|
1 |
|
2 theory SizeBound |
|
3 imports "Lexer" |
|
4 begin |
|
5 |
|
6 section \<open>Bit-Encodings\<close> |
|
7 |
|
8 datatype bit = Z | S |
|
9 |
|
10 fun code :: "val \<Rightarrow> bit list" |
|
11 where |
|
12 "code Void = []" |
|
13 | "code (Char c) = []" |
|
14 | "code (Left v) = Z # (code v)" |
|
15 | "code (Right v) = S # (code v)" |
|
16 | "code (Seq v1 v2) = (code v1) @ (code v2)" |
|
17 | "code (Stars []) = [S]" |
|
18 | "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)" |
|
19 |
|
20 |
|
21 fun |
|
22 Stars_add :: "val \<Rightarrow> val \<Rightarrow> val" |
|
23 where |
|
24 "Stars_add v (Stars vs) = Stars (v # vs)" |
|
25 |
|
26 function |
|
27 decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)" |
|
28 where |
|
29 "decode' ds ZERO = (Void, [])" |
|
30 | "decode' ds ONE = (Void, ds)" |
|
31 | "decode' ds (CH d) = (Char d, ds)" |
|
32 | "decode' [] (ALT r1 r2) = (Void, [])" |
|
33 | "decode' (Z # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))" |
|
34 | "decode' (S # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))" |
|
35 | "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in |
|
36 let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))" |
|
37 | "decode' [] (STAR r) = (Void, [])" |
|
38 | "decode' (S # ds) (STAR r) = (Stars [], ds)" |
|
39 | "decode' (Z # ds) (STAR r) = (let (v, ds') = decode' ds r in |
|
40 let (vs, ds'') = decode' ds' (STAR r) |
|
41 in (Stars_add v vs, ds''))" |
|
42 by pat_completeness auto |
|
43 |
|
44 lemma decode'_smaller: |
|
45 assumes "decode'_dom (ds, r)" |
|
46 shows "length (snd (decode' ds r)) \<le> length ds" |
|
47 using assms |
|
48 apply(induct ds r) |
|
49 apply(auto simp add: decode'.psimps split: prod.split) |
|
50 using dual_order.trans apply blast |
|
51 by (meson dual_order.trans le_SucI) |
|
52 |
|
53 termination "decode'" |
|
54 apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))") |
|
55 apply(auto dest!: decode'_smaller) |
|
56 by (metis less_Suc_eq_le snd_conv) |
|
57 |
|
58 definition |
|
59 decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option" |
|
60 where |
|
61 "decode ds r \<equiv> (let (v, ds') = decode' ds r |
|
62 in (if ds' = [] then Some v else None))" |
|
63 |
|
64 lemma decode'_code_Stars: |
|
65 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []" |
|
66 shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)" |
|
67 using assms |
|
68 apply(induct vs) |
|
69 apply(auto) |
|
70 done |
|
71 |
|
72 lemma decode'_code: |
|
73 assumes "\<Turnstile> v : r" |
|
74 shows "decode' ((code v) @ ds) r = (v, ds)" |
|
75 using assms |
|
76 apply(induct v r arbitrary: ds) |
|
77 apply(auto) |
|
78 using decode'_code_Stars by blast |
|
79 |
|
80 lemma decode_code: |
|
81 assumes "\<Turnstile> v : r" |
|
82 shows "decode (code v) r = Some v" |
|
83 using assms unfolding decode_def |
|
84 by (smt append_Nil2 decode'_code old.prod.case) |
|
85 |
|
86 |
|
87 section {* Annotated Regular Expressions *} |
|
88 |
|
89 datatype arexp = |
|
90 AZERO |
|
91 | AONE "bit list" |
|
92 | ACHAR "bit list" char |
|
93 | ASEQ "bit list" arexp arexp |
|
94 | AALTs "bit list" "arexp list" |
|
95 | ASTAR "bit list" arexp |
|
96 |
|
97 abbreviation |
|
98 "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]" |
|
99 |
|
100 fun asize :: "arexp \<Rightarrow> nat" where |
|
101 "asize AZERO = 1" |
|
102 | "asize (AONE cs) = 1" |
|
103 | "asize (ACHAR cs c) = 1" |
|
104 | "asize (AALTs cs rs) = Suc (sum_list (map asize rs))" |
|
105 | "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)" |
|
106 | "asize (ASTAR cs r) = Suc (asize r)" |
|
107 |
|
108 fun |
|
109 erase :: "arexp \<Rightarrow> rexp" |
|
110 where |
|
111 "erase AZERO = ZERO" |
|
112 | "erase (AONE _) = ONE" |
|
113 | "erase (ACHAR _ c) = CH c" |
|
114 | "erase (AALTs _ []) = ZERO" |
|
115 | "erase (AALTs _ [r]) = (erase r)" |
|
116 | "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))" |
|
117 | "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)" |
|
118 | "erase (ASTAR _ r) = STAR (erase r)" |
|
119 |
|
120 |
|
121 |
|
122 |
|
123 fun nonalt :: "arexp \<Rightarrow> bool" |
|
124 where |
|
125 "nonalt (AALTs bs2 rs) = False" |
|
126 | "nonalt r = True" |
|
127 |
|
128 |
|
129 fun good :: "arexp \<Rightarrow> bool" where |
|
130 "good AZERO = False" |
|
131 | "good (AONE cs) = True" |
|
132 | "good (ACHAR cs c) = True" |
|
133 | "good (AALTs cs []) = False" |
|
134 | "good (AALTs cs [r]) = False" |
|
135 | "good (AALTs cs (r1#r2#rs)) = (\<forall>r' \<in> set (r1#r2#rs). good r' \<and> nonalt r')" |
|
136 | "good (ASEQ _ AZERO _) = False" |
|
137 | "good (ASEQ _ (AONE _) _) = False" |
|
138 | "good (ASEQ _ _ AZERO) = False" |
|
139 | "good (ASEQ cs r1 r2) = (good r1 \<and> good r2)" |
|
140 | "good (ASTAR cs r) = True" |
|
141 |
|
142 |
|
143 |
|
144 |
|
145 fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where |
|
146 "fuse bs AZERO = AZERO" |
|
147 | "fuse bs (AONE cs) = AONE (bs @ cs)" |
|
148 | "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c" |
|
149 | "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs" |
|
150 | "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2" |
|
151 | "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r" |
|
152 |
|
153 lemma fuse_append: |
|
154 shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)" |
|
155 apply(induct r) |
|
156 apply(auto) |
|
157 done |
|
158 |
|
159 |
|
160 fun intern :: "rexp \<Rightarrow> arexp" where |
|
161 "intern ZERO = AZERO" |
|
162 | "intern ONE = AONE []" |
|
163 | "intern (CH c) = ACHAR [] c" |
|
164 | "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1)) |
|
165 (fuse [S] (intern r2))" |
|
166 | "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)" |
|
167 | "intern (STAR r) = ASTAR [] (intern r)" |
|
168 |
|
169 |
|
170 fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where |
|
171 "retrieve (AONE bs) Void = bs" |
|
172 | "retrieve (ACHAR bs c) (Char d) = bs" |
|
173 | "retrieve (AALTs bs [r]) v = bs @ retrieve r v" |
|
174 | "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v" |
|
175 | "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v" |
|
176 | "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2" |
|
177 | "retrieve (ASTAR bs r) (Stars []) = bs @ [S]" |
|
178 | "retrieve (ASTAR bs r) (Stars (v#vs)) = |
|
179 bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)" |
|
180 |
|
181 |
|
182 |
|
183 fun |
|
184 bnullable :: "arexp \<Rightarrow> bool" |
|
185 where |
|
186 "bnullable (AZERO) = False" |
|
187 | "bnullable (AONE bs) = True" |
|
188 | "bnullable (ACHAR bs c) = False" |
|
189 | "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)" |
|
190 | "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)" |
|
191 | "bnullable (ASTAR bs r) = True" |
|
192 |
|
193 fun |
|
194 bmkeps :: "arexp \<Rightarrow> bit list" |
|
195 where |
|
196 "bmkeps(AONE bs) = bs" |
|
197 | "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)" |
|
198 | "bmkeps(AALTs bs [r]) = bs @ (bmkeps r)" |
|
199 | "bmkeps(AALTs bs (r#rs)) = (if bnullable(r) then bs @ (bmkeps r) else (bmkeps (AALTs bs rs)))" |
|
200 | "bmkeps(ASTAR bs r) = bs @ [S]" |
|
201 |
|
202 |
|
203 fun |
|
204 bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp" |
|
205 where |
|
206 "bder c (AZERO) = AZERO" |
|
207 | "bder c (AONE bs) = AZERO" |
|
208 | "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)" |
|
209 | "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)" |
|
210 | "bder c (ASEQ bs r1 r2) = |
|
211 (if bnullable r1 |
|
212 then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2)) |
|
213 else ASEQ bs (bder c r1) r2)" |
|
214 | "bder c (ASTAR bs r) = ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)" |
|
215 |
|
216 |
|
217 fun |
|
218 bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
219 where |
|
220 "bders r [] = r" |
|
221 | "bders r (c#s) = bders (bder c r) s" |
|
222 |
|
223 lemma bders_append: |
|
224 "bders r (s1 @ s2) = bders (bders r s1) s2" |
|
225 apply(induct s1 arbitrary: r s2) |
|
226 apply(simp_all) |
|
227 done |
|
228 |
|
229 lemma bnullable_correctness: |
|
230 shows "nullable (erase r) = bnullable r" |
|
231 apply(induct r rule: erase.induct) |
|
232 apply(simp_all) |
|
233 done |
|
234 |
|
235 lemma erase_fuse: |
|
236 shows "erase (fuse bs r) = erase r" |
|
237 apply(induct r rule: erase.induct) |
|
238 apply(simp_all) |
|
239 done |
|
240 |
|
241 thm Posix.induct |
|
242 |
|
243 lemma erase_intern [simp]: |
|
244 shows "erase (intern r) = r" |
|
245 apply(induct r) |
|
246 apply(simp_all add: erase_fuse) |
|
247 done |
|
248 |
|
249 lemma erase_bder [simp]: |
|
250 shows "erase (bder a r) = der a (erase r)" |
|
251 apply(induct r rule: erase.induct) |
|
252 apply(simp_all add: erase_fuse bnullable_correctness) |
|
253 done |
|
254 |
|
255 lemma erase_bders [simp]: |
|
256 shows "erase (bders r s) = ders s (erase r)" |
|
257 apply(induct s arbitrary: r ) |
|
258 apply(simp_all) |
|
259 done |
|
260 |
|
261 lemma retrieve_encode_STARS: |
|
262 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v" |
|
263 shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)" |
|
264 using assms |
|
265 apply(induct vs) |
|
266 apply(simp_all) |
|
267 done |
|
268 |
|
269 |
|
270 lemma retrieve_fuse2: |
|
271 assumes "\<Turnstile> v : (erase r)" |
|
272 shows "retrieve (fuse bs r) v = bs @ retrieve r v" |
|
273 using assms |
|
274 apply(induct r arbitrary: v bs) |
|
275 apply(auto elim: Prf_elims)[4] |
|
276 defer |
|
277 using retrieve_encode_STARS |
|
278 apply(auto elim!: Prf_elims)[1] |
|
279 apply(case_tac vs) |
|
280 apply(simp) |
|
281 apply(simp) |
|
282 (* AALTs case *) |
|
283 apply(simp) |
|
284 apply(case_tac x2a) |
|
285 apply(simp) |
|
286 apply(auto elim!: Prf_elims)[1] |
|
287 apply(simp) |
|
288 apply(case_tac list) |
|
289 apply(simp) |
|
290 apply(auto) |
|
291 apply(auto elim!: Prf_elims)[1] |
|
292 done |
|
293 |
|
294 lemma retrieve_fuse: |
|
295 assumes "\<Turnstile> v : r" |
|
296 shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v" |
|
297 using assms |
|
298 by (simp_all add: retrieve_fuse2) |
|
299 |
|
300 |
|
301 lemma retrieve_code: |
|
302 assumes "\<Turnstile> v : r" |
|
303 shows "code v = retrieve (intern r) v" |
|
304 using assms |
|
305 apply(induct v r ) |
|
306 apply(simp_all add: retrieve_fuse retrieve_encode_STARS) |
|
307 done |
|
308 |
|
309 |
|
310 lemma bnullable_Hdbmkeps_Hd: |
|
311 assumes "bnullable a" |
|
312 shows "bmkeps (AALTs bs (a # rs)) = bs @ (bmkeps a)" |
|
313 using assms |
|
314 by (metis bmkeps.simps(3) bmkeps.simps(4) list.exhaust) |
|
315 |
|
316 lemma r1: |
|
317 assumes "\<not> bnullable a" "bnullable (AALTs bs rs)" |
|
318 shows "bmkeps (AALTs bs (a # rs)) = bmkeps (AALTs bs rs)" |
|
319 using assms |
|
320 apply(induct rs) |
|
321 apply(auto) |
|
322 done |
|
323 |
|
324 lemma r2: |
|
325 assumes "x \<in> set rs" "bnullable x" |
|
326 shows "bnullable (AALTs bs rs)" |
|
327 using assms |
|
328 apply(induct rs) |
|
329 apply(auto) |
|
330 done |
|
331 |
|
332 lemma r3: |
|
333 assumes "\<not> bnullable r" |
|
334 " \<exists> x \<in> set rs. bnullable x" |
|
335 shows "retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs))) = |
|
336 retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))" |
|
337 using assms |
|
338 apply(induct rs arbitrary: r bs) |
|
339 apply(auto)[1] |
|
340 apply(auto) |
|
341 using bnullable_correctness apply blast |
|
342 apply(auto simp add: bnullable_correctness mkeps_nullable retrieve_fuse2) |
|
343 apply(subst retrieve_fuse2[symmetric]) |
|
344 apply (smt bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable) |
|
345 apply(simp) |
|
346 apply(case_tac "bnullable a") |
|
347 apply (smt append_Nil2 bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) fuse.simps(4) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable retrieve_fuse2) |
|
348 apply(drule_tac x="a" in meta_spec) |
|
349 apply(drule_tac x="bs" in meta_spec) |
|
350 apply(drule meta_mp) |
|
351 apply(simp) |
|
352 apply(drule meta_mp) |
|
353 apply(auto) |
|
354 apply(subst retrieve_fuse2[symmetric]) |
|
355 apply(case_tac rs) |
|
356 apply(simp) |
|
357 apply(auto)[1] |
|
358 apply (simp add: bnullable_correctness) |
|
359 apply (metis append_Nil2 bnullable_correctness erase_fuse fuse.simps(4) list.set_intros(1) mkeps.simps(3) mkeps_nullable nullable.simps(4) r2) |
|
360 apply (simp add: bnullable_correctness) |
|
361 apply (metis append_Nil2 bnullable_correctness erase.simps(6) erase_fuse fuse.simps(4) list.set_intros(2) mkeps.simps(3) mkeps_nullable r2) |
|
362 apply(simp) |
|
363 done |
|
364 |
|
365 |
|
366 lemma t: |
|
367 assumes "\<forall>r \<in> set rs. nullable (erase r) \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))" |
|
368 "nullable (erase (AALTs bs rs))" |
|
369 shows " bmkeps (AALTs bs rs) = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))" |
|
370 using assms |
|
371 apply(induct rs arbitrary: bs) |
|
372 apply(simp) |
|
373 apply(auto simp add: bnullable_correctness) |
|
374 apply(case_tac rs) |
|
375 apply(auto simp add: bnullable_correctness)[2] |
|
376 apply(subst r1) |
|
377 apply(simp) |
|
378 apply(rule r2) |
|
379 apply(assumption) |
|
380 apply(simp) |
|
381 apply(drule_tac x="bs" in meta_spec) |
|
382 apply(drule meta_mp) |
|
383 apply(auto)[1] |
|
384 prefer 2 |
|
385 apply(case_tac "bnullable a") |
|
386 apply(subst bnullable_Hdbmkeps_Hd) |
|
387 apply blast |
|
388 apply(subgoal_tac "nullable (erase a)") |
|
389 prefer 2 |
|
390 using bnullable_correctness apply blast |
|
391 apply (metis (no_types, lifting) erase.simps(5) erase.simps(6) list.exhaust mkeps.simps(3) retrieve.simps(3) retrieve.simps(4)) |
|
392 apply(subst r1) |
|
393 apply(simp) |
|
394 using r2 apply blast |
|
395 apply(drule_tac x="bs" in meta_spec) |
|
396 apply(drule meta_mp) |
|
397 apply(auto)[1] |
|
398 apply(simp) |
|
399 using r3 apply blast |
|
400 apply(auto) |
|
401 using r3 by blast |
|
402 |
|
403 lemma bmkeps_retrieve: |
|
404 assumes "nullable (erase r)" |
|
405 shows "bmkeps r = retrieve r (mkeps (erase r))" |
|
406 using assms |
|
407 apply(induct r) |
|
408 apply(simp) |
|
409 apply(simp) |
|
410 apply(simp) |
|
411 apply(simp) |
|
412 defer |
|
413 apply(simp) |
|
414 apply(rule t) |
|
415 apply(auto) |
|
416 done |
|
417 |
|
418 lemma bder_retrieve: |
|
419 assumes "\<Turnstile> v : der c (erase r)" |
|
420 shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)" |
|
421 using assms |
|
422 apply(induct r arbitrary: v rule: erase.induct) |
|
423 apply(simp) |
|
424 apply(erule Prf_elims) |
|
425 apply(simp) |
|
426 apply(erule Prf_elims) |
|
427 apply(simp) |
|
428 apply(case_tac "c = ca") |
|
429 apply(simp) |
|
430 apply(erule Prf_elims) |
|
431 apply(simp) |
|
432 apply(simp) |
|
433 apply(erule Prf_elims) |
|
434 apply(simp) |
|
435 apply(erule Prf_elims) |
|
436 apply(simp) |
|
437 apply(simp) |
|
438 apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v) |
|
439 apply(erule Prf_elims) |
|
440 apply(simp) |
|
441 apply(simp) |
|
442 apply(case_tac rs) |
|
443 apply(simp) |
|
444 apply(simp) |
|
445 apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) retrieve.simps(4) retrieve.simps(5) same_append_eq) |
|
446 apply(simp) |
|
447 apply(case_tac "nullable (erase r1)") |
|
448 apply(simp) |
|
449 apply(erule Prf_elims) |
|
450 apply(subgoal_tac "bnullable r1") |
|
451 prefer 2 |
|
452 using bnullable_correctness apply blast |
|
453 apply(simp) |
|
454 apply(erule Prf_elims) |
|
455 apply(simp) |
|
456 apply(subgoal_tac "bnullable r1") |
|
457 prefer 2 |
|
458 using bnullable_correctness apply blast |
|
459 apply(simp) |
|
460 apply(simp add: retrieve_fuse2) |
|
461 apply(simp add: bmkeps_retrieve) |
|
462 apply(simp) |
|
463 apply(erule Prf_elims) |
|
464 apply(simp) |
|
465 using bnullable_correctness apply blast |
|
466 apply(rename_tac bs r v) |
|
467 apply(simp) |
|
468 apply(erule Prf_elims) |
|
469 apply(clarify) |
|
470 apply(erule Prf_elims) |
|
471 apply(clarify) |
|
472 apply(subst injval.simps) |
|
473 apply(simp del: retrieve.simps) |
|
474 apply(subst retrieve.simps) |
|
475 apply(subst retrieve.simps) |
|
476 apply(simp) |
|
477 apply(simp add: retrieve_fuse2) |
|
478 done |
|
479 |
|
480 |
|
481 |
|
482 lemma MAIN_decode: |
|
483 assumes "\<Turnstile> v : ders s r" |
|
484 shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" |
|
485 using assms |
|
486 proof (induct s arbitrary: v rule: rev_induct) |
|
487 case Nil |
|
488 have "\<Turnstile> v : ders [] r" by fact |
|
489 then have "\<Turnstile> v : r" by simp |
|
490 then have "Some v = decode (retrieve (intern r) v) r" |
|
491 using decode_code retrieve_code by auto |
|
492 then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r" |
|
493 by simp |
|
494 next |
|
495 case (snoc c s v) |
|
496 have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow> |
|
497 Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact |
|
498 have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact |
|
499 then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r" |
|
500 by (simp add: Prf_injval ders_append) |
|
501 have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))" |
|
502 by (simp add: flex_append) |
|
503 also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r" |
|
504 using asm2 IH by simp |
|
505 also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r" |
|
506 using asm by (simp_all add: bder_retrieve ders_append) |
|
507 finally show "Some (flex r id (s @ [c]) v) = |
|
508 decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append) |
|
509 qed |
|
510 |
|
511 |
|
512 definition blex where |
|
513 "blex a s \<equiv> if bnullable (bders a s) then Some (bmkeps (bders a s)) else None" |
|
514 |
|
515 |
|
516 |
|
517 definition blexer where |
|
518 "blexer r s \<equiv> if bnullable (bders (intern r) s) then |
|
519 decode (bmkeps (bders (intern r) s)) r else None" |
|
520 |
|
521 lemma blexer_correctness: |
|
522 shows "blexer r s = lexer r s" |
|
523 proof - |
|
524 { define bds where "bds \<equiv> bders (intern r) s" |
|
525 define ds where "ds \<equiv> ders s r" |
|
526 assume asm: "nullable ds" |
|
527 have era: "erase bds = ds" |
|
528 unfolding ds_def bds_def by simp |
|
529 have mke: "\<Turnstile> mkeps ds : ds" |
|
530 using asm by (simp add: mkeps_nullable) |
|
531 have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r" |
|
532 using bmkeps_retrieve |
|
533 using asm era by (simp add: bmkeps_retrieve) |
|
534 also have "... = Some (flex r id s (mkeps ds))" |
|
535 using mke by (simp_all add: MAIN_decode ds_def bds_def) |
|
536 finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))" |
|
537 unfolding bds_def ds_def . |
|
538 } |
|
539 then show "blexer r s = lexer r s" |
|
540 unfolding blexer_def lexer_flex |
|
541 apply(subst bnullable_correctness[symmetric]) |
|
542 apply(simp) |
|
543 done |
|
544 qed |
|
545 |
|
546 |
|
547 fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list" |
|
548 where |
|
549 "distinctBy [] f acc = []" |
|
550 | "distinctBy (x#xs) f acc = |
|
551 (if (f x) \<in> acc then distinctBy xs f acc |
|
552 else x # (distinctBy xs f ({f x} \<union> acc)))" |
|
553 |
|
554 |
|
555 |
|
556 |
|
557 fun flts :: "arexp list \<Rightarrow> arexp list" |
|
558 where |
|
559 "flts [] = []" |
|
560 | "flts (AZERO # rs) = flts rs" |
|
561 | "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs" |
|
562 | "flts (r1 # rs) = r1 # flts rs" |
|
563 |
|
564 |
|
565 |
|
566 |
|
567 fun li :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp" |
|
568 where |
|
569 "li _ [] = AZERO" |
|
570 | "li bs [a] = fuse bs a" |
|
571 | "li bs as = AALTs bs as" |
|
572 |
|
573 |
|
574 |
|
575 |
|
576 fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp" |
|
577 where |
|
578 "bsimp_ASEQ _ AZERO _ = AZERO" |
|
579 | "bsimp_ASEQ _ _ AZERO = AZERO" |
|
580 | "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2" |
|
581 | "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2" |
|
582 |
|
583 |
|
584 fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp" |
|
585 where |
|
586 "bsimp_AALTs _ [] = AZERO" |
|
587 | "bsimp_AALTs bs1 [r] = fuse bs1 r" |
|
588 | "bsimp_AALTs bs1 rs = AALTs bs1 rs" |
|
589 |
|
590 |
|
591 fun bsimp :: "arexp \<Rightarrow> arexp" |
|
592 where |
|
593 "bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" |
|
594 | "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {} ) " |
|
595 | "bsimp r = r" |
|
596 |
|
597 |
|
598 |
|
599 |
|
600 fun |
|
601 bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
602 where |
|
603 "bders_simp r [] = r" |
|
604 | "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s" |
|
605 |
|
606 definition blexer_simp where |
|
607 "blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then |
|
608 decode (bmkeps (bders_simp (intern r) s)) r else None" |
|
609 |
|
610 export_code bders_simp in Scala module_name Example |
|
611 |
|
612 lemma bders_simp_append: |
|
613 shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2" |
|
614 apply(induct s1 arbitrary: r s2) |
|
615 apply(simp) |
|
616 apply(simp) |
|
617 done |
|
618 |
|
619 |
|
620 |
|
621 |
|
622 |
|
623 |
|
624 |
|
625 lemma L_bsimp_ASEQ: |
|
626 "L (SEQ (erase r1) (erase r2)) = L (erase (bsimp_ASEQ bs r1 r2))" |
|
627 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
628 apply(simp_all) |
|
629 by (metis erase_fuse fuse.simps(4)) |
|
630 |
|
631 lemma L_bsimp_AALTs: |
|
632 "L (erase (AALTs bs rs)) = L (erase (bsimp_AALTs bs rs))" |
|
633 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
634 apply(simp_all add: erase_fuse) |
|
635 done |
|
636 |
|
637 lemma L_erase_AALTs: |
|
638 shows "L (erase (AALTs bs rs)) = \<Union> (L ` erase ` (set rs))" |
|
639 apply(induct rs) |
|
640 apply(simp) |
|
641 apply(simp) |
|
642 apply(case_tac rs) |
|
643 apply(simp) |
|
644 apply(simp) |
|
645 done |
|
646 |
|
647 lemma L_erase_flts: |
|
648 shows "\<Union> (L ` erase ` (set (flts rs))) = \<Union> (L ` erase ` (set rs))" |
|
649 apply(induct rs rule: flts.induct) |
|
650 apply(simp_all) |
|
651 apply(auto) |
|
652 using L_erase_AALTs erase_fuse apply auto[1] |
|
653 by (simp add: L_erase_AALTs erase_fuse) |
|
654 |
|
655 lemma L_erase_dB_acc: |
|
656 shows "( \<Union>(L ` acc) \<union> ( \<Union> (L ` erase ` (set (distinctBy rs erase acc) ) ) )) = \<Union>(L ` acc) \<union> \<Union> (L ` erase ` (set rs))" |
|
657 apply(induction rs arbitrary: acc) |
|
658 apply simp |
|
659 apply simp |
|
660 by (smt (z3) SUP_absorb UN_insert sup_assoc sup_commute) |
|
661 |
|
662 lemma L_erase_dB: |
|
663 shows " ( \<Union> (L ` erase ` (set (distinctBy rs erase {}) ) ) ) = \<Union> (L ` erase ` (set rs))" |
|
664 by (metis L_erase_dB_acc Un_commute Union_image_empty) |
|
665 |
|
666 lemma L_bsimp_erase: |
|
667 shows "L (erase r) = L (erase (bsimp r))" |
|
668 apply(induct r) |
|
669 apply(simp) |
|
670 apply(simp) |
|
671 apply(simp) |
|
672 apply(auto simp add: Sequ_def)[1] |
|
673 apply(subst L_bsimp_ASEQ[symmetric]) |
|
674 apply(auto simp add: Sequ_def)[1] |
|
675 apply(subst (asm) L_bsimp_ASEQ[symmetric]) |
|
676 apply(auto simp add: Sequ_def)[1] |
|
677 apply(simp) |
|
678 apply(subst L_bsimp_AALTs[symmetric]) |
|
679 defer |
|
680 apply(simp) |
|
681 apply(subst (2)L_erase_AALTs) |
|
682 apply(subst L_erase_dB) |
|
683 apply(subst L_erase_flts) |
|
684 apply(auto) |
|
685 apply (simp add: L_erase_AALTs) |
|
686 using L_erase_AALTs by blast |
|
687 |
|
688 lemma bsimp_ASEQ0: |
|
689 shows "bsimp_ASEQ bs r1 AZERO = AZERO" |
|
690 apply(induct r1) |
|
691 apply(auto) |
|
692 done |
|
693 |
|
694 |
|
695 |
|
696 lemma bsimp_ASEQ1: |
|
697 assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs" |
|
698 shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2" |
|
699 using assms |
|
700 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
701 apply(auto) |
|
702 done |
|
703 |
|
704 lemma bsimp_ASEQ2: |
|
705 shows "bsimp_ASEQ bs (AONE bs1) r2 = fuse (bs @ bs1) r2" |
|
706 apply(induct r2) |
|
707 apply(auto) |
|
708 done |
|
709 |
|
710 |
|
711 lemma L_bders_simp: |
|
712 shows "L (erase (bders_simp r s)) = L (erase (bders r s))" |
|
713 apply(induct s arbitrary: r rule: rev_induct) |
|
714 apply(simp) |
|
715 apply(simp) |
|
716 apply(simp add: ders_append) |
|
717 apply(simp add: bders_simp_append) |
|
718 apply(simp add: L_bsimp_erase[symmetric]) |
|
719 by (simp add: der_correctness) |
|
720 |
|
721 |
|
722 lemma b2: |
|
723 assumes "bnullable r" |
|
724 shows "bmkeps (fuse bs r) = bs @ bmkeps r" |
|
725 by (simp add: assms bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2) |
|
726 |
|
727 |
|
728 lemma b4: |
|
729 shows "bnullable (bders_simp r s) = bnullable (bders r s)" |
|
730 by (metis L_bders_simp bnullable_correctness lexer.simps(1) lexer_correct_None option.distinct(1)) |
|
731 |
|
732 |
|
733 lemma qq1: |
|
734 assumes "\<exists>r \<in> set rs. bnullable r" |
|
735 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs)" |
|
736 using assms |
|
737 apply(induct rs arbitrary: rs1 bs) |
|
738 apply(simp) |
|
739 apply(simp) |
|
740 by (metis Nil_is_append_conv bmkeps.simps(4) neq_Nil_conv bnullable_Hdbmkeps_Hd split_list_last) |
|
741 |
|
742 lemma qq2: |
|
743 assumes "\<forall>r \<in> set rs. \<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r" |
|
744 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs1)" |
|
745 using assms |
|
746 apply(induct rs arbitrary: rs1 bs) |
|
747 apply(simp) |
|
748 apply(simp) |
|
749 by (metis append_assoc in_set_conv_decomp r1 r2) |
|
750 |
|
751 lemma qq3: |
|
752 shows "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)" |
|
753 apply(induct rs arbitrary: bs) |
|
754 apply(simp) |
|
755 apply(simp) |
|
756 done |
|
757 |
|
758 |
|
759 |
|
760 |
|
761 |
|
762 fun nonnested :: "arexp \<Rightarrow> bool" |
|
763 where |
|
764 "nonnested (AALTs bs2 []) = True" |
|
765 | "nonnested (AALTs bs2 ((AALTs bs1 rs1) # rs2)) = False" |
|
766 | "nonnested (AALTs bs2 (r # rs2)) = nonnested (AALTs bs2 rs2)" |
|
767 | "nonnested r = True" |
|
768 |
|
769 |
|
770 lemma k0: |
|
771 shows "flts (r # rs1) = flts [r] @ flts rs1" |
|
772 apply(induct r arbitrary: rs1) |
|
773 apply(auto) |
|
774 done |
|
775 |
|
776 lemma k00: |
|
777 shows "flts (rs1 @ rs2) = flts rs1 @ flts rs2" |
|
778 apply(induct rs1 arbitrary: rs2) |
|
779 apply(auto) |
|
780 by (metis append.assoc k0) |
|
781 |
|
782 lemma k0a: |
|
783 shows "flts [AALTs bs rs] = map (fuse bs) rs" |
|
784 apply(simp) |
|
785 done |
|
786 |
|
787 |
|
788 |
|
789 |
|
790 |
|
791 |
|
792 |
|
793 |
|
794 lemma bsimp_AALTs_qq: |
|
795 assumes "1 < length rs" |
|
796 shows "bsimp_AALTs bs rs = AALTs bs rs" |
|
797 using assms |
|
798 apply(case_tac rs) |
|
799 apply(simp) |
|
800 apply(case_tac list) |
|
801 apply(simp_all) |
|
802 done |
|
803 |
|
804 |
|
805 |
|
806 lemma bbbbs1: |
|
807 shows "nonalt r \<or> (\<exists>bs rs. r = AALTs bs rs)" |
|
808 using nonalt.elims(3) by auto |
|
809 |
|
810 |
|
811 |
|
812 |
|
813 |
|
814 lemma flts_append: |
|
815 "flts (xs1 @ xs2) = flts xs1 @ flts xs2" |
|
816 apply(induct xs1 arbitrary: xs2 rule: rev_induct) |
|
817 apply(auto) |
|
818 apply(case_tac xs) |
|
819 apply(auto) |
|
820 apply(case_tac x) |
|
821 apply(auto) |
|
822 apply(case_tac x) |
|
823 apply(auto) |
|
824 done |
|
825 |
|
826 fun nonazero :: "arexp \<Rightarrow> bool" |
|
827 where |
|
828 "nonazero AZERO = False" |
|
829 | "nonazero r = True" |
|
830 |
|
831 |
|
832 lemma flts_single1: |
|
833 assumes "nonalt r" "nonazero r" |
|
834 shows "flts [r] = [r]" |
|
835 using assms |
|
836 apply(induct r) |
|
837 apply(auto) |
|
838 done |
|
839 |
|
840 |
|
841 |
|
842 lemma q3a: |
|
843 assumes "\<exists>r \<in> set rs. bnullable r" |
|
844 shows "bmkeps (AALTs bs (map (fuse bs1) rs)) = bmkeps (AALTs (bs@bs1) rs)" |
|
845 using assms |
|
846 apply(induct rs arbitrary: bs bs1) |
|
847 apply(simp) |
|
848 apply(simp) |
|
849 apply(auto) |
|
850 apply (metis append_assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd) |
|
851 apply(case_tac "bnullable a") |
|
852 apply (metis append.assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd) |
|
853 apply(case_tac rs) |
|
854 apply(simp) |
|
855 apply(simp) |
|
856 apply(auto)[1] |
|
857 apply (metis bnullable_correctness erase_fuse)+ |
|
858 done |
|
859 |
|
860 lemma qq4: |
|
861 assumes "\<exists>x\<in>set list. bnullable x" |
|
862 shows "\<exists>x\<in>set (flts list). bnullable x" |
|
863 using assms |
|
864 apply(induct list rule: flts.induct) |
|
865 apply(auto) |
|
866 by (metis UnCI bnullable_correctness erase_fuse imageI) |
|
867 |
|
868 |
|
869 lemma qs3: |
|
870 assumes "\<exists>r \<in> set rs. bnullable r" |
|
871 shows "bmkeps (AALTs bs rs) = bmkeps (AALTs bs (flts rs))" |
|
872 using assms |
|
873 apply(induct rs arbitrary: bs taking: size rule: measure_induct) |
|
874 apply(case_tac x) |
|
875 apply(simp) |
|
876 apply(simp) |
|
877 apply(case_tac a) |
|
878 apply(simp) |
|
879 apply (simp add: r1) |
|
880 apply(simp) |
|
881 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
882 apply(simp) |
|
883 apply(case_tac "flts list") |
|
884 apply(simp) |
|
885 apply (metis L_erase_AALTs L_erase_flts L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(4) mkeps_nullable r2) |
|
886 apply(simp) |
|
887 apply (simp add: r1) |
|
888 prefer 3 |
|
889 apply(simp) |
|
890 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
891 prefer 2 |
|
892 apply(simp) |
|
893 apply(case_tac "\<exists>x\<in>set x52. bnullable x") |
|
894 apply(case_tac "list") |
|
895 apply(simp) |
|
896 apply (metis b2 fuse.simps(4) q3a r2) |
|
897 apply(erule disjE) |
|
898 apply(subst qq1) |
|
899 apply(auto)[1] |
|
900 apply (metis bnullable_correctness erase_fuse) |
|
901 apply(simp) |
|
902 apply (metis b2 fuse.simps(4) q3a r2) |
|
903 apply(simp) |
|
904 apply(auto)[1] |
|
905 apply(subst qq1) |
|
906 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
907 apply (metis b2 fuse.simps(4) q3a r2) |
|
908 apply(subst qq1) |
|
909 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
910 apply (metis b2 fuse.simps(4) q3a r2) |
|
911 apply(simp) |
|
912 apply(subst qq2) |
|
913 apply (metis bnullable_correctness erase_fuse imageE set_map) |
|
914 prefer 2 |
|
915 apply(case_tac "list") |
|
916 apply(simp) |
|
917 apply(simp) |
|
918 apply (simp add: qq4) |
|
919 apply(simp) |
|
920 apply(auto) |
|
921 apply(case_tac list) |
|
922 apply(simp) |
|
923 apply(simp) |
|
924 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
925 apply(case_tac "bnullable (ASEQ x41 x42 x43)") |
|
926 apply(case_tac list) |
|
927 apply(simp) |
|
928 apply(simp) |
|
929 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
930 apply(simp) |
|
931 using qq4 r1 r2 by auto |
|
932 |
|
933 |
|
934 |
|
935 |
|
936 lemma bder_fuse: |
|
937 shows "bder c (fuse bs a) = fuse bs (bder c a)" |
|
938 apply(induct a arbitrary: bs c) |
|
939 apply(simp_all) |
|
940 done |
|
941 |
|
942 |
|
943 fun flts2 :: "char \<Rightarrow> arexp list \<Rightarrow> arexp list" |
|
944 where |
|
945 "flts2 _ [] = []" |
|
946 | "flts2 c (AZERO # rs) = flts2 c rs" |
|
947 | "flts2 c (AONE _ # rs) = flts2 c rs" |
|
948 | "flts2 c (ACHAR bs d # rs) = (if c = d then (ACHAR bs d # flts2 c rs) else flts2 c rs)" |
|
949 | "flts2 c ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts2 c rs" |
|
950 | "flts2 c (ASEQ bs r1 r2 # rs) = (if (bnullable(r1) \<and> r2 = AZERO) then |
|
951 flts2 c rs |
|
952 else ASEQ bs r1 r2 # flts2 c rs)" |
|
953 | "flts2 c (r1 # rs) = r1 # flts2 c rs" |
|
954 |
|
955 |
|
956 |
|
957 |
|
958 |
|
959 |
|
960 |
|
961 |
|
962 |
|
963 |
|
964 |
|
965 |
|
966 |
|
967 lemma WQ1: |
|
968 assumes "s \<in> L (der c r)" |
|
969 shows "s \<in> der c r \<rightarrow> mkeps (ders s (der c r))" |
|
970 using assms |
|
971 oops |
|
972 |
|
973 |
|
974 |
|
975 lemma bder_bsimp_AALTs: |
|
976 shows "bder c (bsimp_AALTs bs rs) = bsimp_AALTs bs (map (bder c) rs)" |
|
977 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
978 apply(simp) |
|
979 apply(simp) |
|
980 apply (simp add: bder_fuse) |
|
981 apply(simp) |
|
982 done |
|
983 |
|
984 |
|
985 |
|
986 lemma |
|
987 assumes "asize (bsimp a) = asize a" "a = AALTs bs [AALTs bs2 [], AZERO, AONE bs3]" |
|
988 shows "bsimp a = a" |
|
989 using assms |
|
990 apply(simp) |
|
991 oops |
|
992 |
|
993 |
|
994 |
|
995 |
|
996 |
|
997 |
|
998 |
|
999 |
|
1000 inductive rrewrite:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99) |
|
1001 where |
|
1002 "ASEQ bs AZERO r2 \<leadsto> AZERO" |
|
1003 | "ASEQ bs r1 AZERO \<leadsto> AZERO" |
|
1004 | "ASEQ bs (AONE bs1) r \<leadsto> fuse (bs@bs1) r" |
|
1005 | "r1 \<leadsto> r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r2 r3" |
|
1006 | "r3 \<leadsto> r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r1 r4" |
|
1007 | "r \<leadsto> r' \<Longrightarrow> (AALTs bs (rs1 @ [r] @ rs2)) \<leadsto> (AALTs bs (rs1 @ [r'] @ rs2))" |
|
1008 (*context rule for eliminating 0, alts--corresponds to the recursive call flts r::rs = r::(flts rs)*) |
|
1009 | "AALTs bs (rsa@AZERO # rsb) \<leadsto> AALTs bs (rsa@rsb)" |
|
1010 | "AALTs bs (rsa@(AALTs bs1 rs1)# rsb) \<leadsto> AALTs bs (rsa@(map (fuse bs1) rs1)@rsb)" |
|
1011 (*the below rule for extracting common prefixes between a list of rexp's bitcodes*) |
|
1012 | "AALTs bs (map (fuse bs1) rs) \<leadsto> AALTs (bs@bs1) rs" |
|
1013 (*opposite direction also allowed, which means bits are free to be moved around |
|
1014 as long as they are on the right path*) |
|
1015 | "AALTs (bs@bs1) rs \<leadsto> AALTs bs (map (fuse bs1) rs)" |
|
1016 | "AALTs bs [] \<leadsto> AZERO" |
|
1017 | "AALTs bs [r] \<leadsto> fuse bs r" |
|
1018 | "erase a1 = erase a2 \<Longrightarrow> AALTs bs (rsa@[a1]@rsb@[a2]@rsc) \<leadsto> AALTs bs (rsa@[a1]@rsb@rsc)" |
|
1019 |
|
1020 |
|
1021 inductive rrewrites:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100) |
|
1022 where |
|
1023 rs1[intro, simp]:"r \<leadsto>* r" |
|
1024 | rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3" |
|
1025 |
|
1026 inductive srewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ s\<leadsto>* _" [100, 100] 100) |
|
1027 where |
|
1028 ss1: "[] s\<leadsto>* []" |
|
1029 |ss2: "\<lbrakk>r \<leadsto>* r'; rs s\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (r#rs) s\<leadsto>* (r'#rs')" |
|
1030 (*rs1 = [r1, r2, ..., rn] rs2 = [r1', r2', ..., rn'] |
|
1031 [r1, r2, ..., rn] \<leadsto>* [r1', r2, ..., rn] \<leadsto>* [...r2',...] \<leadsto>* [r1', r2',... rn'] |
|
1032 *) |
|
1033 |
|
1034 |
|
1035 |
|
1036 lemma r_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2" |
|
1037 using rrewrites.intros(1) rrewrites.intros(2) by blast |
|
1038 |
|
1039 lemma real_trans: |
|
1040 assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3" |
|
1041 shows "r1 \<leadsto>* r3" |
|
1042 using a2 a1 |
|
1043 apply(induct r2 r3 arbitrary: r1 rule: rrewrites.induct) |
|
1044 apply(auto) |
|
1045 done |
|
1046 |
|
1047 |
|
1048 lemma many_steps_later: "\<lbrakk>r1 \<leadsto> r2; r2 \<leadsto>* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3" |
|
1049 by (meson r_in_rstar real_trans) |
|
1050 |
|
1051 |
|
1052 lemma contextrewrites1: "r \<leadsto>* r' \<Longrightarrow> (AALTs bs (r#rs)) \<leadsto>* (AALTs bs (r'#rs))" |
|
1053 apply(induct r r' rule: rrewrites.induct) |
|
1054 apply simp |
|
1055 by (metis append_Cons append_Nil rrewrite.intros(6) rs2) |
|
1056 |
|
1057 |
|
1058 lemma contextrewrites2: "r \<leadsto>* r' \<Longrightarrow> (AALTs bs (rs1@[r]@rs)) \<leadsto>* (AALTs bs (rs1@[r']@rs))" |
|
1059 apply(induct r r' rule: rrewrites.induct) |
|
1060 apply simp |
|
1061 using rrewrite.intros(6) by blast |
|
1062 |
|
1063 |
|
1064 |
|
1065 lemma srewrites_alt: "rs1 s\<leadsto>* rs2 \<Longrightarrow> (AALTs bs (rs@rs1)) \<leadsto>* (AALTs bs (rs@rs2))" |
|
1066 |
|
1067 apply(induct rs1 rs2 arbitrary: bs rs rule: srewrites.induct) |
|
1068 apply(rule rs1) |
|
1069 apply(drule_tac x = "bs" in meta_spec) |
|
1070 apply(drule_tac x = "rsa@[r']" in meta_spec) |
|
1071 apply simp |
|
1072 apply(rule real_trans) |
|
1073 prefer 2 |
|
1074 apply(assumption) |
|
1075 apply(drule contextrewrites2) |
|
1076 apply auto |
|
1077 done |
|
1078 |
|
1079 |
|
1080 corollary srewrites_alt1: "rs1 s\<leadsto>* rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto>* AALTs bs rs2" |
|
1081 by (metis append.left_neutral srewrites_alt) |
|
1082 |
|
1083 |
|
1084 lemma star_seq: "r1 \<leadsto>* r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto>* ASEQ bs r2 r3" |
|
1085 apply(induct r1 r2 arbitrary: r3 rule: rrewrites.induct) |
|
1086 apply(rule rs1) |
|
1087 apply(erule rrewrites.cases) |
|
1088 apply(simp) |
|
1089 apply(rule r_in_rstar) |
|
1090 apply(rule rrewrite.intros(4)) |
|
1091 apply simp |
|
1092 apply(rule rs2) |
|
1093 apply(assumption) |
|
1094 apply(rule rrewrite.intros(4)) |
|
1095 by assumption |
|
1096 |
|
1097 lemma star_seq2: "r3 \<leadsto>* r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto>* ASEQ bs r1 r4" |
|
1098 apply(induct r3 r4 arbitrary: r1 rule: rrewrites.induct) |
|
1099 apply auto |
|
1100 using rrewrite.intros(5) by blast |
|
1101 |
|
1102 |
|
1103 lemma continuous_rewrite: "\<lbrakk>r1 \<leadsto>* AZERO\<rbrakk> \<Longrightarrow> ASEQ bs1 r1 r2 \<leadsto>* AZERO" |
|
1104 apply(induction ra\<equiv>"r1" rb\<equiv>"AZERO" arbitrary: bs1 r1 r2 rule: rrewrites.induct) |
|
1105 apply (simp add: r_in_rstar rrewrite.intros(1)) |
|
1106 |
|
1107 by (meson rrewrite.intros(1) rrewrites.intros(2) star_seq) |
|
1108 |
|
1109 |
|
1110 |
|
1111 lemma bsimp_aalts_simpcases: "AONE bs \<leadsto>* (bsimp (AONE bs))" "AZERO \<leadsto>* bsimp AZERO" "ACHAR bs c \<leadsto>* (bsimp (ACHAR bs c))" |
|
1112 apply (simp add: rrewrites.intros(1)) |
|
1113 apply (simp add: rrewrites.intros(1)) |
|
1114 by (simp add: rrewrites.intros(1)) |
|
1115 |
|
1116 lemma trivialbsimpsrewrites: "\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x \<rbrakk> \<Longrightarrow> rs s\<leadsto>* (map f rs)" |
|
1117 |
|
1118 apply(induction rs) |
|
1119 apply simp |
|
1120 apply(rule ss1) |
|
1121 by (metis insert_iff list.simps(15) list.simps(9) srewrites.simps) |
|
1122 |
|
1123 |
|
1124 lemma bsimp_AALTsrewrites: "AALTs bs1 rs \<leadsto>* bsimp_AALTs bs1 rs" |
|
1125 apply(induction rs) |
|
1126 apply simp |
|
1127 apply(rule r_in_rstar) |
|
1128 apply(simp add: rrewrite.intros(11)) |
|
1129 apply(case_tac "rs = Nil") |
|
1130 apply(simp) |
|
1131 using rrewrite.intros(12) apply auto[1] |
|
1132 apply(subgoal_tac "length (a#rs) > 1") |
|
1133 apply(simp add: bsimp_AALTs_qq) |
|
1134 apply(simp) |
|
1135 done |
|
1136 |
|
1137 inductive frewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ f\<leadsto>* _" [100, 100] 100) |
|
1138 where |
|
1139 fs1: "[] f\<leadsto>* []" |
|
1140 |fs2: "\<lbrakk>rs f\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (AZERO#rs) f\<leadsto>* rs'" |
|
1141 |fs3: "\<lbrakk>rs f\<leadsto>* rs'\<rbrakk> \<Longrightarrow> ((AALTs bs rs1) # rs) f\<leadsto>* ((map (fuse bs) rs1) @ rs')" |
|
1142 |fs4: "\<lbrakk>rs f\<leadsto>* rs';nonalt r; nonazero r\<rbrakk> \<Longrightarrow> (r#rs) f\<leadsto>* (r#rs')" |
|
1143 |
|
1144 |
|
1145 |
|
1146 |
|
1147 |
|
1148 lemma flts_prepend: "\<lbrakk>nonalt a; nonazero a\<rbrakk> \<Longrightarrow> flts (a#rs) = a # (flts rs)" |
|
1149 by (metis append_Cons append_Nil flts_single1 k00) |
|
1150 |
|
1151 lemma fltsfrewrites: "rs f\<leadsto>* (flts rs)" |
|
1152 apply(induction rs) |
|
1153 apply simp |
|
1154 apply(rule fs1) |
|
1155 |
|
1156 apply(case_tac "a = AZERO") |
|
1157 |
|
1158 |
|
1159 using fs2 apply auto[1] |
|
1160 apply(case_tac "\<exists>bs rs. a = AALTs bs rs") |
|
1161 apply(erule exE)+ |
|
1162 |
|
1163 apply (simp add: fs3) |
|
1164 apply(subst flts_prepend) |
|
1165 apply(rule nonalt.elims(2)) |
|
1166 prefer 2 |
|
1167 thm nonalt.elims |
|
1168 |
|
1169 apply blast |
|
1170 |
|
1171 using bbbbs1 apply blast |
|
1172 apply(simp add: nonalt.simps)+ |
|
1173 |
|
1174 apply (meson nonazero.elims(3)) |
|
1175 |
|
1176 by (meson fs4 nonalt.elims(3) nonazero.elims(3)) |
|
1177 |
|
1178 |
|
1179 lemma rrewrite0away: "AALTs bs ( AZERO # rsb) \<leadsto> AALTs bs rsb" |
|
1180 by (metis append_Nil rrewrite.intros(7)) |
|
1181 |
|
1182 |
|
1183 lemma frewritesaalts:"rs f\<leadsto>* rs' \<Longrightarrow> (AALTs bs (rs1@rs)) \<leadsto>* (AALTs bs (rs1@rs'))" |
|
1184 apply(induct rs rs' arbitrary: bs rs1 rule:frewrites.induct) |
|
1185 apply(rule rs1) |
|
1186 apply(drule_tac x = "bs" in meta_spec) |
|
1187 apply(drule_tac x = "rs1 @ [AZERO]" in meta_spec) |
|
1188 apply(rule real_trans) |
|
1189 apply simp |
|
1190 using r_in_rstar rrewrite.intros(7) apply presburger |
|
1191 apply(drule_tac x = "bsa" in meta_spec) |
|
1192 apply(drule_tac x = "rs1a @ [AALTs bs rs1]" in meta_spec) |
|
1193 apply(rule real_trans) |
|
1194 apply simp |
|
1195 using r_in_rstar rrewrite.intros(8) apply presburger |
|
1196 apply(drule_tac x = "bs" in meta_spec) |
|
1197 apply(drule_tac x = "rs1@[r]" in meta_spec) |
|
1198 apply(rule real_trans) |
|
1199 apply simp |
|
1200 apply auto |
|
1201 done |
|
1202 |
|
1203 lemma fltsrewrites: " AALTs bs1 rs \<leadsto>* AALTs bs1 (flts rs)" |
|
1204 apply(induction rs) |
|
1205 apply simp |
|
1206 apply(case_tac "a = AZERO") |
|
1207 apply (metis append_Nil flts.simps(2) many_steps_later rrewrite.intros(7)) |
|
1208 |
|
1209 |
|
1210 |
|
1211 apply(case_tac "\<exists>bs2 rs2. a = AALTs bs2 rs2") |
|
1212 apply(erule exE)+ |
|
1213 apply(simp add: flts.simps) |
|
1214 prefer 2 |
|
1215 |
|
1216 apply(subst flts_prepend) |
|
1217 |
|
1218 apply (meson nonalt.elims(3)) |
|
1219 |
|
1220 apply (meson nonazero.elims(3)) |
|
1221 apply(subgoal_tac "(a#rs) f\<leadsto>* (a#flts rs)") |
|
1222 apply (metis append_Nil frewritesaalts) |
|
1223 apply (meson fltsfrewrites fs4 nonalt.elims(3) nonazero.elims(3)) |
|
1224 by (metis append_Cons append_Nil fltsfrewrites frewritesaalts k00 k0a) |
|
1225 |
|
1226 lemma alts_simpalts: "\<And>bs1 rs. (\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* bsimp x) \<Longrightarrow> |
|
1227 AALTs bs1 rs \<leadsto>* AALTs bs1 (map bsimp rs)" |
|
1228 apply(subgoal_tac " rs s\<leadsto>* (map bsimp rs)") |
|
1229 prefer 2 |
|
1230 using trivialbsimpsrewrites apply auto[1] |
|
1231 using srewrites_alt1 by auto |
|
1232 |
|
1233 |
|
1234 lemma threelistsappend: "rsa@a#rsb = (rsa@[a])@rsb" |
|
1235 apply auto |
|
1236 done |
|
1237 |
|
1238 fun distinctByAcc :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'b set" |
|
1239 where |
|
1240 "distinctByAcc [] f acc = acc" |
|
1241 | "distinctByAcc (x#xs) f acc = |
|
1242 (if (f x) \<in> acc then distinctByAcc xs f acc |
|
1243 else (distinctByAcc xs f ({f x} \<union> acc)))" |
|
1244 |
|
1245 lemma dB_single_step: "distinctBy (a#rs) f {} = a # distinctBy rs f {f a}" |
|
1246 apply simp |
|
1247 done |
|
1248 |
|
1249 lemma somewhereInside: "r \<in> set rs \<Longrightarrow> \<exists>rs1 rs2. rs = rs1@[r]@rs2" |
|
1250 using split_list by fastforce |
|
1251 |
|
1252 lemma somewhereMapInside: "f r \<in> f ` set rs \<Longrightarrow> \<exists>rs1 rs2 a. rs = rs1@[a]@rs2 \<and> f a = f r" |
|
1253 apply auto |
|
1254 by (metis split_list) |
|
1255 |
|
1256 lemma alts_dBrewrites_withFront: " AALTs bs (rsa @ rs) \<leadsto>* AALTs bs (rsa @ distinctBy rs erase (erase ` set rsa))" |
|
1257 apply(induction rs arbitrary: rsa) |
|
1258 apply simp |
|
1259 apply(drule_tac x = "rsa@[a]" in meta_spec) |
|
1260 apply(subst threelistsappend) |
|
1261 apply(rule real_trans) |
|
1262 apply simp |
|
1263 apply(case_tac "a \<in> set rsa") |
|
1264 apply simp |
|
1265 apply(drule somewhereInside) |
|
1266 apply(erule exE)+ |
|
1267 apply simp |
|
1268 apply(subgoal_tac " AALTs bs |
|
1269 (rs1 @ |
|
1270 a # |
|
1271 rs2 @ |
|
1272 a # |
|
1273 distinctBy rs erase |
|
1274 (insert (erase a) |
|
1275 (erase ` |
|
1276 (set rs1 \<union> set rs2)))) \<leadsto> AALTs bs (rs1@ a # rs2 @ distinctBy rs erase |
|
1277 (insert (erase a) |
|
1278 (erase ` |
|
1279 (set rs1 \<union> set rs2)))) ") |
|
1280 prefer 2 |
|
1281 using rrewrite.intros(13) apply force |
|
1282 using r_in_rstar apply force |
|
1283 apply(subgoal_tac "erase ` set (rsa @ [a]) = insert (erase a) (erase ` set rsa)") |
|
1284 prefer 2 |
|
1285 |
|
1286 apply auto[1] |
|
1287 apply(case_tac "erase a \<in> erase `set rsa") |
|
1288 |
|
1289 apply simp |
|
1290 apply(subgoal_tac "AALTs bs (rsa @ a # distinctBy rs erase (insert (erase a) (erase ` set rsa))) \<leadsto> |
|
1291 AALTs bs (rsa @ distinctBy rs erase (insert (erase a) (erase ` set rsa)))") |
|
1292 apply force |
|
1293 apply (smt (verit, ccfv_threshold) append_Cons append_assoc append_self_conv2 r_in_rstar rrewrite.intros(13) same_append_eq somewhereMapInside) |
|
1294 by force |
|
1295 |
|
1296 |
|
1297 |
|
1298 lemma alts_dBrewrites: "AALTs bs rs \<leadsto>* AALTs bs (distinctBy rs erase {})" |
|
1299 apply(induction rs) |
|
1300 apply simp |
|
1301 apply simp |
|
1302 using alts_dBrewrites_withFront |
|
1303 by (metis append_Nil dB_single_step empty_set image_empty) |
|
1304 |
|
1305 |
|
1306 |
|
1307 |
|
1308 |
|
1309 |
|
1310 lemma bsimp_rewrite: " (rrewrites r ( bsimp r))" |
|
1311 apply(induction r rule: bsimp.induct) |
|
1312 apply simp |
|
1313 apply(case_tac "bsimp r1 = AZERO") |
|
1314 apply simp |
|
1315 using continuous_rewrite apply blast |
|
1316 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
1317 apply(erule exE) |
|
1318 apply simp |
|
1319 apply(subst bsimp_ASEQ2) |
|
1320 apply (meson real_trans rrewrite.intros(3) rrewrites.intros(2) star_seq star_seq2) |
|
1321 apply (smt (verit, best) bsimp_ASEQ0 bsimp_ASEQ1 real_trans rrewrite.intros(2) rs2 star_seq star_seq2) |
|
1322 defer |
|
1323 using bsimp_aalts_simpcases(2) apply blast |
|
1324 apply simp |
|
1325 apply simp |
|
1326 apply simp |
|
1327 |
|
1328 apply auto |
|
1329 |
|
1330 |
|
1331 apply(subgoal_tac "AALTs bs1 rs \<leadsto>* AALTs bs1 (map bsimp rs)") |
|
1332 apply(subgoal_tac "AALTs bs1 (map bsimp rs) \<leadsto>* AALTs bs1 (flts (map bsimp rs))") |
|
1333 apply(subgoal_tac "AALTs bs1 (flts (map bsimp rs)) \<leadsto>* AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {})") |
|
1334 apply(subgoal_tac "AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {}) \<leadsto>* bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {} )") |
|
1335 |
|
1336 |
|
1337 apply (meson real_trans) |
|
1338 |
|
1339 apply (meson bsimp_AALTsrewrites) |
|
1340 |
|
1341 apply (meson alts_dBrewrites) |
|
1342 |
|
1343 using fltsrewrites apply auto[1] |
|
1344 |
|
1345 using alts_simpalts by force |
|
1346 |
|
1347 |
|
1348 lemma rewritenullable: "\<lbrakk>r1 \<leadsto> r2; bnullable r1 \<rbrakk> \<Longrightarrow> bnullable r2" |
|
1349 apply(induction r1 r2 rule: rrewrite.induct) |
|
1350 apply(simp)+ |
|
1351 apply (metis bnullable_correctness erase_fuse) |
|
1352 apply simp |
|
1353 apply simp |
|
1354 apply auto[1] |
|
1355 apply auto[1] |
|
1356 apply auto[4] |
|
1357 apply (metis UnCI bnullable_correctness erase_fuse imageI) |
|
1358 apply (metis bnullable_correctness erase_fuse) |
|
1359 apply (metis bnullable_correctness erase_fuse) |
|
1360 |
|
1361 apply (metis bnullable_correctness erase.simps(5) erase_fuse) |
|
1362 |
|
1363 |
|
1364 by (smt (z3) Un_iff bnullable_correctness insert_iff list.set(2) qq3 set_append) |
|
1365 |
|
1366 lemma rewrite_non_nullable: "\<lbrakk>r1 \<leadsto> r2; \<not>bnullable r1 \<rbrakk> \<Longrightarrow> \<not>bnullable r2" |
|
1367 apply(induction r1 r2 rule: rrewrite.induct) |
|
1368 apply auto |
|
1369 apply (metis bnullable_correctness erase_fuse)+ |
|
1370 done |
|
1371 |
|
1372 |
|
1373 lemma rewritesnullable: "\<lbrakk> r1 \<leadsto>* r2; bnullable r1 \<rbrakk> \<Longrightarrow> bnullable r2" |
|
1374 apply(induction r1 r2 rule: rrewrites.induct) |
|
1375 apply simp |
|
1376 apply(rule rewritenullable) |
|
1377 apply simp |
|
1378 apply simp |
|
1379 done |
|
1380 |
|
1381 lemma nonbnullable_lists_concat: " \<lbrakk> \<not> (\<exists>r0\<in>set rs1. bnullable r0); \<not> bnullable r; \<not> (\<exists>r0\<in>set rs2. bnullable r0)\<rbrakk> \<Longrightarrow> |
|
1382 \<not>(\<exists>r0 \<in> (set (rs1@[r]@rs2)). bnullable r0 ) " |
|
1383 apply simp |
|
1384 apply blast |
|
1385 done |
|
1386 |
|
1387 |
|
1388 |
|
1389 lemma nomember_bnullable: "\<lbrakk> \<not> (\<exists>r0\<in>set rs1. bnullable r0); \<not> bnullable r; \<not> (\<exists>r0\<in>set rs2. bnullable r0)\<rbrakk> |
|
1390 \<Longrightarrow> \<not>bnullable (AALTs bs (rs1 @ [r] @ rs2))" |
|
1391 using nonbnullable_lists_concat qq3 by presburger |
|
1392 |
|
1393 lemma bnullable_segment: " bnullable (AALTs bs (rs1@[r]@rs2)) \<Longrightarrow> bnullable (AALTs bs rs1) \<or> bnullable (AALTs bs rs2) \<or> bnullable r" |
|
1394 apply(case_tac "\<exists>r0\<in>set rs1. bnullable r0") |
|
1395 |
|
1396 using qq3 apply blast |
|
1397 apply(case_tac "bnullable r") |
|
1398 |
|
1399 apply blast |
|
1400 apply(case_tac "\<exists>r0\<in>set rs2. bnullable r0") |
|
1401 |
|
1402 using bnullable.simps(4) apply presburger |
|
1403 apply(subgoal_tac "False") |
|
1404 |
|
1405 apply blast |
|
1406 |
|
1407 using nomember_bnullable by blast |
|
1408 |
|
1409 |
|
1410 |
|
1411 lemma bnullablewhichbmkeps: "\<lbrakk>bnullable (AALTs bs (rs1@[r]@rs2)); \<not> bnullable (AALTs bs rs1); bnullable r \<rbrakk> |
|
1412 \<Longrightarrow> bmkeps (AALTs bs (rs1@[r]@rs2)) = bs @ (bmkeps r)" |
|
1413 using qq2 bnullable_Hdbmkeps_Hd by force |
|
1414 |
|
1415 lemma rrewrite_nbnullable: "\<lbrakk> r1 \<leadsto> r2 ; \<not> bnullable r1 \<rbrakk> \<Longrightarrow> \<not>bnullable r2" |
|
1416 apply(induction rule: rrewrite.induct) |
|
1417 apply auto[1] |
|
1418 apply auto[1] |
|
1419 apply auto[1] |
|
1420 apply (metis bnullable_correctness erase_fuse) |
|
1421 apply auto[1] |
|
1422 apply auto[1] |
|
1423 apply auto[1] |
|
1424 apply auto[1] |
|
1425 apply auto[1] |
|
1426 apply (metis bnullable_correctness erase_fuse) |
|
1427 apply auto[1] |
|
1428 apply (metis bnullable_correctness erase_fuse) |
|
1429 apply auto[1] |
|
1430 apply (metis bnullable_correctness erase_fuse) |
|
1431 apply auto[1] |
|
1432 apply auto[1] |
|
1433 |
|
1434 apply (metis bnullable_correctness erase_fuse) |
|
1435 |
|
1436 by (meson rewrite_non_nullable rrewrite.intros(13)) |
|
1437 |
|
1438 |
|
1439 |
|
1440 |
|
1441 lemma spillbmkepslistr: "bnullable (AALTs bs1 rs1) |
|
1442 \<Longrightarrow> bmkeps (AALTs bs (AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs ( map (fuse bs1) rs1 @ rsb))" |
|
1443 apply(subst bnullable_Hdbmkeps_Hd) |
|
1444 |
|
1445 apply simp |
|
1446 by (metis bmkeps.simps(3) k0a list.set_intros(1) qq1 qq4 qs3) |
|
1447 |
|
1448 lemma third_segment_bnullable: "\<lbrakk>bnullable (AALTs bs (rs1@rs2@rs3)); \<not>bnullable (AALTs bs rs1); \<not>bnullable (AALTs bs rs2)\<rbrakk> \<Longrightarrow> |
|
1449 bnullable (AALTs bs rs3)" |
|
1450 |
|
1451 by (metis append.left_neutral append_Cons bnullable.simps(1) bnullable_segment rrewrite.intros(7) rrewrite_nbnullable) |
|
1452 |
|
1453 |
|
1454 lemma third_segment_bmkeps: "\<lbrakk>bnullable (AALTs bs (rs1@rs2@rs3)); \<not>bnullable (AALTs bs rs1); \<not>bnullable (AALTs bs rs2)\<rbrakk> \<Longrightarrow> |
|
1455 bmkeps (AALTs bs (rs1@rs2@rs3) ) = bmkeps (AALTs bs rs3)" |
|
1456 apply(subgoal_tac "bnullable (AALTs bs rs3)") |
|
1457 apply(subgoal_tac "\<forall>r \<in> set (rs1@rs2). \<not>bnullable r") |
|
1458 apply(subgoal_tac "bmkeps (AALTs bs (rs1@rs2@rs3)) = bmkeps (AALTs bs ((rs1@rs2)@rs3) )") |
|
1459 apply (metis qq2 qq3) |
|
1460 |
|
1461 apply (metis append.assoc) |
|
1462 |
|
1463 apply (metis append.assoc in_set_conv_decomp r2 third_segment_bnullable) |
|
1464 |
|
1465 using third_segment_bnullable by blast |
|
1466 |
|
1467 |
|
1468 lemma rewrite_bmkepsalt: " \<lbrakk>bnullable (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)); bnullable (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))\<rbrakk> |
|
1469 \<Longrightarrow> bmkeps (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))" |
|
1470 apply(case_tac "bnullable (AALTs bs rsa)") |
|
1471 |
|
1472 using qq1 apply force |
|
1473 apply(case_tac "bnullable (AALTs bs1 rs1)") |
|
1474 apply(subst qq2) |
|
1475 |
|
1476 |
|
1477 using r2 apply blast |
|
1478 |
|
1479 apply (metis list.set_intros(1)) |
|
1480 apply (smt (verit, ccfv_threshold) append_eq_append_conv2 list.set_intros(1) qq2 qq3 rewritenullable rrewrite.intros(8) self_append_conv2 spillbmkepslistr) |
|
1481 |
|
1482 |
|
1483 thm qq1 |
|
1484 apply(subgoal_tac "bmkeps (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs rsb) ") |
|
1485 prefer 2 |
|
1486 |
|
1487 apply (metis append_Cons append_Nil bnullable.simps(1) bnullable_segment rewritenullable rrewrite.intros(11) third_segment_bmkeps) |
|
1488 |
|
1489 by (metis bnullable.simps(4) rewrite_non_nullable rrewrite.intros(10) third_segment_bmkeps) |
|
1490 |
|
1491 |
|
1492 |
|
1493 lemma rewrite_bmkeps: "\<lbrakk> r1 \<leadsto> r2; (bnullable r1)\<rbrakk> \<Longrightarrow> bmkeps r1 = bmkeps r2" |
|
1494 |
|
1495 apply(frule rewritenullable) |
|
1496 apply simp |
|
1497 apply(induction r1 r2 rule: rrewrite.induct) |
|
1498 apply simp |
|
1499 using bnullable.simps(1) bnullable.simps(5) apply blast |
|
1500 apply (simp add: b2) |
|
1501 apply simp |
|
1502 apply simp |
|
1503 apply(frule bnullable_segment) |
|
1504 apply(case_tac "bnullable (AALTs bs rs1)") |
|
1505 using qq1 apply force |
|
1506 apply(case_tac "bnullable r") |
|
1507 using bnullablewhichbmkeps rewritenullable apply presburger |
|
1508 apply(subgoal_tac "bnullable (AALTs bs rs2)") |
|
1509 apply(subgoal_tac "\<not> bnullable r'") |
|
1510 apply (simp add: qq2 r1) |
|
1511 |
|
1512 using rrewrite_nbnullable apply blast |
|
1513 |
|
1514 apply blast |
|
1515 apply (simp add: flts_append qs3) |
|
1516 |
|
1517 apply (meson rewrite_bmkepsalt) |
|
1518 |
|
1519 using bnullable.simps(4) q3a apply blast |
|
1520 |
|
1521 apply (simp add: q3a) |
|
1522 |
|
1523 using bnullable.simps(1) apply blast |
|
1524 |
|
1525 apply (simp add: b2) |
|
1526 |
|
1527 by (smt (z3) Un_iff bnullable_correctness erase.simps(5) qq1 qq2 qq3 set_append) |
|
1528 |
|
1529 |
|
1530 |
|
1531 lemma rewrites_bmkeps: "\<lbrakk> (r1 \<leadsto>* r2); (bnullable r1)\<rbrakk> \<Longrightarrow> bmkeps r1 = bmkeps r2" |
|
1532 apply(induction r1 r2 rule: rrewrites.induct) |
|
1533 apply simp |
|
1534 apply(subgoal_tac "bnullable r2") |
|
1535 prefer 2 |
|
1536 apply(metis rewritesnullable) |
|
1537 apply(subgoal_tac "bmkeps r1 = bmkeps r2") |
|
1538 prefer 2 |
|
1539 apply fastforce |
|
1540 using rewrite_bmkeps by presburger |
|
1541 |
|
1542 |
|
1543 thm rrewrite.intros(12) |
|
1544 lemma alts_rewrite_front: "r \<leadsto> r' \<Longrightarrow> AALTs bs (r # rs) \<leadsto> AALTs bs (r' # rs)" |
|
1545 by (metis append_Cons append_Nil rrewrite.intros(6)) |
|
1546 |
|
1547 lemma alt_rewrite_front: "r \<leadsto> r' \<Longrightarrow> AALT bs r r2 \<leadsto> AALT bs r' r2" |
|
1548 using alts_rewrite_front by blast |
|
1549 |
|
1550 lemma to_zero_in_alt: " AALT bs (ASEQ [] AZERO r) r2 \<leadsto> AALT bs AZERO r2" |
|
1551 by (simp add: alts_rewrite_front rrewrite.intros(1)) |
|
1552 |
|
1553 lemma alt_remove0_front: " AALT bs AZERO r \<leadsto> AALTs bs [r]" |
|
1554 by (simp add: rrewrite0away) |
|
1555 |
|
1556 lemma alt_rewrites_back: "r2 \<leadsto>* r2' \<Longrightarrow>AALT bs r1 r2 \<leadsto>* AALT bs r1 r2'" |
|
1557 apply(induction r2 r2' arbitrary: bs rule: rrewrites.induct) |
|
1558 apply simp |
|
1559 by (meson rs1 rs2 srewrites_alt1 ss1 ss2) |
|
1560 |
|
1561 lemma rewrite_fuse: " r2 \<leadsto> r3 \<Longrightarrow> fuse bs r2 \<leadsto>* fuse bs r3" |
|
1562 apply(induction r2 r3 arbitrary: bs rule: rrewrite.induct) |
|
1563 apply auto |
|
1564 |
|
1565 apply (simp add: continuous_rewrite) |
|
1566 |
|
1567 apply (simp add: r_in_rstar rrewrite.intros(2)) |
|
1568 |
|
1569 apply (metis fuse_append r_in_rstar rrewrite.intros(3)) |
|
1570 |
|
1571 using r_in_rstar star_seq apply blast |
|
1572 |
|
1573 using r_in_rstar star_seq2 apply blast |
|
1574 |
|
1575 using contextrewrites2 r_in_rstar apply auto[1] |
|
1576 |
|
1577 apply (simp add: r_in_rstar rrewrite.intros(7)) |
|
1578 |
|
1579 using rrewrite.intros(8) apply auto[1] |
|
1580 |
|
1581 apply (metis append_assoc r_in_rstar rrewrite.intros(9)) |
|
1582 |
|
1583 apply (metis append_assoc r_in_rstar rrewrite.intros(10)) |
|
1584 |
|
1585 apply (simp add: r_in_rstar rrewrite.intros(11)) |
|
1586 |
|
1587 apply (metis fuse_append r_in_rstar rrewrite.intros(12)) |
|
1588 |
|
1589 using rrewrite.intros(13) by auto |
|
1590 |
|
1591 |
|
1592 |
|
1593 lemma rewrites_fuse: "r2 \<leadsto>* r2' \<Longrightarrow> (fuse bs1 r2) \<leadsto>* (fuse bs1 r2')" |
|
1594 apply(induction r2 r2' arbitrary: bs1 rule: rrewrites.induct) |
|
1595 apply simp |
|
1596 by (meson real_trans rewrite_fuse) |
|
1597 |
|
1598 lemma bder_fuse_list: " map (bder c \<circ> fuse bs1) rs1 = map (fuse bs1 \<circ> bder c) rs1" |
|
1599 apply(induction rs1) |
|
1600 apply simp |
|
1601 by (simp add: bder_fuse) |
|
1602 |
|
1603 |
|
1604 |
|
1605 lemma rewrite_der_altmiddle: "bder c (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) \<leadsto>* bder c (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))" |
|
1606 apply simp |
|
1607 apply(simp add: bder_fuse_list) |
|
1608 apply(rule many_steps_later) |
|
1609 apply(subst rrewrite.intros(8)) |
|
1610 apply simp |
|
1611 |
|
1612 by fastforce |
|
1613 |
|
1614 lemma lock_step_der_removal: |
|
1615 shows " erase a1 = erase a2 \<Longrightarrow> |
|
1616 bder c (AALTs bs (rsa @ [a1] @ rsb @ [a2] @ rsc)) \<leadsto>* |
|
1617 bder c (AALTs bs (rsa @ [a1] @ rsb @ rsc))" |
|
1618 apply(simp) |
|
1619 |
|
1620 using rrewrite.intros(13) by auto |
|
1621 |
|
1622 lemma rewrite_after_der: "r1 \<leadsto> r2 \<Longrightarrow> (bder c r1) \<leadsto>* (bder c r2)" |
|
1623 apply(induction r1 r2 arbitrary: c rule: rrewrite.induct) |
|
1624 |
|
1625 apply (simp add: r_in_rstar rrewrite.intros(1)) |
|
1626 apply simp |
|
1627 |
|
1628 apply (meson contextrewrites1 r_in_rstar rrewrite.intros(11) rrewrite.intros(2) rrewrite0away rs2) |
|
1629 apply(simp) |
|
1630 apply(rule many_steps_later) |
|
1631 apply(rule to_zero_in_alt) |
|
1632 apply(rule many_steps_later) |
|
1633 apply(rule alt_remove0_front) |
|
1634 apply(rule many_steps_later) |
|
1635 apply(rule rrewrite.intros(12)) |
|
1636 using bder_fuse fuse_append rs1 apply presburger |
|
1637 apply(case_tac "bnullable r1") |
|
1638 prefer 2 |
|
1639 apply(subgoal_tac "\<not>bnullable r2") |
|
1640 prefer 2 |
|
1641 using rewrite_non_nullable apply presburger |
|
1642 apply simp+ |
|
1643 |
|
1644 using star_seq apply auto[1] |
|
1645 apply(subgoal_tac "bnullable r2") |
|
1646 apply simp+ |
|
1647 apply(subgoal_tac "bmkeps r1 = bmkeps r2") |
|
1648 prefer 2 |
|
1649 using rewrite_bmkeps apply auto[1] |
|
1650 using contextrewrites1 star_seq apply auto[1] |
|
1651 using rewritenullable apply auto[1] |
|
1652 apply(case_tac "bnullable r1") |
|
1653 apply simp |
|
1654 apply(subgoal_tac "ASEQ [] (bder c r1) r3 \<leadsto> ASEQ [] (bder c r1) r4") |
|
1655 prefer 2 |
|
1656 using rrewrite.intros(5) apply blast |
|
1657 apply(rule many_steps_later) |
|
1658 apply(rule alt_rewrite_front) |
|
1659 apply assumption |
|
1660 apply (meson alt_rewrites_back rewrites_fuse) |
|
1661 |
|
1662 apply (simp add: r_in_rstar rrewrite.intros(5)) |
|
1663 |
|
1664 using contextrewrites2 apply force |
|
1665 |
|
1666 using rrewrite.intros(7) apply force |
|
1667 |
|
1668 using rewrite_der_altmiddle apply auto[1] |
|
1669 |
|
1670 apply (metis bder.simps(4) bder_fuse_list map_map r_in_rstar rrewrite.intros(9)) |
|
1671 |
|
1672 apply (metis List.map.compositionality bder.simps(4) bder_fuse_list r_in_rstar rrewrite.intros(10)) |
|
1673 |
|
1674 apply (simp add: r_in_rstar rrewrite.intros(11)) |
|
1675 |
|
1676 apply (metis bder.simps(4) bder_bsimp_AALTs bsimp_AALTs.simps(2) bsimp_AALTsrewrites) |
|
1677 |
|
1678 |
|
1679 using lock_step_der_removal by auto |
|
1680 |
|
1681 |
|
1682 |
|
1683 lemma rewrites_after_der: " r1 \<leadsto>* r2 \<Longrightarrow> (bder c r1) \<leadsto>* (bder c r2)" |
|
1684 apply(induction r1 r2 rule: rrewrites.induct) |
|
1685 apply(rule rs1) |
|
1686 by (meson real_trans rewrite_after_der) |
|
1687 |
|
1688 |
|
1689 |
|
1690 |
|
1691 lemma central: " (bders r s) \<leadsto>* (bders_simp r s)" |
|
1692 apply(induct s arbitrary: r rule: rev_induct) |
|
1693 |
|
1694 apply simp |
|
1695 apply(subst bders_append) |
|
1696 apply(subst bders_simp_append) |
|
1697 by (metis bders.simps(1) bders.simps(2) bders_simp.simps(1) bders_simp.simps(2) bsimp_rewrite real_trans rewrites_after_der) |
|
1698 |
|
1699 |
|
1700 |
|
1701 thm arexp.induct |
|
1702 |
|
1703 lemma quasi_main: "bnullable (bders r s) \<Longrightarrow> bmkeps (bders r s) = bmkeps (bders_simp r s)" |
|
1704 using central rewrites_bmkeps by blast |
|
1705 |
|
1706 theorem main_main: "blexer r s = blexer_simp r s" |
|
1707 by (simp add: b4 blexer_def blexer_simp_def quasi_main) |
|
1708 |
|
1709 |
|
1710 theorem blexersimp_correctness: "blexer_simp r s= lexer r s" |
|
1711 using blexer_correctness main_main by auto |
|
1712 |
|
1713 |
|
1714 unused_thms |
|
1715 |
|
1716 |
|
1717 end |