thys2/RegLangs.thy
changeset 365 ec5e4fe4cc70
equal deleted inserted replaced
364:232aa2f19a75 365:ec5e4fe4cc70
       
     1 theory RegLangs
       
     2   imports Main "HOL-Library.Sublist"
       
     3 begin
       
     4 
       
     5 section \<open>Sequential Composition of Languages\<close>
       
     6 
       
     7 definition
       
     8   Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
       
     9 where 
       
    10   "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
       
    11 
       
    12 text \<open>Two Simple Properties about Sequential Composition\<close>
       
    13 
       
    14 lemma Sequ_empty_string [simp]:
       
    15   shows "A ;; {[]} = A"
       
    16   and   "{[]} ;; A = A"
       
    17 by (simp_all add: Sequ_def)
       
    18 
       
    19 lemma Sequ_empty [simp]:
       
    20   shows "A ;; {} = {}"
       
    21   and   "{} ;; A = {}"
       
    22   by (simp_all add: Sequ_def)
       
    23 
       
    24 
       
    25 section \<open>Semantic Derivative (Left Quotient) of Languages\<close>
       
    26 
       
    27 definition
       
    28   Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
       
    29 where
       
    30   "Der c A \<equiv> {s. c # s \<in> A}"
       
    31 
       
    32 definition
       
    33   Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
       
    34 where
       
    35   "Ders s A \<equiv> {s'. s @ s' \<in> A}"
       
    36 
       
    37 lemma Der_null [simp]:
       
    38   shows "Der c {} = {}"
       
    39 unfolding Der_def
       
    40 by auto
       
    41 
       
    42 lemma Der_empty [simp]:
       
    43   shows "Der c {[]} = {}"
       
    44 unfolding Der_def
       
    45 by auto
       
    46 
       
    47 lemma Der_char [simp]:
       
    48   shows "Der c {[d]} = (if c = d then {[]} else {})"
       
    49 unfolding Der_def
       
    50 by auto
       
    51 
       
    52 lemma Der_union [simp]:
       
    53   shows "Der c (A \<union> B) = Der c A \<union> Der c B"
       
    54 unfolding Der_def
       
    55 by auto
       
    56 
       
    57 lemma Der_Sequ [simp]:
       
    58   shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
       
    59 unfolding Der_def Sequ_def
       
    60 by (auto simp add: Cons_eq_append_conv)
       
    61 
       
    62 
       
    63 section \<open>Kleene Star for Languages\<close>
       
    64 
       
    65 inductive_set
       
    66   Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
       
    67   for A :: "string set"
       
    68 where
       
    69   start[intro]: "[] \<in> A\<star>"
       
    70 | step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
       
    71 
       
    72 (* Arden's lemma *)
       
    73 
       
    74 lemma Star_cases:
       
    75   shows "A\<star> = {[]} \<union> A ;; A\<star>"
       
    76 unfolding Sequ_def
       
    77 by (auto) (metis Star.simps)
       
    78 
       
    79 lemma Star_decomp: 
       
    80   assumes "c # x \<in> A\<star>" 
       
    81   shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
       
    82 using assms
       
    83 by (induct x\<equiv>"c # x" rule: Star.induct) 
       
    84    (auto simp add: append_eq_Cons_conv)
       
    85 
       
    86 lemma Star_Der_Sequ: 
       
    87   shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
       
    88 unfolding Der_def Sequ_def
       
    89 by(auto simp add: Star_decomp)
       
    90 
       
    91 
       
    92 lemma Der_star[simp]:
       
    93   shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
       
    94 proof -    
       
    95   have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
       
    96     by (simp only: Star_cases[symmetric])
       
    97   also have "... = Der c (A ;; A\<star>)"
       
    98     by (simp only: Der_union Der_empty) (simp)
       
    99   also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
       
   100     by simp
       
   101   also have "... =  (Der c A) ;; A\<star>"
       
   102     using Star_Der_Sequ by auto
       
   103   finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
       
   104 qed
       
   105 
       
   106 lemma Star_concat:
       
   107   assumes "\<forall>s \<in> set ss. s \<in> A"  
       
   108   shows "concat ss \<in> A\<star>"
       
   109 using assms by (induct ss) (auto)
       
   110 
       
   111 lemma Star_split:
       
   112   assumes "s \<in> A\<star>"
       
   113   shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
       
   114 using assms
       
   115   apply(induct rule: Star.induct)
       
   116   using concat.simps(1) apply fastforce
       
   117   apply(clarify)
       
   118   by (metis append_Nil concat.simps(2) set_ConsD)
       
   119 
       
   120 
       
   121 
       
   122 section \<open>Regular Expressions\<close>
       
   123 
       
   124 datatype rexp =
       
   125   ZERO
       
   126 | ONE
       
   127 | CH char
       
   128 | SEQ rexp rexp
       
   129 | ALT rexp rexp
       
   130 | STAR rexp
       
   131 
       
   132 section \<open>Semantics of Regular Expressions\<close>
       
   133  
       
   134 fun
       
   135   L :: "rexp \<Rightarrow> string set"
       
   136 where
       
   137   "L (ZERO) = {}"
       
   138 | "L (ONE) = {[]}"
       
   139 | "L (CH c) = {[c]}"
       
   140 | "L (SEQ r1 r2) = (L r1) ;; (L r2)"
       
   141 | "L (ALT r1 r2) = (L r1) \<union> (L r2)"
       
   142 | "L (STAR r) = (L r)\<star>"
       
   143 
       
   144 
       
   145 section \<open>Nullable, Derivatives\<close>
       
   146 
       
   147 fun
       
   148  nullable :: "rexp \<Rightarrow> bool"
       
   149 where
       
   150   "nullable (ZERO) = False"
       
   151 | "nullable (ONE) = True"
       
   152 | "nullable (CH c) = False"
       
   153 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
       
   154 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
       
   155 | "nullable (STAR r) = True"
       
   156 
       
   157 
       
   158 fun
       
   159  der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
       
   160 where
       
   161   "der c (ZERO) = ZERO"
       
   162 | "der c (ONE) = ZERO"
       
   163 | "der c (CH d) = (if c = d then ONE else ZERO)"
       
   164 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
       
   165 | "der c (SEQ r1 r2) = 
       
   166      (if nullable r1
       
   167       then ALT (SEQ (der c r1) r2) (der c r2)
       
   168       else SEQ (der c r1) r2)"
       
   169 | "der c (STAR r) = SEQ (der c r) (STAR r)"
       
   170 
       
   171 fun 
       
   172  ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
       
   173 where
       
   174   "ders [] r = r"
       
   175 | "ders (c # s) r = ders s (der c r)"
       
   176 
       
   177 
       
   178 lemma nullable_correctness:
       
   179   shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
       
   180 by (induct r) (auto simp add: Sequ_def) 
       
   181 
       
   182 lemma der_correctness:
       
   183   shows "L (der c r) = Der c (L r)"
       
   184 by (induct r) (simp_all add: nullable_correctness)
       
   185 
       
   186 lemma ders_correctness:
       
   187   shows "L (ders s r) = Ders s (L r)"
       
   188   by (induct s arbitrary: r)
       
   189      (simp_all add: Ders_def der_correctness Der_def)
       
   190 
       
   191 lemma ders_append:
       
   192   shows "ders (s1 @ s2) r = ders s2 (ders s1 r)"
       
   193   by (induct s1 arbitrary: s2 r) (auto)
       
   194 
       
   195 lemma ders_snoc:
       
   196   shows "ders (s @ [c]) r = der c (ders s r)"
       
   197   by (simp add: ders_append)
       
   198 
       
   199 
       
   200 (*
       
   201 datatype ctxt = 
       
   202     SeqC rexp bool
       
   203   | AltCL rexp
       
   204   | AltCH rexp 
       
   205   | StarC rexp 
       
   206 
       
   207 function
       
   208      down :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list"
       
   209 and  up :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list"
       
   210 where
       
   211   "down c (SEQ r1 r2) ctxts =
       
   212      (if (nullable r1) then down c r1 (SeqC r2 True # ctxts) 
       
   213       else down c r1 (SeqC r2 False # ctxts))"
       
   214 | "down c (CH d) ctxts = 
       
   215      (if c = d then up c ONE ctxts else up c ZERO ctxts)"
       
   216 | "down c ONE ctxts = up c ZERO ctxts"
       
   217 | "down c ZERO ctxts = up c ZERO ctxts"
       
   218 | "down c (ALT r1 r2) ctxts = down c r1 (AltCH r2 # ctxts)"
       
   219 | "down c (STAR r1) ctxts = down c r1 (StarC r1 # ctxts)"
       
   220 | "up c r [] = (r, [])"
       
   221 | "up c r (SeqC r2 False # ctxts) = up c (SEQ r r2) ctxts"
       
   222 | "up c r (SeqC r2 True # ctxts) = down c r2 (AltCL (SEQ r r2) # ctxts)"
       
   223 | "up c r (AltCL r1 # ctxts) = up c (ALT r1 r) ctxts"
       
   224 | "up c r (AltCH r2 # ctxts) = down c r2 (AltCL r # ctxts)"
       
   225 | "up c r (StarC r1 # ctxts) = up c (SEQ r (STAR r1)) ctxts"
       
   226   apply(pat_completeness)
       
   227   apply(auto)
       
   228   done
       
   229 
       
   230 termination
       
   231   sorry
       
   232 
       
   233 *)
       
   234 
       
   235 
       
   236 end