|
1 theory RegLangs |
|
2 imports Main "HOL-Library.Sublist" |
|
3 begin |
|
4 |
|
5 section \<open>Sequential Composition of Languages\<close> |
|
6 |
|
7 definition |
|
8 Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
9 where |
|
10 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
11 |
|
12 text \<open>Two Simple Properties about Sequential Composition\<close> |
|
13 |
|
14 lemma Sequ_empty_string [simp]: |
|
15 shows "A ;; {[]} = A" |
|
16 and "{[]} ;; A = A" |
|
17 by (simp_all add: Sequ_def) |
|
18 |
|
19 lemma Sequ_empty [simp]: |
|
20 shows "A ;; {} = {}" |
|
21 and "{} ;; A = {}" |
|
22 by (simp_all add: Sequ_def) |
|
23 |
|
24 |
|
25 section \<open>Semantic Derivative (Left Quotient) of Languages\<close> |
|
26 |
|
27 definition |
|
28 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
|
29 where |
|
30 "Der c A \<equiv> {s. c # s \<in> A}" |
|
31 |
|
32 definition |
|
33 Ders :: "string \<Rightarrow> string set \<Rightarrow> string set" |
|
34 where |
|
35 "Ders s A \<equiv> {s'. s @ s' \<in> A}" |
|
36 |
|
37 lemma Der_null [simp]: |
|
38 shows "Der c {} = {}" |
|
39 unfolding Der_def |
|
40 by auto |
|
41 |
|
42 lemma Der_empty [simp]: |
|
43 shows "Der c {[]} = {}" |
|
44 unfolding Der_def |
|
45 by auto |
|
46 |
|
47 lemma Der_char [simp]: |
|
48 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
49 unfolding Der_def |
|
50 by auto |
|
51 |
|
52 lemma Der_union [simp]: |
|
53 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
54 unfolding Der_def |
|
55 by auto |
|
56 |
|
57 lemma Der_Sequ [simp]: |
|
58 shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})" |
|
59 unfolding Der_def Sequ_def |
|
60 by (auto simp add: Cons_eq_append_conv) |
|
61 |
|
62 |
|
63 section \<open>Kleene Star for Languages\<close> |
|
64 |
|
65 inductive_set |
|
66 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
67 for A :: "string set" |
|
68 where |
|
69 start[intro]: "[] \<in> A\<star>" |
|
70 | step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>" |
|
71 |
|
72 (* Arden's lemma *) |
|
73 |
|
74 lemma Star_cases: |
|
75 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
76 unfolding Sequ_def |
|
77 by (auto) (metis Star.simps) |
|
78 |
|
79 lemma Star_decomp: |
|
80 assumes "c # x \<in> A\<star>" |
|
81 shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>" |
|
82 using assms |
|
83 by (induct x\<equiv>"c # x" rule: Star.induct) |
|
84 (auto simp add: append_eq_Cons_conv) |
|
85 |
|
86 lemma Star_Der_Sequ: |
|
87 shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>" |
|
88 unfolding Der_def Sequ_def |
|
89 by(auto simp add: Star_decomp) |
|
90 |
|
91 |
|
92 lemma Der_star[simp]: |
|
93 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
|
94 proof - |
|
95 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
|
96 by (simp only: Star_cases[symmetric]) |
|
97 also have "... = Der c (A ;; A\<star>)" |
|
98 by (simp only: Der_union Der_empty) (simp) |
|
99 also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})" |
|
100 by simp |
|
101 also have "... = (Der c A) ;; A\<star>" |
|
102 using Star_Der_Sequ by auto |
|
103 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
|
104 qed |
|
105 |
|
106 lemma Star_concat: |
|
107 assumes "\<forall>s \<in> set ss. s \<in> A" |
|
108 shows "concat ss \<in> A\<star>" |
|
109 using assms by (induct ss) (auto) |
|
110 |
|
111 lemma Star_split: |
|
112 assumes "s \<in> A\<star>" |
|
113 shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])" |
|
114 using assms |
|
115 apply(induct rule: Star.induct) |
|
116 using concat.simps(1) apply fastforce |
|
117 apply(clarify) |
|
118 by (metis append_Nil concat.simps(2) set_ConsD) |
|
119 |
|
120 |
|
121 |
|
122 section \<open>Regular Expressions\<close> |
|
123 |
|
124 datatype rexp = |
|
125 ZERO |
|
126 | ONE |
|
127 | CH char |
|
128 | SEQ rexp rexp |
|
129 | ALT rexp rexp |
|
130 | STAR rexp |
|
131 |
|
132 section \<open>Semantics of Regular Expressions\<close> |
|
133 |
|
134 fun |
|
135 L :: "rexp \<Rightarrow> string set" |
|
136 where |
|
137 "L (ZERO) = {}" |
|
138 | "L (ONE) = {[]}" |
|
139 | "L (CH c) = {[c]}" |
|
140 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
141 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
142 | "L (STAR r) = (L r)\<star>" |
|
143 |
|
144 |
|
145 section \<open>Nullable, Derivatives\<close> |
|
146 |
|
147 fun |
|
148 nullable :: "rexp \<Rightarrow> bool" |
|
149 where |
|
150 "nullable (ZERO) = False" |
|
151 | "nullable (ONE) = True" |
|
152 | "nullable (CH c) = False" |
|
153 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
154 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
155 | "nullable (STAR r) = True" |
|
156 |
|
157 |
|
158 fun |
|
159 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
160 where |
|
161 "der c (ZERO) = ZERO" |
|
162 | "der c (ONE) = ZERO" |
|
163 | "der c (CH d) = (if c = d then ONE else ZERO)" |
|
164 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
165 | "der c (SEQ r1 r2) = |
|
166 (if nullable r1 |
|
167 then ALT (SEQ (der c r1) r2) (der c r2) |
|
168 else SEQ (der c r1) r2)" |
|
169 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
170 |
|
171 fun |
|
172 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
173 where |
|
174 "ders [] r = r" |
|
175 | "ders (c # s) r = ders s (der c r)" |
|
176 |
|
177 |
|
178 lemma nullable_correctness: |
|
179 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
180 by (induct r) (auto simp add: Sequ_def) |
|
181 |
|
182 lemma der_correctness: |
|
183 shows "L (der c r) = Der c (L r)" |
|
184 by (induct r) (simp_all add: nullable_correctness) |
|
185 |
|
186 lemma ders_correctness: |
|
187 shows "L (ders s r) = Ders s (L r)" |
|
188 by (induct s arbitrary: r) |
|
189 (simp_all add: Ders_def der_correctness Der_def) |
|
190 |
|
191 lemma ders_append: |
|
192 shows "ders (s1 @ s2) r = ders s2 (ders s1 r)" |
|
193 by (induct s1 arbitrary: s2 r) (auto) |
|
194 |
|
195 lemma ders_snoc: |
|
196 shows "ders (s @ [c]) r = der c (ders s r)" |
|
197 by (simp add: ders_append) |
|
198 |
|
199 |
|
200 (* |
|
201 datatype ctxt = |
|
202 SeqC rexp bool |
|
203 | AltCL rexp |
|
204 | AltCH rexp |
|
205 | StarC rexp |
|
206 |
|
207 function |
|
208 down :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list" |
|
209 and up :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list" |
|
210 where |
|
211 "down c (SEQ r1 r2) ctxts = |
|
212 (if (nullable r1) then down c r1 (SeqC r2 True # ctxts) |
|
213 else down c r1 (SeqC r2 False # ctxts))" |
|
214 | "down c (CH d) ctxts = |
|
215 (if c = d then up c ONE ctxts else up c ZERO ctxts)" |
|
216 | "down c ONE ctxts = up c ZERO ctxts" |
|
217 | "down c ZERO ctxts = up c ZERO ctxts" |
|
218 | "down c (ALT r1 r2) ctxts = down c r1 (AltCH r2 # ctxts)" |
|
219 | "down c (STAR r1) ctxts = down c r1 (StarC r1 # ctxts)" |
|
220 | "up c r [] = (r, [])" |
|
221 | "up c r (SeqC r2 False # ctxts) = up c (SEQ r r2) ctxts" |
|
222 | "up c r (SeqC r2 True # ctxts) = down c r2 (AltCL (SEQ r r2) # ctxts)" |
|
223 | "up c r (AltCL r1 # ctxts) = up c (ALT r1 r) ctxts" |
|
224 | "up c r (AltCH r2 # ctxts) = down c r2 (AltCL r # ctxts)" |
|
225 | "up c r (StarC r1 # ctxts) = up c (SEQ r (STAR r1)) ctxts" |
|
226 apply(pat_completeness) |
|
227 apply(auto) |
|
228 done |
|
229 |
|
230 termination |
|
231 sorry |
|
232 |
|
233 *) |
|
234 |
|
235 |
|
236 end |