STAR r)") |
|
3499 apply(auto) |
|
3500 apply(case_tac ba) |
|
3501 apply(auto) |
|
3502 oops |
|
3503 |
|
3504 lemma decode10: |
|
3505 assumes "decode' bs r = (v, bs1)" "\<Turnstile> v : r" |
|
3506 shows "decode' (bs @ bsX) r = (v, bs1 @ bsX)" |
|
3507 using assms |
|
3508 apply(induct bs r arbitrary: v bs1 bsX rule: decode'.induct) |
|
3509 apply(auto elim: Prf_elims)[7] |
|
3510 apply(case_tac "decode' ds r1") |
|
3511 apply(auto)[3] |
|
3512 apply(case_tac "decode' (ds @ bsX) r1") |
|
3513 apply(auto)[3] |
|
3514 apply(auto elim: Prf_elims)[4] |
|
3515 apply(case_tac "decode' ds r2") |
|
3516 apply(auto)[1] |
|
3517 apply(case_tac "decode' (ds @ bsX) r2") |
|
3518 apply(auto)[1] |
|
3519 apply(auto elim: Prf_elims)[2] |
|
3520 apply(case_tac "decode' ds r1") |
|
3521 apply(auto)[1] |
|
3522 apply(case_tac "decode' b r2") |
|
3523 apply(auto)[1] |
|
3524 apply(auto elim: Prf_elims)[1] |
|
3525 apply(auto elim: Prf_elims)[1] |
|
3526 apply(auto elim: Prf_elims)[1] |
|
3527 apply(erule Prf_elims) |
|
3528 (* STAR case *) |
|
3529 apply(auto) |
|
3530 apply(case_tac "decode' ds r") |
|
3531 apply(auto) |
|
3532 apply(case_tac "decode' b (STAR r)") |
|
3533 apply(auto) |
|
3534 apply(case_tac aa) |
|
3535 apply(auto) |
|
3536 apply(case_tac "decode' (b @ bsX) (STAR r)") |
|
3537 apply(auto) |
|
3538 oops |
|
3539 |
|
3540 |
|
3541 lemma contains100: |
|
3542 assumes "(intern r) >> bs" |
|
3543 shows "\<exists>v bsV. decode' bs r = (v, bsV) \<and> \<Turnstile> v : r" |
|
3544 using assms |
|
3545 apply(induct r arbitrary: bs) |
|
3546 apply(auto) |
|
3547 apply(erule contains.cases) |
|
3548 apply(auto) |
|
3549 apply(erule contains.cases) |
|
3550 apply(auto intro: Prf.intros) |
|
3551 apply(erule contains.cases) |
|
3552 apply(auto) |
|
3553 apply(drule_tac x="bs1" in meta_spec) |
|
3554 apply(drule_tac x="bs2" in meta_spec) |
|
3555 apply(auto)[1] |
|
3556 apply(rule_tac x="Seq v va" in exI) |
|
3557 apply(auto) |
|
3558 apply(case_tac "decode' (bs1 @ bs2) r1") |
|
3559 apply(auto) |
|
3560 apply(case_tac "decode' b r2") |
|
3561 apply(auto) |
|
3562 oops |
|
3563 |
|
3564 lemma contains101: |
|
3565 assumes "(intern r) >> code v" |
|
3566 shows "\<Turnstile> v : r" |
|
3567 using assms |
|
3568 apply(induct r arbitrary: v) |
|
3569 apply(auto elim: contains.cases) |
|
3570 apply(erule contains.cases) |
|
3571 apply(auto) |
|
3572 apply(case_tac v) |
|
3573 apply(auto intro: Prf.intros) |
|
3574 apply(erule contains.cases) |
|
3575 apply(auto) |
|
3576 apply(case_tac v) |
|
3577 apply(auto intro: Prf.intros) |
|
3578 |
|
3579 (* |
|
3580 using contains.simps apply blast |
|
3581 apply(erule contains.cases) |
|
3582 apply(auto) |
|
3583 using L1 Posix_ONE Prf.intros(4) apply force |
|
3584 apply(erule contains.cases) |
|
3585 apply(auto) |
|
3586 apply (metis Prf.intros(5) code.simps(2) decode_code get.simps) |
|
3587 apply(erule contains.cases) |
|
3588 apply(auto) |
|
3589 prefer 2 |
|
3590 apply(erule contains.cases) |
|
3591 apply(auto) |
|
3592 apply(frule f_cont1) |
|
3593 apply(auto) |
|
3594 apply(case_tac "decode' bs2 r1") |
|
3595 apply(auto) |
|
3596 apply(rule Prf.intros) |
|
3597 apply (metis Cons_eq_append_conv contains49 f_cont1 fst_conv list.inject self_append_conv2) |
|
3598 apply(erule contains.cases) |
|
3599 apply(auto) |
|
3600 apply(frule f_cont1) |
|
3601 apply(auto) |
|
3602 apply(case_tac "decode' bs2 r2") |
|
3603 apply(auto) |
|
3604 apply(rule Prf.intros) |
|
3605 apply (metis (full_types) append_Cons contains49 append_Nil fst_conv) |
|
3606 apply(erule contains.cases) |
|
3607 apply(auto) |
|
3608 apply(case_tac "decode' (bs1 @ bs2) r1") |
|
3609 apply(auto) |
|
3610 apply(case_tac "decode' b r2") |
|
3611 apply(auto) |
|
3612 apply(rule Prf.intros) |
|
3613 |
|
3614 apply (metis fst_conv) |
|
3615 apply(subgoal_tac "b = bs2 @ bsX") |
|
3616 apply(auto) |
|
3617 apply (metis fst_conv) |
|
3618 apply(subgoal_tac "decode' (bs1 @ bs2 @ bsX) r1 = (a, bs2 @ bsX)") |
|
3619 apply simp |
|
3620 *) |
|
3621 |
|
3622 |
|
3623 apply(case_tac ba) |
|
3624 apply(auto) |
|
3625 apply(drule meta_spec) |
|
3626 apply(drule meta_mp) |
|
3627 apply(assumption) |
|
3628 prefer 2 |
|
3629 |
|
3630 |
|
3631 apply(case_tac v) |
|
3632 apply(auto) |
|
3633 |
|
3634 |
|
3635 |
|
3636 find_theorems "bder _ _ >> _" |
|
3637 |
|
3638 lemma PPP0_isar: |
|
3639 assumes "bders r s >> code v" |
|
3640 shows "bders_simp r s >> code v" |
|
3641 using assms |
|
3642 apply(induct s arbitrary: r v) |
|
3643 apply(simp) |
|
3644 apply(auto) |
|
3645 apply(drule_tac x="bsimp (bder a r)" in meta_spec) |
|
3646 apply(drule_tac x="v" in meta_spec) |
|
3647 apply(drule_tac meta_mp) |
|
3648 |
|
3649 prefer 2 |
|
3650 apply(simp) |
|
3651 |
|
3652 using bnullable_correctness nullable_correctness apply fastforce |
|
3653 apply(simp add: bders_append) |
|
3654 |
|
3655 |
|
3656 |
|
3657 |
|
3658 |
|
3659 lemma PPP0_isar: |
|
3660 assumes "s \<in> r \<rightarrow> v" |
|
3661 shows "(bders (intern r) s) >> code v" |
|
3662 proof - |
|
3663 from assms have a1: "\<Turnstile> v : r" using Posix_Prf by simp |
|
3664 |
|
3665 from assms have "s \<in> L r" using Posix1(1) by auto |
|
3666 then have "[] \<in> L (ders s r)" by (simp add: ders_correctness Ders_def) |
|
3667 then have a2: "\<Turnstile> mkeps (ders s r) : ders s r" |
|
3668 by (simp add: mkeps_nullable nullable_correctness) |
|
3669 |
|
3670 have "retrieve (bders (intern r) s) (mkeps (ders s r)) = |
|
3671 retrieve (intern r) (flex r id s (mkeps (ders s r)))" using a2 LA by simp |
|
3672 also have "... = retrieve (intern r) v" |
|
3673 using LB assms by auto |
|
3674 also have "... = code v" using a1 by (simp add: retrieve_code) |
|
3675 finally have "retrieve (bders (intern r) s) (mkeps (ders s r)) = code v" by simp |
|
3676 moreover |
|
3677 have "\<Turnstile> mkeps (ders s r) : erase (bders (intern r) s)" using a2 by simp |
|
3678 then have "bders (intern r) s >> retrieve (bders (intern r) s) (mkeps (ders s r))" |
|
3679 by (rule contains6) |
|
3680 ultimately |
|
3681 show "(bders (intern r) s) >> code v" by simp |
|
3682 qed |
|
3683 |
|
3684 |
|
3685 |
|
3686 |
|
3687 |
|
3688 |
|
3689 |
|
3690 |
|
3691 |
|
3692 lemma A0: |
|
3693 assumes "r \<in> set (flts rs)" |
|
3694 shows "r \<in> set rs" |
|
3695 using assms |
|
3696 apply(induct rs arbitrary: r rule: flts.induct) |
|
3697 apply(auto) |
|
3698 oops |
|
3699 |
|
3700 lemma A1: |
|
3701 assumes "r \<in> set (flts (map (bder c) (flts rs)))" "\<forall>r \<in> set rs. nonnested r \<and> good r" |
|
3702 shows "r \<in> set (flts (map (bder c) rs))" |
|
3703 using assms |
|
3704 apply(induct rs arbitrary: r c rule: flts.induct) |
|
3705 apply(auto) |
|
3706 apply(subst (asm) map_bder_fuse) |
|
3707 apply(simp add: flts_append) |
|
3708 apply(auto) |
|
3709 apply(auto simp add: comp_def) |
|
3710 apply(subgoal_tac "\<forall>r \<in> set rs1. nonalt r \<and> good r") |
|
3711 prefer 2 |
|
3712 apply (metis Nil_is_append_conv good.simps(5) good.simps(6) in_set_conv_decomp neq_Nil_conv) |
|
3713 apply(case_tac rs1) |
|
3714 apply(auto) |
|
3715 apply(subst (asm) k0) |
|
3716 apply(auto) |
|
3717 |
|
3718 oops |
|
3719 |
|
3720 |
|
3721 lemma bsimp_comm2: |
|
3722 assumes "bder c a >> bs" |
|
3723 shows "bder c (bsimp a) >> bs" |
|
3724 using assms |
|
3725 apply(induct a arbitrary: bs c taking: "asize" rule: measure_induct) |
|
3726 apply(case_tac x) |
|
3727 apply(auto) |
|
3728 prefer 2 |
|
3729 apply(erule contains.cases) |
|
3730 apply(auto) |
|
3731 apply(subst bder_bsimp_AALTs) |
|
3732 apply(rule contains61a) |
|
3733 apply(rule bexI) |
|
3734 apply(rule contains0) |
|
3735 apply(assumption) |
|
3736 |
|
3737 |
|
3738 lemma bsimp_comm: |
|
3739 assumes "bder c (bsimp a) >> bs" |
|
3740 shows "bsimp (bder c a) >> bs" |
|
3741 using assms |
|
3742 apply(induct a arbitrary: bs c taking: "asize" rule: measure_induct) |
|
3743 apply(case_tac x) |
|
3744 apply(auto) |
|
3745 prefer 4 |
|
3746 apply(erule contains.cases) |
|
3747 apply(auto) |
|
3748 using contains.intros(3) contains55 apply fastforce |
|
3749 prefer 3 |
|
3750 apply(subst (asm) bder_bsimp_AALTs) |
|
3751 apply(drule contains61b) |
|
3752 apply(auto) |
|
3753 apply(rule contains61a) |
|
3754 apply(rule bexI) |
|
3755 apply(assumption) |
|
3756 apply(rule_tac t="set (flts (map (bsimp \<circ> bder c) x52))" |
|
3757 and s="set (flts (map (bder c \<circ> bsimp) x52))" in subst) |
|
3758 prefer 2 |
|
3759 find_theorems "map (_ \<circ> _) _ = _" |
|
3760 apply(simp add: comp_def) |
|
3761 |
|
3762 |
|
3763 find_theorems "bder _ (bsimp_AALTs _ _) = _" |
|
3764 apply(drule contains_SEQ1) |
|
3765 apply(auto)[1] |
|
3766 apply(rule contains.intros) |
|
3767 prefer 2 |
|
3768 apply(assumption) |
|
3769 |
|
3770 |
|
3771 apply(case_tac "bnullable x42") |
|
3772 apply(simp) |
|
3773 prefer 2 |
|
3774 apply(simp) |
|
3775 apply(case_tac "bsimp x42 = AZERO") |
|
3776 apply (me tis L_erase_bder_simp bder.simps(1) bsimp.simps(3) bsimp_ASEQ.simps(1) good.simps(1) good1a xxx_bder2) |
|
3777 apply(case_tac "bsimp x43 = AZERO") |
|
3778 apply (simp add: bsimp_ASEQ0) |
|
3779 apply(case_tac "\<exists>bs1. bsimp x42 = AONE bs1") |
|
3780 using b3 apply force |
|
3781 apply(subst bsimp_ASEQ1) |
|
3782 apply(auto)[3] |
|
3783 apply(auto)[1] |
|
3784 using b3 apply blast |
|
3785 apply(case_tac "bsimp (bder c x42) = AZERO") |
|
3786 apply(simp) |
|
3787 using contains.simps apply blast |
|
3788 apply(case_tac "\<exists>bs2. bsimp (bder c x42) = AONE bs2") |
|
3789 apply(auto)[1] |
|
3790 apply(subst (asm) bsimp_ASEQ2) |
|
3791 apply(subgoal_tac "\<exists>bsX. bs = x41 @ bs2 @ bsX") |
|
3792 apply(auto)[1] |
|
3793 apply(rule contains.intros) |
|
3794 apply (simp add: contains.intros(1)) |
|
3795 apply (metis append_assoc contains49) |
|
3796 using append_assoc f_cont1 apply blast |
|
3797 apply(subst (asm) bsimp_ASEQ1) |
|
3798 apply(auto)[3] |
|
3799 apply(erule contains.cases) |
|
3800 apply(auto) |
|
3801 using contains.intros(3) less_add_Suc1 apply blast |
|
3802 apply(case_tac "bsimp x42 = AZERO") |
|
3803 using b3 apply force |
|
3804 apply(case_tac "bsimp x43 = AZERO") |
|
3805 apply (metis LLLL(1) L_erase_bder_simp bder.simps(1) bsimp_AALTs.simps(1) bsimp_ASEQ0 bsimp_fuse flts.simps(1) flts.simps(2) fuse.simps(1) good.simps(1) good1a xxx_bder2) |
|
3806 apply(case_tac "\<exists>bs1. bsimp x42 = AONE bs1") |
|
3807 apply(auto)[1] |
|
3808 apply(subst bsimp_ASEQ2) |
|
3809 apply(drule_tac x="fuse (x41 @ bs1) x43" in spec) |
|
3810 apply(drule mp) |
|
3811 apply (simp add: asize_fuse) |
|
3812 apply(drule_tac x="bs" in spec) |
|
3813 apply(drule_tac x="c" in spec) |
|
3814 apply(drule mp) |
|
3815 prefer 2 |
|
3816 apply (simp add: bsimp_fuse) |
|
3817 apply(subst (asm) k0) |
|
3818 apply(subgoal_tac "\<exists>bsX. bs = x41 @ bsX") |
|
3819 prefer 2 |
|
3820 using f_cont2 apply blast |
|
3821 apply(clarify) |
|
3822 apply(drule contains62) |
|
3823 apply(auto)[1] |
|
3824 apply(case_tac "bsimp (bder c x42) = AZERO") |
|
3825 apply (metis append_is_Nil_conv bsimp_ASEQ.simps(1) contains61 flts.simps(1) flts.simps(2) in_set_conv_decomp list.distinct(1)) |
|
3826 apply(case_tac "\<exists>bsX. bsimp (bder c x42) = AONE bsX") |
|
3827 apply(clarify) |
|
3828 apply (simp add: L_erase_bder_simp xxx_bder2) |
|
3829 using L_erase_bder_simp xxx_bder2 apply auto[1] |
|
3830 apply(drule contains65) |
|
3831 apply(auto)[1] |
|
3832 apply (simp add: bder_fuse bmkeps_simp bsimp_fuse fuse_append) |
|
3833 apply(subst bsimp_ASEQ1) |
|
3834 apply(auto)[3] |
|
3835 apply(auto)[1] |
|
3836 apply(case_tac "bsimp (bder c x42) = AZERO") |
|
3837 apply(simp add: bsimp_ASEQ0) |
|
3838 apply(drule contains65) |
|
3839 apply(auto)[1] |
|
3840 apply (metis asize_fuse bder_fuse bmkeps_simp bsimp_fuse contains.intros(4) contains.intros(5) contains49 f_cont1 less_add_Suc2) |
|
3841 |
|
3842 apply(frule f_cont1) |
|
3843 apply(auto) |
|
3844 |
|
3845 apply(case_tac "\<exists>bsX. bsimp (bder c x42) = AONE bsX") |
|
3846 apply(auto)[1] |
|
3847 apply(subst (asm) bsimp_ASEQ2) |
|
3848 apply(auto) |
|
3849 apply(drule contains65) |
|
3850 apply(auto)[1] |
|
3851 apply(frule f_cont1) |
|
3852 apply(auto) |
|
3853 apply(rule contains.intros) |
|
3854 apply (metis (no_types, lifting) append_Nil2 append_eq_append_conv2 contains.intros(1) contains.intros(3) contains49 f_cont1 less_add_Suc1 same_append_eq) |
|
3855 apply(frule f_cont1) |
|
3856 apply(auto) |
|
3857 apply(rule contains.intros) |
|
3858 apply(drule contains49) |
|
3859 apply(subst (asm) bsimp_fuse[symmetric]) |
|
3860 apply(frule f_cont1) |
|
3861 apply(auto) |
|
3862 apply(subst (3) append_Nil[symmetric]) |
|
3863 apply(rule contains.intros) |
|
3864 apply(drule contains49) |
|
3865 |
|
3866 prefer 2 |
|
3867 |
|
3868 apply(simp) |
|
3869 find_theorems "fuse _ _ >> _" |
|
3870 |
|
3871 |
|
3872 apply(erule contains.cases) |
|
3873 apply(auto) |
|
3874 |
|
3875 |
|
3876 |
|
3877 |
|
3878 |
|
3879 |
|
3880 |
|
3881 |
|
3882 |
|
3883 thm bder_retrieve |
|
3884 find_theorems "_ >> retrieve _ _" |
|
3885 |
|
3886 lemma TEST: |
|
3887 assumes "\<Turnstile> v : ders s (erase r)" |
|
3888 shows "bders r s >> retrieve r (flex (erase r) id s v)" |
|
3889 using assms |
|
3890 apply(induct s arbitrary: v r rule: rev_induct) |
|
3891 apply(simp) |
|
3892 apply (simp add: contains6) |
|
3893 apply(simp add: bders_append ders_append) |
|
3894 apply(rule Etrans) |
|
3895 apply(rule contains7) |
|
3896 apply(simp) |
|
3897 by (metis LA bder_retrieve bders_snoc ders_snoc erase_bders) |
|
3898 |
|
3899 |
|
3900 lemma TEST1: |
|
3901 assumes "bder c r >> retrieve r (injval (erase r) c v)" |
|
3902 shows "r >> retrieve r v" |
|
3903 oops |
|
3904 |
|
3905 lemma TEST2: |
|
3906 assumes "bders (intern r) s >> retrieve (intern r) (flex r id s (mkeps (ders s r)))" "s = [c1, c2]" |
|
3907 shows "bders_simp (intern r) s >> retrieve (intern r) (flex r id s (mkeps (ders s r)))" |
|
3908 using assms |
|
3909 apply(simp) |
|
3910 |
|
3911 |
|
3912 apply(induct s arbitrary: r rule: rev_induct) |
|
3913 apply(simp) |
|
3914 apply(simp add: bders_simp_append ders_append flex_append bders_append) |
|
3915 apply(rule contains55) |
|
3916 |
|
3917 apply(drule_tac x="bsimp (bder a r)" in meta_spec) |
|
3918 thm L02_bders |
|
3919 apply(subst L02_bders) |
|
3920 find_theorems "retrieve (bsimp _) _ = _" |
|
3921 apply(drule_tac "" in Etrans) |
|
3922 |
|
3923 lemma TEST2: |
|
3924 assumes "bders r s >> retrieve r (flex (erase r) id s (mkeps (ders s (erase r))))" |
|
3925 shows "bders_simp r s >> retrieve r (flex (erase r) id s (mkeps (ders s (erase r))))" |
|
3926 using assms |
|
3927 apply(induct s arbitrary: r rule: rev_induct) |
|
3928 apply(simp) |
|
3929 apply(simp add: bders_simp_append ders_append flex_append bders_append) |
|
3930 apply(subgoal_tac "bder x (bders r xs) >> retrieve r (flex (erase r) id xs (injval (ders xs (erase r)) x (mkeps (ders xs (erase r)))))") |
|
3931 find_theorems "bders _ _ >> _" |
|
3932 apply(drule_tac x="bsimp (bder a r)" in meta_spec) |
|
3933 thm L02_bders |
|
3934 apply(subst L02_bders) |
|
3935 find_theorems "retrieve (bsimp _) _ = _" |
|
3936 apply(drule_tac "" in Etrans) |
|
3937 apply(rule contains55) |
|
3938 apply(rule Etrans) |
|
3939 apply(rule contains7) |
|
3940 apply(subgoal_tac "\<Turnstile> v : der x (erase (bders_simp r xs))") |
|
3941 apply(assumption) |
|
3942 prefer 2 |
|
3943 |
|
3944 |
|
3945 apply(simp) |
|
3946 by (m etis LA bder_retrieve bders_snoc ders_snoc erase_bders) |
|
3947 |
|
3948 |
|
3949 |
|
3950 |
|
3951 lemma PPP0A: |
|
3952 assumes "s \<in> L (r)" |
|
3953 shows "(bders (intern r) s) >> code (flex r id s (mkeps (ders s r)))" |
|
3954 using assms |
|
3955 by (metis L07XX PPP0 erase_intern) |
|
3956 |
|
3957 |
|
3958 |
|
3959 |
|
3960 lemma PPP1: |
|
3961 assumes "bder c (intern r) >> code v" "\<Turnstile> v : der c r" |
|
3962 shows "(intern r) >> code (injval r c v)" |
|
3963 using assms |
|
3964 by (simp add: Prf_injval contains2) |
|
3965 |
|
3966 |
|
3967 (* |
|
3968 lemma PPP1: |
|
3969 assumes "bder c r >> code v" "\<Turnstile> v : der c (erase r)" |
|
3970 shows "r >> code (injval (erase r) c v)" |
|
3971 using assms contains7[OF assms(2)] retrieve_code[OF assms(2)] |
|
3972 find_theorems "bder _ _ >> _" |
|
3973 by (simp add: Prf_injval contains2) |
|
3974 *) |
|
3975 |
|
3976 lemma PPP3: |
|
3977 assumes "\<Turnstile> v : ders s (erase a)" |
|
3978 shows "bders a s >> retrieve a (flex (erase a) id s v)" |
|
3979 using LA[OF assms] contains6 erase_bders assms by metis |
|
3980 |
|
3981 |
|
3982 find_theorems "bder _ _ >> _" |
|
3983 |
|
3984 lemma QQQ0: |
|
3985 assumes "bder c a >> code v" |
|
3986 shows "a >> code (injval (erase a) c v)" |
|
3987 using assms |
|
3988 apply(induct a arbitrary: c v) |
|
3989 apply(auto) |
|
3990 using contains.simps apply blast |
|
3991 using contains.simps apply blast |
|
3992 apply(case_tac "c = x2a") |
|
3993 apply(simp) |
|
3994 apply(erule contains.cases) |
|
3995 apply(auto) |
|
3996 |
|
3997 |
|
3998 lemma PPP4: |
|
3999 assumes "bders (intern a) [c1, c2] >> bs" |
|
4000 shows "bders_simp (intern a) [c1, c2] >> bs" |
|
4001 using assms |
|
4002 apply(simp) |
|
4003 apply(rule contains55) |
|
4004 |
|
4005 find_theorems "bder _ _ >> _" |
|
4006 |
|
4007 |
|
4008 apply(induct s arbitrary: a v rule: rev_induct) |
|
4009 apply(simp) |
|
4010 apply (simp add: contains6) |
|
4011 apply(simp add: bders_append bders_simp_append ders_append flex_append) |
|
4012 (*apply(rule contains55)*) |
|
4013 apply(drule Prf_injval) |
|
4014 apply(drule_tac x="a" in meta_spec) |
|
4015 apply(drule_tac x="injval (ders xs (erase a)) x v" in meta_spec) |
|
4016 apply(drule meta_mp) |
|
4017 apply(assumption) |
|
4018 |
|
4019 apply(thin_tac "\<Turnstile> injval (ders xs (erase a)) x v : ders xs (erase a)") |
|
4020 |
|
4021 apply(thin_tac "bders a xs >> retrieve a (flex (erase a) id xs (injval (ders xs (erase a)) x v))") |
|
4022 |
|
4023 apply(rule Etrans) |
|
4024 apply(rule contains7) |
|
4025 |
|
4026 lemma PPP4: |
|
4027 assumes "bders a s >> code v" "\<Turnstile> v : ders s (erase a)" |
|
4028 shows "bders_simp a s >> code v" |
|
4029 using assms |
|
4030 apply(induct s arbitrary: a v rule: rev_induct) |
|
4031 apply(simp) |
|
4032 apply(simp add: bders_append bders_simp_append ders_append) |
|
4033 apply(rule contains55) |
|
4034 find_theorems "bder _ _ >> _" |
|
4035 |
|
4036 |
|
4037 lemma PPP0: |
|
4038 assumes "s \<in> L (r)" |
|
4039 shows "(bders (intern r) s) >> code (flex r id s (mkeps (ders s r)))" |
|
4040 using assms |
|
4041 apply(induct s arbitrary: r rule: rev_induct) |
|
4042 apply(simp) |
|
4043 apply (simp add: contains2 mkeps_nullable nullable_correctness) |
|
4044 apply(simp add: bders_simp_append flex_append) |
|
4045 apply(rule contains55) |
|
4046 apply(rule Etrans) |
|
4047 apply(rule contains7) |
|
4048 defer |
|
4049 |
|
4050 find_theorems "_ >> _" |
|
4051 apply(drule_tac x="der a r" in meta_spec) |
|
4052 apply(drule meta_mp) |
|
4053 find_theorems "bder _ _ >> _" |
|
4054 apply(subgoal_tac "s \<in> L(der a r)") |
|
4055 prefer 2 |
|
4056 |
|
4057 apply (simp add: Posix_Prf contains2) |
|
4058 apply(simp add: bders_simp_append) |
|
4059 apply(rule contains55) |
|
4060 apply(frule PPP0) |
|
4061 apply(simp add: bders_append) |
|
4062 using Posix_injval contains7 |
|
4063 apply(subgoal_tac "retrieve r (injval (erase r) x v)") |
|
4064 find_theorems "bders _ _ >> _" |
|
4065 |
|
4066 |
|
4067 |
|
4068 lemma PPP1: |
|
4069 assumes "\<Turnstile> v : ders s r" |
|
4070 shows "bders (intern r) s >> code v" |
|
4071 using assms |
|
4072 apply(induct s arbitrary: r v rule: rev_induct) |
|
4073 apply(simp) |
|
4074 apply (simp add: Posix_Prf contains2) |
|
4075 apply(simp add: bders_append ders_append flex_append) |
|
4076 apply(frule Prf_injval) |
|
4077 apply(drule meta_spec) |
|
4078 apply(drule meta_spec) |
|
4079 apply(drule meta_mp) |
|
4080 apply(assumption) |
|
4081 apply(subst retrieve_code) |
|
4082 apply(assumption) |
|
4083 apply(subst (asm) retrieve_code) |
|
4084 apply(assumption) |
|
4085 |
|
4086 using contains7 contains7a contains6 retrieve_code |
|
4087 apply(rule contains7) |
|
4088 |
|
4089 find_theorems "bder _ _ >> _" |
|
4090 find_theorems "code _ = _" |
|
4091 find_theorems "\<Turnstile> _ : der _ _" |
|
4092 |
|
4093 |
|
4094 |
|
4095 find_theorems "_ >> (code _)" |
|
4096 apply(induct s arbitrary: a bs rule: rev_induct) |
|
4097 apply(simp) |
|
4098 apply(simp add: bders_simp_append bders_append) |
|
4099 apply(rule contains55) |
|
4100 find_theorems "bder _ _ >> _" |
|
4101 apply(drule_tac x="bder a aa" in meta_spec) |
|
4102 apply(drule_tac x="bs" in meta_spec) |
|
4103 apply(simp) |
|
4104 apply(rule contains55) |
|
4105 find_theorems "bsimp _ >> _" |
|
4106 |
|
4107 lemma XXX4: |
|
4108 assumes "good a" |
|
4109 shows "bders_simp a s = bsimp (bders a s)" |
|
4110 using assms |
|
4111 apply(induct s arbitrary: a rule: rev_induct) |
|
4112 apply(simp) |
|
4113 apply (simp add: test2) |
|
4114 apply(simp add: bders_append bders_simp_append) |
|
4115 oops |
|
4116 |
|
4117 |
|
4118 lemma MAINMAIN: |
|
4119 "blexer r s = blexer_simp r s" |
|
4120 apply(induct s arbitrary: r) |
|
4121 apply(simp add: blexer_def blexer_simp_def) |
|
4122 apply(simp add: blexer_def blexer_simp_def del: bders.simps bders_simp.simps) |
|
4123 apply(auto simp del: bders.simps bders_simp.simps) |
|
4124 prefer 2 |
|
4125 apply (metis b4 bders.simps(2) bders_simp.simps(2)) |
|
4126 prefer 2 |
|
4127 apply (metis b4 bders.simps(2)) |
|
4128 apply(subst bmkeps_simp) |
|
4129 apply(simp) |
|
4130 apply(case_tac s) |
|
4131 apply(simp only: bders.simps) |
|
4132 apply(subst bders_simp.simps) |
|
4133 apply(simp) |
|
4134 oops |
|
4135 |
|
4136 |
|
4137 lemma |
|
4138 fixes n :: nat |
|
4139 shows "(\<Sum>i \<in> {0..n}. i) = n * (n + 1) div 2" |
|
4140 apply(induct n) |
|
4141 apply(simp) |
|
4142 apply(simp) |
|
4143 done |
|
4144 |
|
4145 |
|
4146 |
|
4147 |
|
4148 |
|
4149 end |