|
1 |
|
2 theory ReTest |
|
3 imports "Main" |
|
4 begin |
|
5 |
|
6 |
|
7 section {* Sequential Composition of Sets *} |
|
8 |
|
9 definition |
|
10 Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
11 where |
|
12 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
13 |
|
14 fun spow where |
|
15 "spow s 0 = []" |
|
16 | "spow s (Suc n) = s @ spow s n" |
|
17 |
|
18 text {* Two Simple Properties about Sequential Composition *} |
|
19 |
|
20 lemma seq_empty [simp]: |
|
21 shows "A ;; {[]} = A" |
|
22 and "{[]} ;; A = A" |
|
23 by (simp_all add: Sequ_def) |
|
24 |
|
25 lemma seq_null [simp]: |
|
26 shows "A ;; {} = {}" |
|
27 and "{} ;; A = {}" |
|
28 by (simp_all add: Sequ_def) |
|
29 |
|
30 definition |
|
31 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
|
32 where |
|
33 "Der c A \<equiv> {s. [c] @ s \<in> A}" |
|
34 |
|
35 definition |
|
36 Ders :: "string \<Rightarrow> string set \<Rightarrow> string set" |
|
37 where |
|
38 "Ders s A \<equiv> {s' | s'. s @ s' \<in> A}" |
|
39 |
|
40 lemma Der_null [simp]: |
|
41 shows "Der c {} = {}" |
|
42 unfolding Der_def |
|
43 by auto |
|
44 |
|
45 lemma Der_empty [simp]: |
|
46 shows "Der c {[]} = {}" |
|
47 unfolding Der_def |
|
48 by auto |
|
49 |
|
50 lemma Der_char [simp]: |
|
51 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
52 unfolding Der_def |
|
53 by auto |
|
54 |
|
55 lemma Der_union [simp]: |
|
56 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
57 unfolding Der_def |
|
58 by auto |
|
59 |
|
60 lemma Der_seq [simp]: |
|
61 shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})" |
|
62 unfolding Der_def Sequ_def |
|
63 apply (auto simp add: Cons_eq_append_conv) |
|
64 done |
|
65 |
|
66 lemma seq_image: |
|
67 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
68 shows "f ` (A ;; B) = (f ` A) ;; (f ` B)" |
|
69 apply(auto simp add: Sequ_def image_def) |
|
70 apply(rule_tac x="f s1" in exI) |
|
71 apply(rule_tac x="f s2" in exI) |
|
72 using assms |
|
73 apply(auto) |
|
74 apply(rule_tac x="xa @ xb" in exI) |
|
75 using assms |
|
76 apply(auto) |
|
77 done |
|
78 |
|
79 section {* Kleene Star for Sets *} |
|
80 |
|
81 inductive_set |
|
82 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
83 for A :: "string set" |
|
84 where |
|
85 start[intro]: "[] \<in> A\<star>" |
|
86 | step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>" |
|
87 |
|
88 lemma star_cases: |
|
89 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
90 unfolding Sequ_def |
|
91 by (auto) (metis Star.simps) |
|
92 |
|
93 |
|
94 fun |
|
95 pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [100,100] 100) |
|
96 where |
|
97 "A \<up> 0 = {[]}" |
|
98 | "A \<up> (Suc n) = A ;; (A \<up> n)" |
|
99 |
|
100 lemma star1: |
|
101 shows "s \<in> A\<star> \<Longrightarrow> \<exists>n. s \<in> A \<up> n" |
|
102 apply(induct rule: Star.induct) |
|
103 apply (metis pow.simps(1) insertI1) |
|
104 apply(auto) |
|
105 apply(rule_tac x="Suc n" in exI) |
|
106 apply(auto simp add: Sequ_def) |
|
107 done |
|
108 |
|
109 lemma star2: |
|
110 shows "s \<in> A \<up> n \<Longrightarrow> s \<in> A\<star>" |
|
111 apply(induct n arbitrary: s) |
|
112 apply (metis pow.simps(1) Star.simps empty_iff insertE) |
|
113 apply(auto simp add: Sequ_def) |
|
114 done |
|
115 |
|
116 lemma star3: |
|
117 shows "A\<star> = (\<Union>i. A \<up> i)" |
|
118 using star1 star2 |
|
119 apply(auto) |
|
120 done |
|
121 |
|
122 lemma star4: |
|
123 shows "s \<in> A \<up> n \<Longrightarrow> \<exists>ss. s = concat ss \<and> (\<forall>s' \<in> set ss. s' \<in> A)" |
|
124 apply(induct n arbitrary: s) |
|
125 apply(auto simp add: Sequ_def) |
|
126 apply(rule_tac x="[]" in exI) |
|
127 apply(auto) |
|
128 apply(drule_tac x="s2" in meta_spec) |
|
129 apply(auto) |
|
130 by (metis concat.simps(2) insertE set_simps(2)) |
|
131 |
|
132 lemma star5: |
|
133 assumes "f [] = []" |
|
134 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
135 shows "(f ` A) \<up> n = f ` (A \<up> n)" |
|
136 apply(induct n) |
|
137 apply(simp add: assms) |
|
138 apply(simp) |
|
139 apply(subst seq_image[OF assms(2)]) |
|
140 apply(simp) |
|
141 done |
|
142 |
|
143 lemma star6: |
|
144 assumes "f [] = []" |
|
145 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
146 shows "(f ` A)\<star> = f ` (A\<star>)" |
|
147 apply(simp add: star3) |
|
148 apply(simp add: image_UN) |
|
149 apply(subst star5[OF assms]) |
|
150 apply(simp) |
|
151 done |
|
152 |
|
153 lemma star_decomp: |
|
154 assumes a: "c # x \<in> A\<star>" |
|
155 shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>" |
|
156 using a |
|
157 by (induct x\<equiv>"c # x" rule: Star.induct) |
|
158 (auto simp add: append_eq_Cons_conv) |
|
159 |
|
160 lemma Der_star [simp]: |
|
161 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
|
162 proof - |
|
163 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
|
164 |
|
165 by (simp only: star_cases[symmetric]) |
|
166 also have "... = Der c (A ;; A\<star>)" |
|
167 by (simp only: Der_union Der_empty) (simp) |
|
168 also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})" |
|
169 by simp |
|
170 also have "... = (Der c A) ;; A\<star>" |
|
171 unfolding Sequ_def Der_def |
|
172 by (auto dest: star_decomp) |
|
173 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
|
174 qed |
|
175 |
|
176 |
|
177 |
|
178 section {* Regular Expressions *} |
|
179 |
|
180 datatype rexp = |
|
181 NULL |
|
182 | EMPTY |
|
183 | CHAR char |
|
184 | SEQ rexp rexp |
|
185 | ALT rexp rexp |
|
186 | STAR rexp |
|
187 |
|
188 section {* Semantics of Regular Expressions *} |
|
189 |
|
190 fun |
|
191 L :: "rexp \<Rightarrow> string set" |
|
192 where |
|
193 "L (NULL) = {}" |
|
194 | "L (EMPTY) = {[]}" |
|
195 | "L (CHAR c) = {[c]}" |
|
196 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
197 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
198 | "L (STAR r) = (L r)\<star>" |
|
199 |
|
200 fun |
|
201 nullable :: "rexp \<Rightarrow> bool" |
|
202 where |
|
203 "nullable (NULL) = False" |
|
204 | "nullable (EMPTY) = True" |
|
205 | "nullable (CHAR c) = False" |
|
206 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
207 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
208 | "nullable (STAR r) = True" |
|
209 |
|
210 lemma nullable_correctness: |
|
211 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
212 apply (induct r) |
|
213 apply(auto simp add: Sequ_def) |
|
214 done |
|
215 |
|
216 |
|
217 |
|
218 section {* Values *} |
|
219 |
|
220 datatype val = |
|
221 Void |
|
222 | Char char |
|
223 | Seq val val |
|
224 | Right val |
|
225 | Left val |
|
226 | Stars "val list" |
|
227 |
|
228 section {* The string behind a value *} |
|
229 |
|
230 fun |
|
231 flat :: "val \<Rightarrow> string" |
|
232 where |
|
233 "flat (Void) = []" |
|
234 | "flat (Char c) = [c]" |
|
235 | "flat (Left v) = flat v" |
|
236 | "flat (Right v) = flat v" |
|
237 | "flat (Seq v1 v2) = (flat v1) @ (flat v2)" |
|
238 | "flat (Stars []) = []" |
|
239 | "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" |
|
240 |
|
241 lemma [simp]: |
|
242 "flat (Stars vs) = concat (map flat vs)" |
|
243 apply(induct vs) |
|
244 apply(auto) |
|
245 done |
|
246 |
|
247 section {* Relation between values and regular expressions *} |
|
248 |
|
249 inductive |
|
250 NPrf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100) |
|
251 where |
|
252 "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2" |
|
253 | "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2" |
|
254 | "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2" |
|
255 | "\<Turnstile> Void : EMPTY" |
|
256 | "\<Turnstile> Char c : CHAR c" |
|
257 | "\<Turnstile> Stars [] : STAR r" |
|
258 | "\<lbrakk>\<Turnstile> v : r; \<Turnstile> Stars vs : STAR r; flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (v # vs) : STAR r" |
|
259 |
|
260 inductive |
|
261 Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100) |
|
262 where |
|
263 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2" |
|
264 | "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2" |
|
265 | "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2" |
|
266 | "\<turnstile> Void : EMPTY" |
|
267 | "\<turnstile> Char c : CHAR c" |
|
268 | "\<turnstile> Stars [] : STAR r" |
|
269 | "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r" |
|
270 |
|
271 lemma NPrf_imp_Prf: |
|
272 assumes "\<Turnstile> v : r" |
|
273 shows "\<turnstile> v : r" |
|
274 using assms |
|
275 apply(induct) |
|
276 apply(auto intro: Prf.intros) |
|
277 done |
|
278 |
|
279 lemma NPrf_Prf_val: |
|
280 shows "\<turnstile> v : r \<Longrightarrow> \<exists>v'. flat v' = flat v \<and> \<Turnstile> v' : r" |
|
281 and "\<turnstile> Stars vs : r \<Longrightarrow> \<exists>vs'. flat (Stars vs') = flat (Stars vs) \<and> \<Turnstile> Stars vs' : r" |
|
282 using assms |
|
283 apply(induct v and vs arbitrary: r and r rule: val.inducts) |
|
284 apply(auto)[1] |
|
285 apply(erule Prf.cases) |
|
286 apply(simp_all)[7] |
|
287 apply(rule_tac x="Void" in exI) |
|
288 apply(simp) |
|
289 apply(rule NPrf.intros) |
|
290 apply(erule Prf.cases) |
|
291 apply(simp_all)[7] |
|
292 apply(rule_tac x="Char c" in exI) |
|
293 apply(simp) |
|
294 apply(rule NPrf.intros) |
|
295 apply(erule Prf.cases) |
|
296 apply(simp_all)[7] |
|
297 apply(auto)[1] |
|
298 apply(drule_tac x="r1" in meta_spec) |
|
299 apply(drule_tac x="r2" in meta_spec) |
|
300 apply(simp) |
|
301 apply(auto)[1] |
|
302 apply(rule_tac x="Seq v' v'a" in exI) |
|
303 apply(simp) |
|
304 apply (metis NPrf.intros(1)) |
|
305 apply(erule Prf.cases) |
|
306 apply(simp_all)[7] |
|
307 apply(clarify) |
|
308 apply(drule_tac x="r2" in meta_spec) |
|
309 apply(simp) |
|
310 apply(auto)[1] |
|
311 apply(rule_tac x="Right v'" in exI) |
|
312 apply(simp) |
|
313 apply (metis NPrf.intros) |
|
314 apply(erule Prf.cases) |
|
315 apply(simp_all)[7] |
|
316 apply(clarify) |
|
317 apply(drule_tac x="r1" in meta_spec) |
|
318 apply(simp) |
|
319 apply(auto)[1] |
|
320 apply(rule_tac x="Left v'" in exI) |
|
321 apply(simp) |
|
322 apply (metis NPrf.intros) |
|
323 apply(drule_tac x="r" in meta_spec) |
|
324 apply(simp) |
|
325 apply(auto)[1] |
|
326 apply(rule_tac x="Stars vs'" in exI) |
|
327 apply(simp) |
|
328 apply(rule_tac x="[]" in exI) |
|
329 apply(simp) |
|
330 apply(erule Prf.cases) |
|
331 apply(simp_all)[7] |
|
332 apply (metis NPrf.intros(6)) |
|
333 apply(erule Prf.cases) |
|
334 apply(simp_all)[7] |
|
335 apply(auto)[1] |
|
336 apply(drule_tac x="ra" in meta_spec) |
|
337 apply(simp) |
|
338 apply(drule_tac x="STAR ra" in meta_spec) |
|
339 apply(simp) |
|
340 apply(auto) |
|
341 apply(case_tac "flat v = []") |
|
342 apply(rule_tac x="vs'" in exI) |
|
343 apply(simp) |
|
344 apply(rule_tac x="v' # vs'" in exI) |
|
345 apply(simp) |
|
346 apply(rule NPrf.intros) |
|
347 apply(auto) |
|
348 done |
|
349 |
|
350 lemma NPrf_Prf: |
|
351 shows "{flat v | v. \<turnstile> v : r} = {flat v | v. \<Turnstile> v : r}" |
|
352 apply(auto) |
|
353 apply (metis NPrf_Prf_val(1)) |
|
354 by (metis NPrf_imp_Prf) |
|
355 |
|
356 |
|
357 lemma not_nullable_flat: |
|
358 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
359 shows "flat v \<noteq> []" |
|
360 using assms |
|
361 apply(induct) |
|
362 apply(auto) |
|
363 done |
|
364 |
|
365 lemma Prf_flat_L: |
|
366 assumes "\<turnstile> v : r" shows "flat v \<in> L r" |
|
367 using assms |
|
368 apply(induct v r rule: Prf.induct) |
|
369 apply(auto simp add: Sequ_def) |
|
370 done |
|
371 |
|
372 lemma NPrf_flat_L: |
|
373 assumes "\<Turnstile> v : r" shows "flat v \<in> L r" |
|
374 using assms |
|
375 by (metis NPrf_imp_Prf Prf_flat_L) |
|
376 |
|
377 lemma Prf_Stars: |
|
378 assumes "\<forall>v \<in> set vs. \<turnstile> v : r" |
|
379 shows "\<turnstile> Stars vs : STAR r" |
|
380 using assms |
|
381 apply(induct vs) |
|
382 apply (metis Prf.intros(6)) |
|
383 by (metis Prf.intros(7) insert_iff set_simps(2)) |
|
384 |
|
385 lemma Star_string: |
|
386 assumes "s \<in> A\<star>" |
|
387 shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)" |
|
388 using assms |
|
389 apply(induct rule: Star.induct) |
|
390 apply(auto) |
|
391 apply(rule_tac x="[]" in exI) |
|
392 apply(simp) |
|
393 apply(rule_tac x="s1#ss" in exI) |
|
394 apply(simp) |
|
395 done |
|
396 |
|
397 lemma Star_val: |
|
398 assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r" |
|
399 shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)" |
|
400 using assms |
|
401 apply(induct ss) |
|
402 apply(auto) |
|
403 apply (metis empty_iff list.set(1)) |
|
404 by (metis concat.simps(2) list.simps(9) set_ConsD) |
|
405 |
|
406 lemma Star_valN: |
|
407 assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r" |
|
408 shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r)" |
|
409 using assms |
|
410 apply(induct ss) |
|
411 apply(auto) |
|
412 apply (metis empty_iff list.set(1)) |
|
413 by (metis concat.simps(2) list.simps(9) set_ConsD) |
|
414 |
|
415 lemma L_flat_Prf: |
|
416 "L(r) = {flat v | v. \<turnstile> v : r}" |
|
417 apply(induct r) |
|
418 apply(auto dest: Prf_flat_L simp add: Sequ_def) |
|
419 apply (metis Prf.intros(4) flat.simps(1)) |
|
420 apply (metis Prf.intros(5) flat.simps(2)) |
|
421 apply (metis Prf.intros(1) flat.simps(5)) |
|
422 apply (metis Prf.intros(2) flat.simps(3)) |
|
423 apply (metis Prf.intros(3) flat.simps(4)) |
|
424 apply(erule Prf.cases) |
|
425 apply(auto) |
|
426 apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = x \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)") |
|
427 apply(auto)[1] |
|
428 apply(rule_tac x="Stars vs" in exI) |
|
429 apply(simp) |
|
430 apply(rule Prf_Stars) |
|
431 apply(simp) |
|
432 apply(drule Star_string) |
|
433 apply(auto) |
|
434 apply(rule Star_val) |
|
435 apply(simp) |
|
436 done |
|
437 |
|
438 lemma L_flat_NPrf: |
|
439 "L(r) = {flat v | v. \<Turnstile> v : r}" |
|
440 by (metis L_flat_Prf NPrf_Prf) |
|
441 |
|
442 text {* nicer proofs by Fahad *} |
|
443 |
|
444 lemma Prf_Star_flat_L: |
|
445 assumes "\<turnstile> v : STAR r" shows "flat v \<in> (L r)\<star>" |
|
446 using assms |
|
447 apply(induct v r\<equiv>"STAR r" arbitrary: r rule: Prf.induct) |
|
448 apply(auto) |
|
449 apply(simp add: star3) |
|
450 apply(auto) |
|
451 apply(rule_tac x="Suc x" in exI) |
|
452 apply(auto simp add: Sequ_def) |
|
453 apply(rule_tac x="flat v" in exI) |
|
454 apply(rule_tac x="flat (Stars vs)" in exI) |
|
455 apply(auto) |
|
456 by (metis Prf_flat_L) |
|
457 |
|
458 lemma L_flat_Prf2: |
|
459 "L(r) = {flat v | v. \<turnstile> v : r}" |
|
460 apply(induct r) |
|
461 apply(auto) |
|
462 using L.simps(1) Prf_flat_L |
|
463 apply(blast) |
|
464 using Prf.intros(4) |
|
465 apply(force) |
|
466 using L.simps(2) Prf_flat_L |
|
467 apply(blast) |
|
468 using Prf.intros(5) apply force |
|
469 using L.simps(3) Prf_flat_L apply blast |
|
470 using L_flat_Prf apply auto[1] |
|
471 apply (smt L.simps(4) Sequ_def mem_Collect_eq) |
|
472 using Prf_flat_L |
|
473 apply(fastforce) |
|
474 apply(metis Prf.intros(2) flat.simps(3)) |
|
475 apply(metis Prf.intros(3) flat.simps(4)) |
|
476 apply(erule Prf.cases) |
|
477 apply(simp) |
|
478 apply(simp) |
|
479 apply(auto) |
|
480 using L_flat_Prf apply auto[1] |
|
481 apply (smt Collect_cong L.simps(6) mem_Collect_eq) |
|
482 using Prf_Star_flat_L |
|
483 apply(fastforce) |
|
484 done |
|
485 |
|
486 |
|
487 section {* Values Sets *} |
|
488 |
|
489 definition prefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubseteq> _" [100, 100] 100) |
|
490 where |
|
491 "s1 \<sqsubseteq> s2 \<equiv> \<exists>s3. s1 @ s3 = s2" |
|
492 |
|
493 definition sprefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubset> _" [100, 100] 100) |
|
494 where |
|
495 "s1 \<sqsubset> s2 \<equiv> (s1 \<sqsubseteq> s2 \<and> s1 \<noteq> s2)" |
|
496 |
|
497 lemma length_sprefix: |
|
498 "s1 \<sqsubset> s2 \<Longrightarrow> length s1 < length s2" |
|
499 unfolding sprefix_def prefix_def |
|
500 by (auto) |
|
501 |
|
502 definition Prefixes :: "string \<Rightarrow> string set" where |
|
503 "Prefixes s \<equiv> {sp. sp \<sqsubseteq> s}" |
|
504 |
|
505 definition Suffixes :: "string \<Rightarrow> string set" where |
|
506 "Suffixes s \<equiv> rev ` (Prefixes (rev s))" |
|
507 |
|
508 definition SPrefixes :: "string \<Rightarrow> string set" where |
|
509 "SPrefixes s \<equiv> {sp. sp \<sqsubset> s}" |
|
510 |
|
511 definition SSuffixes :: "string \<Rightarrow> string set" where |
|
512 "SSuffixes s \<equiv> rev ` (SPrefixes (rev s))" |
|
513 |
|
514 lemma Suffixes_in: |
|
515 "\<exists>s1. s1 @ s2 = s3 \<Longrightarrow> s2 \<in> Suffixes s3" |
|
516 unfolding Suffixes_def Prefixes_def prefix_def image_def |
|
517 apply(auto) |
|
518 by (metis rev_rev_ident) |
|
519 |
|
520 lemma SSuffixes_in: |
|
521 "\<exists>s1. s1 \<noteq> [] \<and> s1 @ s2 = s3 \<Longrightarrow> s2 \<in> SSuffixes s3" |
|
522 unfolding SSuffixes_def Suffixes_def SPrefixes_def Prefixes_def sprefix_def prefix_def image_def |
|
523 apply(auto) |
|
524 by (metis append_self_conv rev.simps(1) rev_rev_ident) |
|
525 |
|
526 lemma Prefixes_Cons: |
|
527 "Prefixes (c # s) = {[]} \<union> {c # sp | sp. sp \<in> Prefixes s}" |
|
528 unfolding Prefixes_def prefix_def |
|
529 apply(auto simp add: append_eq_Cons_conv) |
|
530 done |
|
531 |
|
532 lemma finite_Prefixes: |
|
533 "finite (Prefixes s)" |
|
534 apply(induct s) |
|
535 apply(auto simp add: Prefixes_def prefix_def)[1] |
|
536 apply(simp add: Prefixes_Cons) |
|
537 done |
|
538 |
|
539 lemma finite_Suffixes: |
|
540 "finite (Suffixes s)" |
|
541 unfolding Suffixes_def |
|
542 apply(rule finite_imageI) |
|
543 apply(rule finite_Prefixes) |
|
544 done |
|
545 |
|
546 lemma prefix_Cons: |
|
547 "((c # s1) \<sqsubseteq> (c # s2)) = (s1 \<sqsubseteq> s2)" |
|
548 apply(auto simp add: prefix_def) |
|
549 done |
|
550 |
|
551 lemma prefix_append: |
|
552 "((s @ s1) \<sqsubseteq> (s @ s2)) = (s1 \<sqsubseteq> s2)" |
|
553 apply(induct s) |
|
554 apply(simp) |
|
555 apply(simp add: prefix_Cons) |
|
556 done |
|
557 |
|
558 |
|
559 definition Values :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
560 "Values r s \<equiv> {v. \<turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
|
561 |
|
562 definition SValues :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
563 "SValues r s \<equiv> {v. \<turnstile> v : r \<and> flat v = s}" |
|
564 |
|
565 |
|
566 definition NValues :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
567 "NValues r s \<equiv> {v. \<Turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
|
568 |
|
569 lemma NValues_STAR_Nil: |
|
570 "NValues (STAR r) [] = {Stars []}" |
|
571 apply(auto simp add: NValues_def prefix_def) |
|
572 apply(erule NPrf.cases) |
|
573 apply(auto) |
|
574 by (metis NPrf.intros(6)) |
|
575 |
|
576 |
|
577 definition rest :: "val \<Rightarrow> string \<Rightarrow> string" where |
|
578 "rest v s \<equiv> drop (length (flat v)) s" |
|
579 |
|
580 lemma rest_Nil: |
|
581 "rest v [] = []" |
|
582 apply(simp add: rest_def) |
|
583 done |
|
584 |
|
585 lemma rest_Suffixes: |
|
586 "rest v s \<in> Suffixes s" |
|
587 unfolding rest_def |
|
588 by (metis Suffixes_in append_take_drop_id) |
|
589 |
|
590 lemma rest_SSuffixes: |
|
591 assumes "flat v \<noteq> []" "s \<noteq> []" |
|
592 shows "rest v s \<in> SSuffixes s" |
|
593 using assms |
|
594 unfolding rest_def |
|
595 thm SSuffixes_in |
|
596 apply(rule_tac SSuffixes_in) |
|
597 apply(rule_tac x="take (length (flat v)) s" in exI) |
|
598 apply(simp add: sprefix_def) |
|
599 done |
|
600 |
|
601 |
|
602 lemma Values_recs: |
|
603 "Values (NULL) s = {}" |
|
604 "Values (EMPTY) s = {Void}" |
|
605 "Values (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
|
606 "Values (ALT r1 r2) s = {Left v | v. v \<in> Values r1 s} \<union> {Right v | v. v \<in> Values r2 s}" |
|
607 "Values (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" |
|
608 "Values (STAR r) s = |
|
609 {Stars []} \<union> {Stars (v # vs) | v vs. v \<in> Values r s \<and> Stars vs \<in> Values (STAR r) (rest v s)}" |
|
610 unfolding Values_def |
|
611 apply(auto) |
|
612 (*NULL*) |
|
613 apply(erule Prf.cases) |
|
614 apply(simp_all)[7] |
|
615 (*EMPTY*) |
|
616 apply(erule Prf.cases) |
|
617 apply(simp_all)[7] |
|
618 apply(rule Prf.intros) |
|
619 apply (metis append_Nil prefix_def) |
|
620 (*CHAR*) |
|
621 apply(erule Prf.cases) |
|
622 apply(simp_all)[7] |
|
623 apply(rule Prf.intros) |
|
624 apply(erule Prf.cases) |
|
625 apply(simp_all)[7] |
|
626 (*ALT*) |
|
627 apply(erule Prf.cases) |
|
628 apply(simp_all)[7] |
|
629 apply (metis Prf.intros(2)) |
|
630 apply (metis Prf.intros(3)) |
|
631 (*SEQ*) |
|
632 apply(erule Prf.cases) |
|
633 apply(simp_all)[7] |
|
634 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
635 apply (metis Prf.intros(1)) |
|
636 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
637 (*STAR*) |
|
638 apply(erule Prf.cases) |
|
639 apply(simp_all)[7] |
|
640 apply(rule conjI) |
|
641 apply(simp add: prefix_def) |
|
642 apply(auto)[1] |
|
643 apply(simp add: prefix_def) |
|
644 apply(auto)[1] |
|
645 apply (metis append_eq_conv_conj rest_def) |
|
646 apply (metis Prf.intros(6)) |
|
647 apply (metis append_Nil prefix_def) |
|
648 apply (metis Prf.intros(7)) |
|
649 by (metis append_eq_conv_conj prefix_append prefix_def rest_def) |
|
650 |
|
651 lemma NValues_recs: |
|
652 "NValues (NULL) s = {}" |
|
653 "NValues (EMPTY) s = {Void}" |
|
654 "NValues (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
|
655 "NValues (ALT r1 r2) s = {Left v | v. v \<in> NValues r1 s} \<union> {Right v | v. v \<in> NValues r2 s}" |
|
656 "NValues (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> NValues r1 s \<and> v2 \<in> NValues r2 (rest v1 s)}" |
|
657 "NValues (STAR r) s = |
|
658 {Stars []} \<union> {Stars (v # vs) | v vs. v \<in> NValues r s \<and> flat v \<noteq> [] \<and> Stars vs \<in> NValues (STAR r) (rest v s)}" |
|
659 unfolding NValues_def |
|
660 apply(auto) |
|
661 (*NULL*) |
|
662 apply(erule NPrf.cases) |
|
663 apply(simp_all)[7] |
|
664 (*EMPTY*) |
|
665 apply(erule NPrf.cases) |
|
666 apply(simp_all)[7] |
|
667 apply(rule NPrf.intros) |
|
668 apply (metis append_Nil prefix_def) |
|
669 (*CHAR*) |
|
670 apply(erule NPrf.cases) |
|
671 apply(simp_all)[7] |
|
672 apply(rule NPrf.intros) |
|
673 apply(erule NPrf.cases) |
|
674 apply(simp_all)[7] |
|
675 (*ALT*) |
|
676 apply(erule NPrf.cases) |
|
677 apply(simp_all)[7] |
|
678 apply (metis NPrf.intros(2)) |
|
679 apply (metis NPrf.intros(3)) |
|
680 (*SEQ*) |
|
681 apply(erule NPrf.cases) |
|
682 apply(simp_all)[7] |
|
683 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
684 apply (metis NPrf.intros(1)) |
|
685 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
686 (*STAR*) |
|
687 apply(erule NPrf.cases) |
|
688 apply(simp_all) |
|
689 apply(rule conjI) |
|
690 apply(simp add: prefix_def) |
|
691 apply(auto)[1] |
|
692 apply(simp add: prefix_def) |
|
693 apply(auto)[1] |
|
694 apply (metis append_eq_conv_conj rest_def) |
|
695 apply (metis NPrf.intros(6)) |
|
696 apply (metis append_Nil prefix_def) |
|
697 apply (metis NPrf.intros(7)) |
|
698 by (metis append_eq_conv_conj prefix_append prefix_def rest_def) |
|
699 |
|
700 lemma SValues_recs: |
|
701 "SValues (NULL) s = {}" |
|
702 "SValues (EMPTY) s = (if s = [] then {Void} else {})" |
|
703 "SValues (CHAR c) s = (if [c] = s then {Char c} else {})" |
|
704 "SValues (ALT r1 r2) s = {Left v | v. v \<in> SValues r1 s} \<union> {Right v | v. v \<in> SValues r2 s}" |
|
705 "SValues (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. \<exists>s1 s2. s = s1 @ s2 \<and> v1 \<in> SValues r1 s1 \<and> v2 \<in> SValues r2 s2}" |
|
706 "SValues (STAR r) s = (if s = [] then {Stars []} else {}) \<union> |
|
707 {Stars (v # vs) | v vs. \<exists>s1 s2. s = s1 @ s2 \<and> v \<in> SValues r s1 \<and> Stars vs \<in> SValues (STAR r) s2}" |
|
708 unfolding SValues_def |
|
709 apply(auto) |
|
710 (*NULL*) |
|
711 apply(erule Prf.cases) |
|
712 apply(simp_all)[7] |
|
713 (*EMPTY*) |
|
714 apply(erule Prf.cases) |
|
715 apply(simp_all)[7] |
|
716 apply(rule Prf.intros) |
|
717 apply(erule Prf.cases) |
|
718 apply(simp_all)[7] |
|
719 (*CHAR*) |
|
720 apply(erule Prf.cases) |
|
721 apply(simp_all)[7] |
|
722 apply (metis Prf.intros(5)) |
|
723 apply(erule Prf.cases) |
|
724 apply(simp_all)[7] |
|
725 (*ALT*) |
|
726 apply(erule Prf.cases) |
|
727 apply(simp_all)[7] |
|
728 apply metis |
|
729 apply(erule Prf.intros) |
|
730 apply(erule Prf.intros) |
|
731 (* SEQ case *) |
|
732 apply(erule Prf.cases) |
|
733 apply(simp_all)[7] |
|
734 apply (metis Prf.intros(1)) |
|
735 (* STAR case *) |
|
736 apply(erule Prf.cases) |
|
737 apply(simp_all)[7] |
|
738 apply(rule Prf.intros) |
|
739 apply (metis Prf.intros(7)) |
|
740 apply(erule Prf.cases) |
|
741 apply(simp_all)[7] |
|
742 apply (metis Prf.intros(7)) |
|
743 by (metis Prf.intros(7)) |
|
744 |
|
745 lemma finite_image_set2: |
|
746 "finite {x. P x} \<Longrightarrow> finite {y. Q y} \<Longrightarrow> finite {(x, y) | x y. P x \<and> Q y}" |
|
747 by (rule finite_subset [where B = "\<Union>x \<in> {x. P x}. \<Union>y \<in> {y. Q y}. {(x, y)}"]) auto |
|
748 |
|
749 |
|
750 lemma NValues_finite_aux: |
|
751 "(\<lambda>(r, s). finite (NValues r s)) (r, s)" |
|
752 apply(rule wf_induct[of "measure size <*lex*> measure length",where P="\<lambda>(r, s). finite (NValues r s)"]) |
|
753 apply (metis wf_lex_prod wf_measure) |
|
754 apply(auto) |
|
755 apply(case_tac a) |
|
756 apply(simp_all) |
|
757 apply(simp add: NValues_recs) |
|
758 apply(simp add: NValues_recs) |
|
759 apply(simp add: NValues_recs) |
|
760 apply(simp add: NValues_recs) |
|
761 apply(rule_tac f="\<lambda>(x, y). Seq x y" and |
|
762 A="{(v1, v2) | v1 v2. v1 \<in> NValues rexp1 b \<and> v2 \<in> NValues rexp2 (rest v1 b)}" in finite_surj) |
|
763 prefer 2 |
|
764 apply(auto)[1] |
|
765 apply(rule_tac B="\<Union>sp \<in> Suffixes b. {(v1, v2). v1 \<in> NValues rexp1 b \<and> v2 \<in> NValues rexp2 sp}" in finite_subset) |
|
766 apply(auto)[1] |
|
767 apply (metis rest_Suffixes) |
|
768 apply(rule finite_UN_I) |
|
769 apply(rule finite_Suffixes) |
|
770 apply(simp) |
|
771 apply(simp add: NValues_recs) |
|
772 apply(clarify) |
|
773 apply(subst NValues_recs) |
|
774 apply(simp) |
|
775 apply(rule_tac f="\<lambda>(v, vs). Stars (v # vs)" and |
|
776 A="{(v, vs) | v vs. v \<in> NValues rexp b \<and> (flat v \<noteq> [] \<and> Stars vs \<in> NValues (STAR rexp) (rest v b))}" in finite_surj) |
|
777 prefer 2 |
|
778 apply(auto)[1] |
|
779 apply(auto) |
|
780 apply(case_tac b) |
|
781 apply(simp) |
|
782 defer |
|
783 apply(rule_tac B="\<Union>sp \<in> SSuffixes b. {(v, vs) | v vs. v \<in> NValues rexp b \<and> Stars vs \<in> NValues (STAR rexp) sp}" in finite_subset) |
|
784 apply(auto)[1] |
|
785 apply(rule_tac x="rest aa (a # list)" in bexI) |
|
786 apply(simp) |
|
787 apply (rule rest_SSuffixes) |
|
788 apply(simp) |
|
789 apply(simp) |
|
790 apply(rule finite_UN_I) |
|
791 defer |
|
792 apply(frule_tac x="rexp" in spec) |
|
793 apply(drule_tac x="b" in spec) |
|
794 apply(drule conjunct1) |
|
795 apply(drule mp) |
|
796 apply(simp) |
|
797 apply(drule_tac x="STAR rexp" in spec) |
|
798 apply(drule_tac x="sp" in spec) |
|
799 apply(drule conjunct2) |
|
800 apply(drule mp) |
|
801 apply(simp) |
|
802 apply(simp add: prefix_def SPrefixes_def SSuffixes_def) |
|
803 apply(auto)[1] |
|
804 apply (metis length_Cons length_rev length_sprefix rev.simps(2)) |
|
805 apply(simp) |
|
806 apply(rule finite_cartesian_product) |
|
807 apply(simp) |
|
808 apply(rule_tac f="Stars" in finite_imageD) |
|
809 prefer 2 |
|
810 apply(auto simp add: inj_on_def)[1] |
|
811 apply (metis finite_subset image_Collect_subsetI) |
|
812 apply(simp add: rest_Nil) |
|
813 apply(simp add: NValues_STAR_Nil) |
|
814 apply(rule_tac B="{(v, vs). v \<in> NValues rexp [] \<and> vs = []}" in finite_subset) |
|
815 apply(auto)[1] |
|
816 apply(simp) |
|
817 apply(rule_tac B="Suffixes b" in finite_subset) |
|
818 apply(auto simp add: SSuffixes_def Suffixes_def Prefixes_def SPrefixes_def sprefix_def)[1] |
|
819 by (metis finite_Suffixes) |
|
820 |
|
821 lemma NValues_finite: |
|
822 "finite (NValues r s)" |
|
823 using NValues_finite_aux |
|
824 apply(simp) |
|
825 done |
|
826 |
|
827 section {* Sulzmann functions *} |
|
828 |
|
829 fun |
|
830 mkeps :: "rexp \<Rightarrow> val" |
|
831 where |
|
832 "mkeps(EMPTY) = Void" |
|
833 | "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" |
|
834 | "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" |
|
835 | "mkeps(STAR r) = Stars []" |
|
836 |
|
837 section {* Derivatives *} |
|
838 |
|
839 fun |
|
840 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
841 where |
|
842 "der c (NULL) = NULL" |
|
843 | "der c (EMPTY) = NULL" |
|
844 | "der c (CHAR c') = (if c = c' then EMPTY else NULL)" |
|
845 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
846 | "der c (SEQ r1 r2) = |
|
847 (if nullable r1 |
|
848 then ALT (SEQ (der c r1) r2) (der c r2) |
|
849 else SEQ (der c r1) r2)" |
|
850 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
851 |
|
852 fun |
|
853 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
854 where |
|
855 "ders [] r = r" |
|
856 | "ders (c # s) r = ders s (der c r)" |
|
857 |
|
858 |
|
859 lemma der_correctness: |
|
860 shows "L (der c r) = Der c (L r)" |
|
861 apply(induct r) |
|
862 apply(simp_all add: nullable_correctness) |
|
863 done |
|
864 |
|
865 lemma ders_correctness: |
|
866 shows "L (ders s r) = Ders s (L r)" |
|
867 apply(induct s arbitrary: r) |
|
868 apply(simp add: Ders_def) |
|
869 apply(simp) |
|
870 apply(subst der_correctness) |
|
871 apply(simp add: Ders_def Der_def) |
|
872 done |
|
873 |
|
874 section {* Injection function *} |
|
875 |
|
876 fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
877 where |
|
878 "injval (CHAR d) c Void = Char d" |
|
879 | "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" |
|
880 | "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" |
|
881 | "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" |
|
882 | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" |
|
883 | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" |
|
884 | "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" |
|
885 |
|
886 fun |
|
887 lex :: "rexp \<Rightarrow> string \<Rightarrow> val option" |
|
888 where |
|
889 "lex r [] = (if nullable r then Some(mkeps r) else None)" |
|
890 | "lex r (c#s) = (case (lex (der c r) s) of |
|
891 None \<Rightarrow> None |
|
892 | Some(v) \<Rightarrow> Some(injval r c v))" |
|
893 |
|
894 fun |
|
895 lex2 :: "rexp \<Rightarrow> string \<Rightarrow> val" |
|
896 where |
|
897 "lex2 r [] = mkeps r" |
|
898 | "lex2 r (c#s) = injval r c (lex2 (der c r) s)" |
|
899 |
|
900 |
|
901 section {* Projection function *} |
|
902 |
|
903 fun projval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
904 where |
|
905 "projval (CHAR d) c _ = Void" |
|
906 | "projval (ALT r1 r2) c (Left v1) = Left (projval r1 c v1)" |
|
907 | "projval (ALT r1 r2) c (Right v2) = Right (projval r2 c v2)" |
|
908 | "projval (SEQ r1 r2) c (Seq v1 v2) = |
|
909 (if flat v1 = [] then Right(projval r2 c v2) |
|
910 else if nullable r1 then Left (Seq (projval r1 c v1) v2) |
|
911 else Seq (projval r1 c v1) v2)" |
|
912 | "projval (STAR r) c (Stars (v # vs)) = Seq (projval r c v) (Stars vs)" |
|
913 |
|
914 |
|
915 |
|
916 lemma mkeps_nullable: |
|
917 assumes "nullable(r)" |
|
918 shows "\<turnstile> mkeps r : r" |
|
919 using assms |
|
920 apply(induct rule: nullable.induct) |
|
921 apply(auto intro: Prf.intros) |
|
922 done |
|
923 |
|
924 lemma mkeps_flat: |
|
925 assumes "nullable(r)" |
|
926 shows "flat (mkeps r) = []" |
|
927 using assms |
|
928 apply(induct rule: nullable.induct) |
|
929 apply(auto) |
|
930 done |
|
931 |
|
932 |
|
933 lemma v3: |
|
934 assumes "\<turnstile> v : der c r" |
|
935 shows "\<turnstile> (injval r c v) : r" |
|
936 using assms |
|
937 apply(induct arbitrary: v rule: der.induct) |
|
938 apply(simp) |
|
939 apply(erule Prf.cases) |
|
940 apply(simp_all)[7] |
|
941 apply(simp) |
|
942 apply(erule Prf.cases) |
|
943 apply(simp_all)[7] |
|
944 apply(case_tac "c = c'") |
|
945 apply(simp) |
|
946 apply(erule Prf.cases) |
|
947 apply(simp_all)[7] |
|
948 apply (metis Prf.intros(5)) |
|
949 apply(simp) |
|
950 apply(erule Prf.cases) |
|
951 apply(simp_all)[7] |
|
952 apply(simp) |
|
953 apply(erule Prf.cases) |
|
954 apply(simp_all)[7] |
|
955 apply (metis Prf.intros(2)) |
|
956 apply (metis Prf.intros(3)) |
|
957 apply(simp) |
|
958 apply(case_tac "nullable r1") |
|
959 apply(simp) |
|
960 apply(erule Prf.cases) |
|
961 apply(simp_all)[7] |
|
962 apply(auto)[1] |
|
963 apply(erule Prf.cases) |
|
964 apply(simp_all)[7] |
|
965 apply(auto)[1] |
|
966 apply (metis Prf.intros(1)) |
|
967 apply(auto)[1] |
|
968 apply (metis Prf.intros(1) mkeps_nullable) |
|
969 apply(simp) |
|
970 apply(erule Prf.cases) |
|
971 apply(simp_all)[7] |
|
972 apply(auto)[1] |
|
973 apply(rule Prf.intros) |
|
974 apply(auto)[2] |
|
975 apply(simp) |
|
976 apply(erule Prf.cases) |
|
977 apply(simp_all)[7] |
|
978 apply(clarify) |
|
979 apply(rotate_tac 2) |
|
980 apply(erule Prf.cases) |
|
981 apply(simp_all)[7] |
|
982 apply(auto) |
|
983 apply (metis Prf.intros(6) Prf.intros(7)) |
|
984 by (metis Prf.intros(7)) |
|
985 |
|
986 lemma v3_proj: |
|
987 assumes "\<Turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
988 shows "\<Turnstile> (projval r c v) : der c r" |
|
989 using assms |
|
990 apply(induct rule: NPrf.induct) |
|
991 prefer 4 |
|
992 apply(simp) |
|
993 prefer 4 |
|
994 apply(simp) |
|
995 apply (metis NPrf.intros(4)) |
|
996 prefer 2 |
|
997 apply(simp) |
|
998 apply (metis NPrf.intros(2)) |
|
999 prefer 2 |
|
1000 apply(simp) |
|
1001 apply (metis NPrf.intros(3)) |
|
1002 apply(auto) |
|
1003 apply(rule NPrf.intros) |
|
1004 apply(simp) |
|
1005 apply (metis NPrf_imp_Prf not_nullable_flat) |
|
1006 apply(rule NPrf.intros) |
|
1007 apply(rule NPrf.intros) |
|
1008 apply (metis Cons_eq_append_conv) |
|
1009 apply(simp) |
|
1010 apply(rule NPrf.intros) |
|
1011 apply (metis Cons_eq_append_conv) |
|
1012 apply(simp) |
|
1013 (* Stars case *) |
|
1014 apply(rule NPrf.intros) |
|
1015 apply (metis Cons_eq_append_conv) |
|
1016 apply(auto) |
|
1017 done |
|
1018 |
|
1019 lemma v4: |
|
1020 assumes "\<turnstile> v : der c r" |
|
1021 shows "flat (injval r c v) = c # (flat v)" |
|
1022 using assms |
|
1023 apply(induct arbitrary: v rule: der.induct) |
|
1024 apply(simp) |
|
1025 apply(erule Prf.cases) |
|
1026 apply(simp_all)[7] |
|
1027 apply(simp) |
|
1028 apply(erule Prf.cases) |
|
1029 apply(simp_all)[7] |
|
1030 apply(simp) |
|
1031 apply(case_tac "c = c'") |
|
1032 apply(simp) |
|
1033 apply(auto)[1] |
|
1034 apply(erule Prf.cases) |
|
1035 apply(simp_all)[7] |
|
1036 apply(simp) |
|
1037 apply(erule Prf.cases) |
|
1038 apply(simp_all)[7] |
|
1039 apply(simp) |
|
1040 apply(erule Prf.cases) |
|
1041 apply(simp_all)[7] |
|
1042 apply(simp) |
|
1043 apply(case_tac "nullable r1") |
|
1044 apply(simp) |
|
1045 apply(erule Prf.cases) |
|
1046 apply(simp_all (no_asm_use))[7] |
|
1047 apply(auto)[1] |
|
1048 apply(erule Prf.cases) |
|
1049 apply(simp_all)[7] |
|
1050 apply(clarify) |
|
1051 apply(simp only: injval.simps flat.simps) |
|
1052 apply(auto)[1] |
|
1053 apply (metis mkeps_flat) |
|
1054 apply(simp) |
|
1055 apply(erule Prf.cases) |
|
1056 apply(simp_all)[7] |
|
1057 apply(simp) |
|
1058 apply(erule Prf.cases) |
|
1059 apply(simp_all)[7] |
|
1060 apply(auto) |
|
1061 apply(rotate_tac 2) |
|
1062 apply(erule Prf.cases) |
|
1063 apply(simp_all)[7] |
|
1064 done |
|
1065 |
|
1066 lemma v4_proj: |
|
1067 assumes "\<Turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
1068 shows "c # flat (projval r c v) = flat v" |
|
1069 using assms |
|
1070 apply(induct rule: NPrf.induct) |
|
1071 prefer 4 |
|
1072 apply(simp) |
|
1073 prefer 4 |
|
1074 apply(simp) |
|
1075 prefer 2 |
|
1076 apply(simp) |
|
1077 prefer 2 |
|
1078 apply(simp) |
|
1079 apply(auto) |
|
1080 apply (metis Cons_eq_append_conv) |
|
1081 apply(simp add: append_eq_Cons_conv) |
|
1082 apply(auto) |
|
1083 done |
|
1084 |
|
1085 lemma v4_proj2: |
|
1086 assumes "\<Turnstile> v : r" and "(flat v) = c # s" |
|
1087 shows "flat (projval r c v) = s" |
|
1088 using assms |
|
1089 by (metis list.inject v4_proj) |
|
1090 |
|
1091 |
|
1092 definition |
|
1093 PC31 :: "string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1094 where |
|
1095 "PC31 s r r' \<equiv> s \<notin> L r" |
|
1096 |
|
1097 definition |
|
1098 PC41 :: "string \<Rightarrow> string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1099 where |
|
1100 "PC41 s s' r r' \<equiv> (\<forall>x. (s @ x \<in> L r \<longrightarrow> s' \<in> {x} ;; L r' \<longrightarrow> x = []))" |
|
1101 |
|
1102 |
|
1103 lemma |
|
1104 L1: "\<not>(nullable r1) \<longrightarrow> [] \<in> L r2 \<longrightarrow> PC31 [] r1 r2" and |
|
1105 L2: "s1 \<in> L(r1) \<longrightarrow> [] \<in> L(r2) \<longrightarrow> PC41 s1 [] r1 r2" and |
|
1106 L3: "s2 \<in> L(der c r2) \<longrightarrow> PC31 s2 (der c r1) (der c r2) \<longrightarrow> PC31 (c#s2) r1 r2" and |
|
1107 L4: "s1 \<in> L(der c r1) \<longrightarrow> s2 \<in> L(r2) \<longrightarrow> PC41 s1 s2 (der c r1) r2 \<longrightarrow> PC41 (c#s1) s2 r1 r2" and |
|
1108 L5: "nullable(r1) \<longrightarrow> s2 \<in> L(der c r2) \<longrightarrow> PC31 s2 (SEQ (der c r1) r2) (der c r2) \<longrightarrow> PC41 [] (c#s2) r1 r2" and |
|
1109 L6: "s0 \<in> L(der c r0) \<longrightarrow> s \<in> L(STAR r0) \<longrightarrow> PC41 s0 s (der c r0) (STAR r0) \<longrightarrow> PC41 (c#s0) s r0 (STAR r0)" and |
|
1110 L7: "s' \<in> L(r') \<longrightarrow> s' \<in> L(r) \<longrightarrow> \<not>PC31 s' r r'" and |
|
1111 L8: "s \<in> L(r) \<longrightarrow> s' \<in> L(r') \<longrightarrow> s @ x \<in> L(r) \<longrightarrow> s' \<in> {x} ;; (L(r') ;; {y}) \<longrightarrow> x \<noteq> [] \<longrightarrow> \<not>PC41 s s' r r'" |
|
1112 apply(auto simp add: PC31_def PC41_def)[1] |
|
1113 apply (metis nullable_correctness) |
|
1114 apply(auto simp add: PC31_def PC41_def)[1] |
|
1115 apply(simp add: Sequ_def) |
|
1116 apply(auto simp add: PC31_def PC41_def)[1] |
|
1117 apply(simp add: der_correctness Der_def) |
|
1118 apply(auto simp add: PC31_def PC41_def)[1] |
|
1119 apply(simp add: der_correctness Der_def Sequ_def) |
|
1120 apply(auto simp add: PC31_def PC41_def)[1] |
|
1121 apply(simp add: Sequ_def) |
|
1122 apply(simp add: der_correctness Der_def) |
|
1123 apply(auto)[1] |
|
1124 apply (metis append_eq_Cons_conv) |
|
1125 apply(auto simp add: PC31_def PC41_def)[1] |
|
1126 apply(simp add: Sequ_def) |
|
1127 apply(simp add: der_correctness Der_def) |
|
1128 apply(auto simp add: PC31_def PC41_def)[1] |
|
1129 apply(rule impI)+ |
|
1130 apply(rule notI) |
|
1131 (* 8 fails *) |
|
1132 oops |
|
1133 |
|
1134 definition |
|
1135 PC32 :: "string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1136 where |
|
1137 "PC32 s r r' \<equiv> \<forall>y. s \<notin> (L r ;; {y})" |
|
1138 |
|
1139 definition |
|
1140 PC42 :: "string \<Rightarrow> string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1141 where |
|
1142 "PC42 s s' r r' \<equiv> (\<forall>x. (s @ x \<in> L r \<longrightarrow> (\<exists>y. s' \<in> {x} ;; (L r' ;; {y})) \<longrightarrow> x = []))" |
|
1143 |
|
1144 |
|
1145 lemma |
|
1146 L1: "\<not>(nullable r1) \<longrightarrow> [] \<in> L r2 \<longrightarrow> PC32 [] r1 r2" and |
|
1147 L2: "s1 \<in> L(r1) \<longrightarrow> [] \<in> L(r2) \<longrightarrow> PC42 s1 [] r1 r2" and |
|
1148 L3: "s2 \<in> L(der c r2) \<longrightarrow> PC32 s2 (der c r1) (der c r2) \<longrightarrow> PC32 (c#s2) r1 r2" and |
|
1149 L4: "s1 \<in> L(der c r1) \<longrightarrow> s2 \<in> L(r2) \<longrightarrow> PC42 s1 s2 (der c r1) r2 \<longrightarrow> PC42 (c#s1) s2 r1 r2" and |
|
1150 L5: "nullable(r1) \<longrightarrow> s2 \<in> L(der c r2) \<longrightarrow> PC32 s2 (SEQ (der c r1) r2) (der c r2) \<longrightarrow> PC42 [] (c#s2) r1 r2" and |
|
1151 L6: "s0 \<in> L(der c r0) \<longrightarrow> s \<in> L(STAR r0) \<longrightarrow> PC42 s0 s (der c r0) (STAR r0) \<longrightarrow> PC42 (c#s0) s r0 (STAR r0)" and |
|
1152 L7: "s' \<in> L(r') \<longrightarrow> s' \<in> L(r) \<longrightarrow> \<not>PC32 s' r r'" and |
|
1153 L8: "s \<in> L(r) \<longrightarrow> s' \<in> L(r') \<longrightarrow> s @ x \<in> L(r) \<longrightarrow> s' \<in> {x} ;; (L(r') ;; {y}) \<longrightarrow> x \<noteq> [] \<longrightarrow> \<not>PC42 s s' r r'" |
|
1154 apply(auto simp add: PC32_def PC42_def)[1] |
|
1155 apply(simp add: Sequ_def) |
|
1156 apply (metis nullable_correctness) |
|
1157 apply(auto simp add: PC32_def PC42_def Sequ_def)[1] |
|
1158 apply(auto simp add: PC32_def PC42_def Sequ_def der_correctness Der_def)[1] |
|
1159 apply(simp add: Cons_eq_append_conv) |
|
1160 apply(auto)[1] |
|
1161 defer |
|
1162 apply(auto simp add: PC32_def PC42_def Sequ_def der_correctness Der_def)[1] |
|
1163 apply(auto simp add: PC32_def PC42_def Sequ_def der_correctness Der_def nullable_correctness)[1] |
|
1164 apply (metis append_Cons append_assoc hd_Cons_tl list.discI list.inject) |
|
1165 apply(auto simp add: PC32_def PC42_def Sequ_def der_correctness Der_def)[1] |
|
1166 apply(auto simp add: PC32_def PC42_def Sequ_def der_correctness Der_def)[1] |
|
1167 apply(auto simp add: PC32_def PC42_def Sequ_def der_correctness Der_def)[1] |
|
1168 oops |
|
1169 |
|
1170 definition |
|
1171 PC33 :: "string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1172 where |
|
1173 "PC33 s r r' \<equiv> s \<notin> L r" |
|
1174 |
|
1175 definition |
|
1176 PC43 :: "string \<Rightarrow> string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1177 where |
|
1178 "PC43 s s' r r' \<equiv> (\<forall>x. (s @ x \<in> L r \<longrightarrow> (\<exists>y. s' \<in> {x} ;; (L r' ;; {y})) \<longrightarrow> x = []))" |
|
1179 |
|
1180 lemma |
|
1181 L1: "\<not>(nullable r1) \<longrightarrow> [] \<in> L r2 \<longrightarrow> PC33 [] r1 r2" and |
|
1182 L2: "s1 \<in> L(r1) \<longrightarrow> [] \<in> L(r2) \<longrightarrow> PC43 s1 [] r1 r2" and |
|
1183 L3: "s2 \<in> L(der c r2) \<longrightarrow> PC33 s2 (der c r1) (der c r2) \<longrightarrow> PC33 (c#s2) r1 r2" and |
|
1184 L4: "s1 \<in> L(der c r1) \<longrightarrow> s2 \<in> L(r2) \<longrightarrow> PC43 s1 s2 (der c r1) r2 \<longrightarrow> PC43 (c#s1) s2 r1 r2" and |
|
1185 L5: "nullable(r1) \<longrightarrow> s2 \<in> L(der c r2) \<longrightarrow> PC33 s2 (SEQ (der c r1) r2) (der c r2) \<longrightarrow> PC43 [] (c#s2) r1 r2" and |
|
1186 L6: "s0 \<in> L(der c r0) \<longrightarrow> s \<in> L(STAR r0) \<longrightarrow> PC43 s0 s (der c r0) (STAR r0) \<longrightarrow> PC43 (c#s0) s r0 (STAR r0)" and |
|
1187 L7: "s' \<in> L(r') \<longrightarrow> s' \<in> L(r) \<longrightarrow> \<not>PC33 s' r r'" and |
|
1188 L8: "s \<in> L(r) \<longrightarrow> s' \<in> L(r') \<longrightarrow> s @ x \<in> L(r) \<longrightarrow> s' \<in> {x} ;; (L(r') ;; {y}) \<longrightarrow> x \<noteq> [] \<longrightarrow> \<not>PC43 s s' r r'" |
|
1189 apply(auto simp add: PC33_def PC43_def)[1] |
|
1190 apply (metis nullable_correctness) |
|
1191 apply(auto simp add: PC33_def PC43_def)[1] |
|
1192 apply(simp add: Sequ_def) |
|
1193 apply(auto simp add: PC33_def PC43_def)[1] |
|
1194 apply(simp add: der_correctness Der_def) |
|
1195 apply(auto simp add: PC33_def PC43_def)[1] |
|
1196 apply(simp add: der_correctness Der_def Sequ_def) |
|
1197 apply metis |
|
1198 (* 5 *) |
|
1199 apply(auto simp add: PC33_def PC43_def)[1] |
|
1200 apply(simp add: Sequ_def) |
|
1201 apply(simp add: der_correctness Der_def) |
|
1202 apply(auto)[1] |
|
1203 defer |
|
1204 apply(auto simp add: PC33_def PC43_def)[1] |
|
1205 apply(simp add: Sequ_def) |
|
1206 apply(simp add: der_correctness Der_def) |
|
1207 apply metis |
|
1208 apply(auto simp add: PC33_def PC43_def)[1] |
|
1209 apply(auto simp add: PC33_def PC43_def)[1] |
|
1210 (* 5 fails *) |
|
1211 apply(simp add: Cons_eq_append_conv) |
|
1212 apply(auto)[1] |
|
1213 apply(drule_tac x="ys'" in spec) |
|
1214 apply(simp) |
|
1215 oops |
|
1216 |
|
1217 section {* Roy's Definition *} |
|
1218 |
|
1219 inductive |
|
1220 Roy :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<rhd> _ : _" [100, 100] 100) |
|
1221 where |
|
1222 "\<rhd> Void : EMPTY" |
|
1223 | "\<rhd> Char c : CHAR c" |
|
1224 | "\<rhd> v : r1 \<Longrightarrow> \<rhd> Left v : ALT r1 r2" |
|
1225 | "\<lbrakk>\<rhd> v : r2; flat v \<notin> L r1\<rbrakk> \<Longrightarrow> \<rhd> Right v : ALT r1 r2" |
|
1226 | "\<lbrakk>\<rhd> v1 : r1; \<rhd> v2 : r2; \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
1227 \<rhd> Seq v1 v2 : SEQ r1 r2" |
|
1228 | "\<lbrakk>\<rhd> v : r; \<rhd> Stars vs : STAR r; flat v \<noteq> []; |
|
1229 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat (Stars vs) \<and> (flat v @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> \<Longrightarrow> |
|
1230 \<rhd> Stars (v#vs) : STAR r" |
|
1231 | "\<rhd> Stars [] : STAR r" |
|
1232 |
|
1233 lemma drop_append: |
|
1234 assumes "s1 \<sqsubseteq> s2" |
|
1235 shows "s1 @ drop (length s1) s2 = s2" |
|
1236 using assms |
|
1237 apply(simp add: prefix_def) |
|
1238 apply(auto) |
|
1239 done |
|
1240 |
|
1241 lemma royA: |
|
1242 assumes "\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" |
|
1243 shows "\<forall>s. (s \<in> L(ders (flat v1) r1) \<and> |
|
1244 s \<sqsubseteq> (flat v2) \<and> drop (length s) (flat v2) \<in> L r2 \<longrightarrow> s = [])" |
|
1245 using assms |
|
1246 apply - |
|
1247 apply(rule allI) |
|
1248 apply(rule impI) |
|
1249 apply(simp add: ders_correctness) |
|
1250 apply(simp add: Ders_def) |
|
1251 thm rest_def |
|
1252 apply(drule_tac x="s" in spec) |
|
1253 apply(simp) |
|
1254 apply(erule disjE) |
|
1255 apply(simp) |
|
1256 apply(drule_tac x="drop (length s) (flat v2)" in spec) |
|
1257 apply(simp add: drop_append) |
|
1258 done |
|
1259 |
|
1260 lemma royB: |
|
1261 assumes "\<forall>s. (s \<in> L(ders (flat v1) r1) \<and> |
|
1262 s \<sqsubseteq> (flat v2) \<and> drop (length s) (flat v2) \<in> L r2 \<longrightarrow> s = [])" |
|
1263 shows "\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" |
|
1264 using assms |
|
1265 apply - |
|
1266 apply(auto simp add: prefix_def ders_correctness Ders_def) |
|
1267 by (metis append_eq_conv_conj) |
|
1268 |
|
1269 lemma royC: |
|
1270 assumes "\<forall>s t. (s \<in> L(ders (flat v1) r1) \<and> |
|
1271 s \<sqsubseteq> (flat v2 @ t) \<and> drop (length s) (flat v2 @ t) \<in> L r2 \<longrightarrow> s = [])" |
|
1272 shows "\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" |
|
1273 using assms |
|
1274 apply - |
|
1275 apply(rule royB) |
|
1276 apply(rule allI) |
|
1277 apply(drule_tac x="s" in spec) |
|
1278 apply(drule_tac x="[]" in spec) |
|
1279 apply(simp) |
|
1280 done |
|
1281 |
|
1282 inductive |
|
1283 Roy2 :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("2\<rhd> _ : _" [100, 100] 100) |
|
1284 where |
|
1285 "2\<rhd> Void : EMPTY" |
|
1286 | "2\<rhd> Char c : CHAR c" |
|
1287 | "2\<rhd> v : r1 \<Longrightarrow> 2\<rhd> Left v : ALT r1 r2" |
|
1288 | "\<lbrakk>2\<rhd> v : r2; \<forall>t. flat v \<notin> (L r1 ;; {t})\<rbrakk> \<Longrightarrow> 2\<rhd> Right v : ALT r1 r2" |
|
1289 | "\<lbrakk>2\<rhd> v1 : r1; 2\<rhd> v2 : r2; |
|
1290 \<forall>s. ((flat v1 @ s \<in> L r1) \<and> |
|
1291 (\<exists>t. s \<sqsubseteq> (flat v2 @ t) \<and> drop (length s) (flat v2) \<in> (L r2 ;; {t}))) \<longrightarrow> s = []\<rbrakk> \<Longrightarrow> |
|
1292 2\<rhd> Seq v1 v2 : SEQ r1 r2" |
|
1293 | "\<lbrakk>2\<rhd> v : r; 2\<rhd> Stars vs : STAR r; flat v \<noteq> []; |
|
1294 \<forall>s. ((flat v @ s \<in> L r) \<and> |
|
1295 (\<exists>t. s \<sqsubseteq> (flat (Stars vs) @ t) \<and> drop (length s) (flat (Stars vs)) \<in> (L (STAR r) ;; {t}))) \<longrightarrow> s = []\<rbrakk> |
|
1296 \<Longrightarrow> 2\<rhd> Stars (v#vs) : STAR r" |
|
1297 | "2\<rhd> Stars [] : STAR r" |
|
1298 |
|
1299 lemma Roy2_props: |
|
1300 assumes "2\<rhd> v : r" |
|
1301 shows "\<turnstile> v : r" |
|
1302 using assms |
|
1303 apply(induct) |
|
1304 apply(auto intro: Prf.intros) |
|
1305 done |
|
1306 |
|
1307 lemma Roy_mkeps_nullable: |
|
1308 assumes "nullable(r)" |
|
1309 shows "2\<rhd> (mkeps r) : r" |
|
1310 using assms |
|
1311 apply(induct rule: nullable.induct) |
|
1312 apply(auto intro: Roy2.intros) |
|
1313 apply(rule Roy2.intros) |
|
1314 apply(simp_all) |
|
1315 apply(simp add: mkeps_flat) |
|
1316 apply(simp add: Sequ_def) |
|
1317 apply (metis nullable_correctness) |
|
1318 apply(rule Roy2.intros) |
|
1319 apply(simp_all) |
|
1320 apply(rule allI) |
|
1321 apply(rule impI) |
|
1322 apply(auto simp add: Sequ_def) |
|
1323 apply(simp add: mkeps_flat) |
|
1324 apply(auto simp add: prefix_def) |
|
1325 done |
|
1326 |
|
1327 section {* Alternative Posix definition *} |
|
1328 |
|
1329 inductive |
|
1330 PMatch :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100) |
|
1331 where |
|
1332 "[] \<in> EMPTY \<rightarrow> Void" |
|
1333 | "[c] \<in> (CHAR c) \<rightarrow> (Char c)" |
|
1334 | "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)" |
|
1335 | "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)" |
|
1336 | "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2; |
|
1337 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
1338 (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)" |
|
1339 | "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> []; |
|
1340 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> |
|
1341 \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)" |
|
1342 | "[] \<in> STAR r \<rightarrow> Stars []" |
|
1343 |
|
1344 inductive |
|
1345 PMatchX :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("\<turnstile> _ \<in> _ \<rightarrow> _" [100, 100, 100] 100) |
|
1346 where |
|
1347 "\<turnstile> s \<in> EMPTY \<rightarrow> Void" |
|
1348 | "\<turnstile> (c # s) \<in> (CHAR c) \<rightarrow> (Char c)" |
|
1349 | "\<turnstile> s \<in> r1 \<rightarrow> v \<Longrightarrow> \<turnstile> s \<in> (ALT r1 r2) \<rightarrow> (Left v)" |
|
1350 | "\<lbrakk>\<turnstile> s \<in> r2 \<rightarrow> v; \<not>(\<exists>s'. s' \<sqsubseteq> s \<and> flat v \<sqsubseteq> s' \<and> s' \<in> L(r1))\<rbrakk> \<Longrightarrow> \<turnstile> s \<in> (ALT r1 r2) \<rightarrow> (Right v)" |
|
1351 | "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; \<turnstile> s2 \<in> r2 \<rightarrow> v2; |
|
1352 \<not>(\<exists>s3 s4. s3 \<noteq> [] \<and> (s3 @ s4) \<sqsubseteq> s2 \<and> (s1 @ s3) \<in> L r1 \<and> s4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
1353 \<turnstile> (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)" |
|
1354 | "\<lbrakk>s1 \<in> r \<rightarrow> v; \<turnstile> s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> []; |
|
1355 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> (s\<^sub>3 @ s\<^sub>4) \<sqsubseteq> s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> |
|
1356 \<Longrightarrow> \<turnstile> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)" |
|
1357 | "\<turnstile> s \<in> STAR r \<rightarrow> Stars []" |
|
1358 |
|
1359 lemma PMatch1: |
|
1360 assumes "s \<in> r \<rightarrow> v" |
|
1361 shows "\<turnstile> v : r" "flat v = s" |
|
1362 using assms |
|
1363 apply(induct s r v rule: PMatch.induct) |
|
1364 apply(auto) |
|
1365 apply (metis Prf.intros(4)) |
|
1366 apply (metis Prf.intros(5)) |
|
1367 apply (metis Prf.intros(2)) |
|
1368 apply (metis Prf.intros(3)) |
|
1369 apply (metis Prf.intros(1)) |
|
1370 apply (metis Prf.intros(7)) |
|
1371 by (metis Prf.intros(6)) |
|
1372 |
|
1373 |
|
1374 lemma PMatchX1: |
|
1375 assumes "\<turnstile> s \<in> r \<rightarrow> v" |
|
1376 shows "\<turnstile> v : r" |
|
1377 using assms |
|
1378 apply(induct s r v rule: PMatchX.induct) |
|
1379 apply(auto simp add: prefix_def intro: Prf.intros) |
|
1380 apply (metis PMatch1(1) Prf.intros(1)) |
|
1381 by (metis PMatch1(1) Prf.intros(7)) |
|
1382 |
|
1383 |
|
1384 lemma PMatchX: |
|
1385 assumes "\<turnstile> s \<in> r \<rightarrow> v" |
|
1386 shows "flat v \<sqsubseteq> s" |
|
1387 using assms |
|
1388 apply(induct s r v rule: PMatchX.induct) |
|
1389 apply(auto simp add: prefix_def PMatch1) |
|
1390 done |
|
1391 |
|
1392 lemma PMatchX_PMatch: |
|
1393 assumes "\<turnstile> s \<in> r \<rightarrow> v" "flat v = s" |
|
1394 shows "s \<in> r \<rightarrow> v" |
|
1395 using assms |
|
1396 apply(induct s r v rule: PMatchX.induct) |
|
1397 apply(auto intro: PMatch.intros) |
|
1398 apply(rule PMatch.intros) |
|
1399 apply(simp) |
|
1400 apply (metis PMatchX Prefixes_def mem_Collect_eq) |
|
1401 apply (smt2 PMatch.intros(5) PMatch1(2) PMatchX append_Nil2 append_assoc append_self_conv prefix_def) |
|
1402 by (metis L.simps(6) PMatch.intros(6) PMatch1(2) append_Nil2 append_eq_conv_conj prefix_def) |
|
1403 |
|
1404 lemma PMatch_PMatchX: |
|
1405 assumes "s \<in> r \<rightarrow> v" |
|
1406 shows "\<turnstile> s \<in> r \<rightarrow> v" |
|
1407 using assms |
|
1408 apply(induct s r v arbitrary: s' rule: PMatch.induct) |
|
1409 apply(auto intro: PMatchX.intros) |
|
1410 apply(rule PMatchX.intros) |
|
1411 apply(simp) |
|
1412 apply(rule notI) |
|
1413 apply(auto)[1] |
|
1414 apply (metis PMatch1(2) append_eq_conv_conj length_sprefix less_imp_le_nat prefix_def sprefix_def take_all) |
|
1415 apply(rule PMatchX.intros) |
|
1416 apply(simp) |
|
1417 apply(simp) |
|
1418 apply(auto)[1] |
|
1419 oops |
|
1420 |
|
1421 lemma |
|
1422 assumes "\<rhd> v : r" |
|
1423 shows "(flat v) \<in> r \<rightarrow> v" |
|
1424 using assms |
|
1425 apply(induct) |
|
1426 apply(auto intro: PMatch.intros) |
|
1427 apply(rule PMatch.intros) |
|
1428 apply(simp) |
|
1429 apply(simp) |
|
1430 apply(simp) |
|
1431 apply(auto)[1] |
|
1432 done |
|
1433 |
|
1434 lemma |
|
1435 assumes "s \<in> r \<rightarrow> v" |
|
1436 shows "\<rhd> v : r" |
|
1437 using assms |
|
1438 apply(induct) |
|
1439 apply(auto intro: Roy.intros) |
|
1440 apply (metis PMatch1(2) Roy.intros(4)) |
|
1441 apply (metis PMatch1(2) Roy.intros(5)) |
|
1442 by (metis L.simps(6) PMatch1(2) Roy.intros(6)) |
|
1443 |
|
1444 |
|
1445 lemma PMatch_mkeps: |
|
1446 assumes "nullable r" |
|
1447 shows "[] \<in> r \<rightarrow> mkeps r" |
|
1448 using assms |
|
1449 apply(induct r) |
|
1450 apply(auto) |
|
1451 apply (metis PMatch.intros(1)) |
|
1452 apply(subst append.simps(1)[symmetric]) |
|
1453 apply (rule PMatch.intros) |
|
1454 apply(simp) |
|
1455 apply(simp) |
|
1456 apply(auto)[1] |
|
1457 apply (rule PMatch.intros) |
|
1458 apply(simp) |
|
1459 apply (rule PMatch.intros) |
|
1460 apply(simp) |
|
1461 apply (rule PMatch.intros) |
|
1462 apply(simp) |
|
1463 apply (metis nullable_correctness) |
|
1464 apply(metis PMatch.intros(7)) |
|
1465 done |
|
1466 |
|
1467 |
|
1468 lemma PMatch1N: |
|
1469 assumes "s \<in> r \<rightarrow> v" |
|
1470 shows "\<Turnstile> v : r" |
|
1471 using assms |
|
1472 apply(induct s r v rule: PMatch.induct) |
|
1473 apply(auto) |
|
1474 apply (metis NPrf.intros(4)) |
|
1475 apply (metis NPrf.intros(5)) |
|
1476 apply (metis NPrf.intros(2)) |
|
1477 apply (metis NPrf.intros(3)) |
|
1478 apply (metis NPrf.intros(1)) |
|
1479 apply(rule NPrf.intros) |
|
1480 apply(simp) |
|
1481 apply(simp) |
|
1482 apply(simp) |
|
1483 apply(rule NPrf.intros) |
|
1484 done |
|
1485 |
|
1486 lemma PMatch_determ: |
|
1487 shows "\<lbrakk>s \<in> r \<rightarrow> v1; s \<in> r \<rightarrow> v2\<rbrakk> \<Longrightarrow> v1 = v2" |
|
1488 and "\<lbrakk>s \<in> (STAR r) \<rightarrow> Stars vs1; s \<in> (STAR r) \<rightarrow> Stars vs2\<rbrakk> \<Longrightarrow> vs1 = vs2" |
|
1489 apply(induct v1 and vs1 arbitrary: s r v2 and s r vs2 rule: val.inducts) |
|
1490 apply(erule PMatch.cases) |
|
1491 apply(simp_all)[7] |
|
1492 apply(erule PMatch.cases) |
|
1493 apply(simp_all)[7] |
|
1494 apply(erule PMatch.cases) |
|
1495 apply(simp_all)[7] |
|
1496 apply(erule PMatch.cases) |
|
1497 apply(simp_all)[7] |
|
1498 apply(erule PMatch.cases) |
|
1499 apply(simp_all)[7] |
|
1500 apply(erule PMatch.cases) |
|
1501 apply(simp_all)[7] |
|
1502 apply(clarify) |
|
1503 apply(subgoal_tac "s1 = s1a \<and> s2 = s2a") |
|
1504 apply metis |
|
1505 apply(rule conjI) |
|
1506 apply(simp add: append_eq_append_conv2) |
|
1507 apply(auto)[1] |
|
1508 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1509 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1510 apply(simp add: append_eq_append_conv2) |
|
1511 apply(auto)[1] |
|
1512 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1513 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1514 apply(erule PMatch.cases) |
|
1515 apply(simp_all)[7] |
|
1516 apply(clarify) |
|
1517 apply(erule PMatch.cases) |
|
1518 apply(simp_all)[7] |
|
1519 apply(clarify) |
|
1520 apply (metis NPrf_flat_L PMatch1(2) PMatch1N) |
|
1521 apply(erule PMatch.cases) |
|
1522 apply(simp_all)[7] |
|
1523 apply(clarify) |
|
1524 apply(erule PMatch.cases) |
|
1525 apply(simp_all)[7] |
|
1526 apply(clarify) |
|
1527 apply (metis NPrf_flat_L PMatch1(2) PMatch1N) |
|
1528 (* star case *) |
|
1529 defer |
|
1530 apply(erule PMatch.cases) |
|
1531 apply(simp_all)[7] |
|
1532 apply(clarify) |
|
1533 apply(erule PMatch.cases) |
|
1534 apply(simp_all)[7] |
|
1535 apply(clarify) |
|
1536 apply (metis PMatch1(2)) |
|
1537 apply(rotate_tac 3) |
|
1538 apply(erule PMatch.cases) |
|
1539 apply(simp_all)[7] |
|
1540 apply(clarify) |
|
1541 apply(erule PMatch.cases) |
|
1542 apply(simp_all)[7] |
|
1543 apply(clarify) |
|
1544 apply(subgoal_tac "s1 = s1a \<and> s2 = s2a") |
|
1545 apply metis |
|
1546 apply(simp add: append_eq_append_conv2) |
|
1547 apply(auto)[1] |
|
1548 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1549 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1550 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1551 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1552 apply(erule PMatch.cases) |
|
1553 apply(simp_all)[7] |
|
1554 apply(clarify) |
|
1555 apply (metis PMatch1(2)) |
|
1556 apply(erule PMatch.cases) |
|
1557 apply(simp_all)[7] |
|
1558 apply(clarify) |
|
1559 apply(erule PMatch.cases) |
|
1560 apply(simp_all)[7] |
|
1561 apply(clarify) |
|
1562 apply(subgoal_tac "s1 = s1a \<and> s2 = s2a") |
|
1563 apply(drule_tac x="s1 @ s2" in meta_spec) |
|
1564 apply(drule_tac x="rb" in meta_spec) |
|
1565 apply(drule_tac x="(va#vsa)" in meta_spec) |
|
1566 apply(simp) |
|
1567 apply(drule meta_mp) |
|
1568 apply (metis L.simps(6) PMatch.intros(6)) |
|
1569 apply (metis L.simps(6) PMatch.intros(6)) |
|
1570 apply(simp add: append_eq_append_conv2) |
|
1571 apply(auto)[1] |
|
1572 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1573 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1574 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1575 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1576 apply (metis PMatch1(2)) |
|
1577 apply(erule PMatch.cases) |
|
1578 apply(simp_all)[7] |
|
1579 apply(clarify) |
|
1580 by (metis PMatch1(2)) |
|
1581 |
|
1582 |
|
1583 lemma PMatch_Values: |
|
1584 assumes "s \<in> r \<rightarrow> v" |
|
1585 shows "v \<in> Values r s" |
|
1586 using assms |
|
1587 apply(simp add: Values_def PMatch1) |
|
1588 by (metis append_Nil2 prefix_def) |
|
1589 |
|
1590 lemma PMatch2: |
|
1591 assumes "s \<in> (der c r) \<rightarrow> v" |
|
1592 shows "(c#s) \<in> r \<rightarrow> (injval r c v)" |
|
1593 using assms |
|
1594 apply(induct c r arbitrary: s v rule: der.induct) |
|
1595 apply(auto) |
|
1596 apply(erule PMatch.cases) |
|
1597 apply(simp_all)[7] |
|
1598 apply(erule PMatch.cases) |
|
1599 apply(simp_all)[7] |
|
1600 apply(case_tac "c = c'") |
|
1601 apply(simp) |
|
1602 apply(erule PMatch.cases) |
|
1603 apply(simp_all)[7] |
|
1604 apply (metis PMatch.intros(2)) |
|
1605 apply(simp) |
|
1606 apply(erule PMatch.cases) |
|
1607 apply(simp_all)[7] |
|
1608 apply(erule PMatch.cases) |
|
1609 apply(simp_all)[7] |
|
1610 apply (metis PMatch.intros(3)) |
|
1611 apply(clarify) |
|
1612 apply(rule PMatch.intros) |
|
1613 apply metis |
|
1614 apply(simp add: L_flat_NPrf) |
|
1615 apply(auto)[1] |
|
1616 apply(frule_tac c="c" in v3_proj) |
|
1617 apply metis |
|
1618 apply(drule_tac x="projval r1 c v" in spec) |
|
1619 apply(drule mp) |
|
1620 apply (metis v4_proj2) |
|
1621 apply (metis NPrf_imp_Prf) |
|
1622 (* SEQ case *) |
|
1623 apply(case_tac "nullable r1") |
|
1624 apply(simp) |
|
1625 prefer 2 |
|
1626 apply(simp) |
|
1627 apply(erule PMatch.cases) |
|
1628 apply(simp_all)[7] |
|
1629 apply(clarify) |
|
1630 apply(subst append.simps(2)[symmetric]) |
|
1631 apply(rule PMatch.intros) |
|
1632 apply metis |
|
1633 apply metis |
|
1634 apply(auto)[1] |
|
1635 apply(simp add: der_correctness Der_def) |
|
1636 apply(auto)[1] |
|
1637 (* nullable case *) |
|
1638 apply(erule PMatch.cases) |
|
1639 apply(simp_all)[7] |
|
1640 apply(clarify) |
|
1641 apply(erule PMatch.cases) |
|
1642 apply(simp_all)[4] |
|
1643 apply(clarify) |
|
1644 apply(simp (no_asm)) |
|
1645 apply(subst append.simps(2)[symmetric]) |
|
1646 apply(rule PMatch.intros) |
|
1647 apply metis |
|
1648 apply metis |
|
1649 apply(erule contrapos_nn) |
|
1650 apply(erule exE)+ |
|
1651 apply(auto)[1] |
|
1652 apply(simp add: L_flat_NPrf) |
|
1653 apply(auto)[1] |
|
1654 thm v3_proj |
|
1655 apply(frule_tac c="c" in v3_proj) |
|
1656 apply metis |
|
1657 apply(rule_tac x="s\<^sub>3" in exI) |
|
1658 apply(simp) |
|
1659 apply (metis NPrf_imp_Prf v4_proj2) |
|
1660 apply(simp) |
|
1661 (* interesting case *) |
|
1662 apply(clarify) |
|
1663 apply(clarify) |
|
1664 apply(simp) |
|
1665 apply(subst (asm) L.simps(4)[symmetric]) |
|
1666 apply(simp only: L_flat_Prf) |
|
1667 apply(simp) |
|
1668 apply(subst append.simps(1)[symmetric]) |
|
1669 apply(rule PMatch.intros) |
|
1670 apply (metis PMatch_mkeps) |
|
1671 apply metis |
|
1672 apply(auto) |
|
1673 apply(simp only: L_flat_NPrf) |
|
1674 apply(simp) |
|
1675 apply(auto) |
|
1676 apply(drule_tac x="Seq (projval r1 c v) vb" in spec) |
|
1677 apply(drule mp) |
|
1678 apply(simp) |
|
1679 |
|
1680 apply (metis append_Cons butlast_snoc list.sel(1) neq_Nil_conv rotate1.simps(2) v4_proj2) |
|
1681 apply(subgoal_tac "\<turnstile> projval r1 c v : der c r1") |
|
1682 apply (metis NPrf_imp_Prf Prf.intros(1)) |
|
1683 apply(rule NPrf_imp_Prf) |
|
1684 apply(rule v3_proj) |
|
1685 apply(simp) |
|
1686 apply (metis Cons_eq_append_conv) |
|
1687 (* Stars case *) |
|
1688 apply(erule PMatch.cases) |
|
1689 apply(simp_all)[7] |
|
1690 apply(clarify) |
|
1691 apply(rotate_tac 2) |
|
1692 apply(frule_tac PMatch1) |
|
1693 apply(erule PMatch.cases) |
|
1694 apply(simp_all)[7] |
|
1695 apply(subst append.simps(2)[symmetric]) |
|
1696 apply(rule PMatch.intros) |
|
1697 apply metis |
|
1698 apply(auto)[1] |
|
1699 apply(rule PMatch.intros) |
|
1700 apply(simp) |
|
1701 apply(simp) |
|
1702 apply(simp) |
|
1703 apply (metis L.simps(6)) |
|
1704 apply(subst v4) |
|
1705 apply (metis NPrf_imp_Prf PMatch1N) |
|
1706 apply(simp) |
|
1707 apply(auto)[1] |
|
1708 apply(drule_tac x="s\<^sub>3" in spec) |
|
1709 apply(drule mp) |
|
1710 defer |
|
1711 apply metis |
|
1712 apply(clarify) |
|
1713 apply(drule_tac x="s1" in meta_spec) |
|
1714 apply(drule_tac x="v1" in meta_spec) |
|
1715 apply(simp) |
|
1716 apply(rotate_tac 2) |
|
1717 apply(drule PMatch.intros(6)) |
|
1718 apply(rule PMatch.intros(7)) |
|
1719 apply (metis PMatch1(1) list.distinct(1) v4) |
|
1720 apply (metis Nil_is_append_conv) |
|
1721 apply(simp) |
|
1722 apply(subst der_correctness) |
|
1723 apply(simp add: Der_def) |
|
1724 done |
|
1725 |
|
1726 |
|
1727 |
|
1728 lemma Sequ_single: |
|
1729 "(A ;; {t}) = {s @ t | s . s \<in> A}" |
|
1730 apply(simp add: Sequ_def) |
|
1731 done |
|
1732 |
|
1733 lemma Sequ_not: |
|
1734 assumes "\<forall>t. s \<notin> (L(der c r1) ;; {t})" "L r1 \<noteq> {}" |
|
1735 shows "\<forall>t. c # s \<notin> (L r1 ;; {t})" |
|
1736 using assms |
|
1737 apply(simp add: der_correctness) |
|
1738 apply(simp add: Der_def) |
|
1739 apply(simp add: Sequ_def) |
|
1740 apply(rule allI)+ |
|
1741 apply(rule impI) |
|
1742 apply(simp add: Cons_eq_append_conv) |
|
1743 apply(auto) |
|
1744 |
|
1745 oops |
|
1746 |
|
1747 lemma PMatch_Roy2: |
|
1748 assumes "2\<rhd> v : (der c r)" "\<exists>s. c # s \<in> L r" |
|
1749 shows "2\<rhd> (injval r c v) : r" |
|
1750 using assms |
|
1751 apply(induct c r arbitrary: v rule: der.induct) |
|
1752 apply(auto) |
|
1753 apply(erule Roy2.cases) |
|
1754 apply(simp_all) |
|
1755 apply (metis Roy2.intros(2)) |
|
1756 (* alt case *) |
|
1757 apply(erule Roy2.cases) |
|
1758 apply(simp_all) |
|
1759 apply(clarify) |
|
1760 apply (metis Roy2.intros(3)) |
|
1761 apply(clarify) |
|
1762 apply(rule Roy2.intros(4)) |
|
1763 apply (metis (full_types) Prf_flat_L Roy2_props v3 v4) |
|
1764 apply(subgoal_tac "\<forall>t. c # flat va \<notin> L r1 ;; {t}") |
|
1765 prefer 2 |
|
1766 apply(simp add: der_correctness) |
|
1767 apply(simp add: Der_def) |
|
1768 apply(simp add: Sequ_def) |
|
1769 apply(rule allI)+ |
|
1770 apply(rule impI) |
|
1771 apply(simp add: Cons_eq_append_conv) |
|
1772 apply(erule disjE) |
|
1773 apply(erule conjE) |
|
1774 prefer 2 |
|
1775 apply metis |
|
1776 apply(simp) |
|
1777 apply(drule_tac x="[]" in spec) |
|
1778 apply(drule_tac x="drop 1 t" in spec) |
|
1779 apply(clarify) |
|
1780 apply(simp) |
|
1781 oops |
|
1782 |
|
1783 lemma lex_correct1: |
|
1784 assumes "s \<notin> L r" |
|
1785 shows "lex r s = None" |
|
1786 using assms |
|
1787 apply(induct s arbitrary: r) |
|
1788 apply(simp) |
|
1789 apply (metis nullable_correctness) |
|
1790 apply(auto) |
|
1791 apply(drule_tac x="der a r" in meta_spec) |
|
1792 apply(drule meta_mp) |
|
1793 apply(auto) |
|
1794 apply(simp add: L_flat_Prf) |
|
1795 by (metis v3 v4) |
|
1796 |
|
1797 |
|
1798 lemma lex_correct2: |
|
1799 assumes "s \<in> L r" |
|
1800 shows "\<exists>v. lex r s = Some(v) \<and> \<turnstile> v : r \<and> flat v = s" |
|
1801 using assms |
|
1802 apply(induct s arbitrary: r) |
|
1803 apply(simp) |
|
1804 apply (metis mkeps_flat mkeps_nullable nullable_correctness) |
|
1805 apply(drule_tac x="der a r" in meta_spec) |
|
1806 apply(drule meta_mp) |
|
1807 apply(simp add: L_flat_NPrf) |
|
1808 apply(auto) |
|
1809 apply (metis v3_proj v4_proj2) |
|
1810 apply (metis v3) |
|
1811 apply(rule v4) |
|
1812 by metis |
|
1813 |
|
1814 lemma lex_correct3: |
|
1815 assumes "s \<in> L r" |
|
1816 shows "\<exists>v. lex r s = Some(v) \<and> s \<in> r \<rightarrow> v" |
|
1817 using assms |
|
1818 apply(induct s arbitrary: r) |
|
1819 apply(simp) |
|
1820 apply (metis PMatch_mkeps nullable_correctness) |
|
1821 apply(drule_tac x="der a r" in meta_spec) |
|
1822 apply(drule meta_mp) |
|
1823 apply(simp add: L_flat_NPrf) |
|
1824 apply(auto) |
|
1825 apply (metis v3_proj v4_proj2) |
|
1826 apply(rule PMatch2) |
|
1827 apply(simp) |
|
1828 done |
|
1829 |
|
1830 lemma lex_correct4: |
|
1831 assumes "s \<in> L r" |
|
1832 shows "\<exists>v. lex r s = Some(v) \<and> \<Turnstile> v : r \<and> flat v = s" |
|
1833 using lex_correct3[OF assms] |
|
1834 apply(auto) |
|
1835 apply (metis PMatch1N) |
|
1836 by (metis PMatch1(2)) |
|
1837 |
|
1838 |
|
1839 lemma lex_correct5: |
|
1840 assumes "s \<in> L r" |
|
1841 shows "s \<in> r \<rightarrow> (lex2 r s)" |
|
1842 using assms |
|
1843 apply(induct s arbitrary: r) |
|
1844 apply(simp) |
|
1845 apply (metis PMatch_mkeps nullable_correctness) |
|
1846 apply(simp) |
|
1847 apply(rule PMatch2) |
|
1848 apply(drule_tac x="der a r" in meta_spec) |
|
1849 apply(drule meta_mp) |
|
1850 apply(simp add: L_flat_NPrf) |
|
1851 apply(auto) |
|
1852 apply (metis v3_proj v4_proj2) |
|
1853 done |
|
1854 |
|
1855 lemma |
|
1856 "lex2 (ALT (CHAR a) (ALT (CHAR b) (SEQ (CHAR a) (CHAR b)))) [a,b] = Right (Right (Seq (Char a) (Char b)))" |
|
1857 apply(simp) |
|
1858 done |
|
1859 |
|
1860 |
|
1861 (* NOT DONE YET *) |
|
1862 |
|
1863 section {* Sulzmann's Ordering of values *} |
|
1864 |
|
1865 inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<succ>_ _" [100, 100, 100] 100) |
|
1866 where |
|
1867 "v2 \<succ>r2 v2' \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
1868 | "\<lbrakk>v1 \<succ>r1 v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
1869 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Right v2)" |
|
1870 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Left v1)" |
|
1871 | "v2 \<succ>r2 v2' \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Right v2')" |
|
1872 | "v1 \<succ>r1 v1' \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Left v1')" |
|
1873 | "Void \<succ>EMPTY Void" |
|
1874 | "(Char c) \<succ>(CHAR c) (Char c)" |
|
1875 | "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) \<succ>(STAR r) (Stars (v # vs))" |
|
1876 | "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) \<succ>(STAR r) (Stars [])" |
|
1877 | "\<lbrakk>v1 \<succ>r v2; v1 \<noteq> v2\<rbrakk> \<Longrightarrow> (Stars (v1 # vs1)) \<succ>(STAR r) (Stars (v2 # vs2))" |
|
1878 | "(Stars vs1) \<succ>(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) \<succ>(STAR r) (Stars (v # vs2))" |
|
1879 | "(Stars []) \<succ>(STAR r) (Stars [])" |
|
1880 |
|
1881 lemma PMatch_ValOrd: |
|
1882 assumes "s \<in> r \<rightarrow> v" "v' \<in> SValues r s" |
|
1883 shows "v \<succ>r v'" |
|
1884 using assms |
|
1885 apply(induct r arbitrary: v v' s rule: rexp.induct) |
|
1886 apply(simp add: SValues_recs) |
|
1887 apply(simp add: SValues_recs) |
|
1888 apply(erule PMatch.cases) |
|
1889 apply(simp_all)[7] |
|
1890 apply (metis ValOrd.intros(7)) |
|
1891 apply(simp add: SValues_recs) |
|
1892 apply(erule PMatch.cases) |
|
1893 apply(simp_all)[7] |
|
1894 apply (metis ValOrd.intros(8) empty_iff singletonD) |
|
1895 apply(simp add: SValues_recs) |
|
1896 apply(clarify) |
|
1897 apply(erule PMatch.cases) |
|
1898 apply(simp_all)[7] |
|
1899 apply(clarify) |
|
1900 apply(case_tac "v1a = v1") |
|
1901 apply(simp) |
|
1902 apply(rule ValOrd.intros) |
|
1903 apply(rotate_tac 1) |
|
1904 apply(drule_tac x="v2a" in meta_spec) |
|
1905 apply(rotate_tac 8) |
|
1906 apply(drule_tac x="v2" in meta_spec) |
|
1907 apply(drule_tac x="s2a" in meta_spec) |
|
1908 apply(simp) |
|
1909 apply(drule_tac meta_mp) |
|
1910 apply(simp add: SValues_def) |
|
1911 apply (metis PMatch1(2) same_append_eq) |
|
1912 apply(simp) |
|
1913 apply(rule ValOrd.intros) |
|
1914 apply(drule_tac x="v1a" in meta_spec) |
|
1915 apply(rotate_tac 8) |
|
1916 apply(drule_tac x="v1" in meta_spec) |
|
1917 apply(drule_tac x="s1a" in meta_spec) |
|
1918 apply(simp) |
|
1919 apply(drule_tac meta_mp) |
|
1920 apply(simp add: append_eq_append_conv2) |
|
1921 apply(auto)[1] |
|
1922 apply(case_tac "us=[]") |
|
1923 apply(simp) |
|
1924 apply(drule_tac x="us" in spec) |
|
1925 apply(drule mp) |
|
1926 apply(simp add: SValues_def) |
|
1927 apply (metis Prf_flat_L) |
|
1928 apply(erule disjE) |
|
1929 apply(simp) |
|
1930 apply(simp) |
|
1931 apply(simp add: SValues_def) |
|
1932 apply (metis Prf_flat_L) |
|
1933 |
|
1934 apply(subst (asm) (2) Values_def) |
|
1935 apply(simp) |
|
1936 apply(clarify) |
|
1937 apply(simp add: rest_def) |
|
1938 apply(simp add: prefix_def) |
|
1939 apply(auto)[1] |
|
1940 apply(simp add: append_eq_append_conv2) |
|
1941 apply(auto)[1] |
|
1942 apply(case_tac "us = []") |
|
1943 apply(simp) |
|
1944 apply(simp add: Values_def) |
|
1945 apply (metis append_Nil2 prefix_def) |
|
1946 apply(drule_tac x="us" in spec) |
|
1947 apply(simp) |
|
1948 apply(drule_tac mp) |
|
1949 |
|
1950 |
|
1951 oops |
|
1952 (*HERE *) |
|
1953 |
|
1954 inductive ValOrd2 :: "val \<Rightarrow> string \<Rightarrow> val \<Rightarrow> bool" ("_ 2\<succ>_ _" [100, 100, 100] 100) |
|
1955 where |
|
1956 "v2 2\<succ>s v2' \<Longrightarrow> (Seq v1 v2) 2\<succ>(flat v1 @ s) (Seq v1 v2')" |
|
1957 | "\<lbrakk>v1 2\<succ>s v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) 2\<succ>s (Seq v1' v2')" |
|
1958 | "(flat v2) \<sqsubseteq> (flat v1) \<Longrightarrow> (Left v1) 2\<succ>(flat v1) (Right v2)" |
|
1959 | "(flat v1) \<sqsubset> (flat v2) \<Longrightarrow> (Right v2) 2\<succ>(flat v2) (Left v1)" |
|
1960 | "v2 2\<succ>s v2' \<Longrightarrow> (Right v2) 2\<succ>s (Right v2')" |
|
1961 | "v1 2\<succ>s v1' \<Longrightarrow> (Left v1) 2\<succ>s (Left v1')" |
|
1962 | "Void 2\<succ>[] Void" |
|
1963 | "(Char c) 2\<succ>[c] (Char c)" |
|
1964 | "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) 2\<succ>[] (Stars (v # vs))" |
|
1965 | "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) 2\<succ>(flat (Stars (v # vs))) (Stars [])" |
|
1966 | "\<lbrakk>v1 2\<succ>s v2; v1 \<noteq> v2\<rbrakk> \<Longrightarrow> (Stars (v1 # vs1)) 2\<succ>s (Stars (v2 # vs2))" |
|
1967 | "(Stars vs1) 2\<succ>s (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) 2\<succ>(flat v @ s) (Stars (v # vs2))" |
|
1968 | "(Stars []) 2\<succ>[] (Stars [])" |
|
1969 |
|
1970 lemma ValOrd2_string1: |
|
1971 assumes "v1 2\<succ>s v2" |
|
1972 shows "s \<sqsubseteq> flat v1" |
|
1973 using assms |
|
1974 apply(induct) |
|
1975 apply(auto simp add: prefix_def) |
|
1976 apply (metis append_assoc) |
|
1977 by (metis append_assoc) |
|
1978 |
|
1979 |
|
1980 lemma admissibility: |
|
1981 assumes "s \<in> r \<rightarrow> v" "\<turnstile> v' : r" |
|
1982 shows "(\<forall>s'. (s' \<in> L(r) \<and> s' \<sqsubseteq> s) \<longrightarrow> v 2\<succ>s' v')" |
|
1983 using assms |
|
1984 apply(induct arbitrary: v') |
|
1985 apply(erule Prf.cases) |
|
1986 apply(simp_all)[7] |
|
1987 apply (metis ValOrd2.intros(7)) |
|
1988 apply(erule Prf.cases) |
|
1989 apply(simp_all)[7] |
|
1990 apply (metis ValOrd2.intros(8) append_Nil2 prefix_Cons prefix_append prefix_def) |
|
1991 apply(erule Prf.cases) |
|
1992 apply(simp_all)[7] |
|
1993 apply(auto)[1] |
|
1994 apply (metis ValOrd2.intros(6)) |
|
1995 apply(rule ValOrd2.intros) |
|
1996 apply(drule_tac x="v1" in meta_spec) |
|
1997 apply(simp) |
|
1998 |
|
1999 apply(clarify) |
|
2000 apply (metis PMatch1(2) ValOrd2.intros(3)) |
|
2001 apply(erule Prf.cases) |
|
2002 apply(simp_all)[7] |
|
2003 apply(auto) |
|
2004 |
|
2005 apply(case_tac "v1 = v1a") |
|
2006 apply(simp) |
|
2007 apply(rotate_tac 3) |
|
2008 apply(drule_tac x="v2a" in meta_spec) |
|
2009 apply(drule meta_mp) |
|
2010 apply(simp) |
|
2011 apply(auto) |
|
2012 apply(rule_tac x="flat v1a @ s'" in exI) |
|
2013 apply (metis PMatch1(2) ValOrd2.intros(1) prefix_append) |
|
2014 apply (metis PMatch1(2) ValOrd2.intros(2) ValOrd2_string1 flat.simps(5)) |
|
2015 prefer 4 |
|
2016 apply(erule Prf.cases) |
|
2017 apply(simp_all)[7] |
|
2018 prefer 2 |
|
2019 apply (metis ValOrd2.intros(5)) |
|
2020 |
|
2021 |
|
2022 apply (metis ValOrd.intros(6)) |
|
2023 oops |
|
2024 |
|
2025 |
|
2026 lemma admissibility: |
|
2027 assumes "\<turnstile> s \<in> r \<rightarrow> v" "\<turnstile> v' : r" |
|
2028 shows "v \<succ>r v'" |
|
2029 using assms |
|
2030 apply(induct arbitrary: v') |
|
2031 apply(erule Prf.cases) |
|
2032 apply(simp_all)[7] |
|
2033 apply (metis ValOrd.intros(7)) |
|
2034 apply(erule Prf.cases) |
|
2035 apply(simp_all)[7] |
|
2036 apply (metis ValOrd.intros(8)) |
|
2037 apply(erule Prf.cases) |
|
2038 apply(simp_all)[7] |
|
2039 apply (metis ValOrd.intros(6)) |
|
2040 oops |
|
2041 |
|
2042 lemma admissibility: |
|
2043 assumes "2\<rhd> v : r" "\<turnstile> v' : r" "flat v' \<sqsubseteq> flat v" |
|
2044 shows "v \<succ>r v'" |
|
2045 using assms |
|
2046 apply(induct arbitrary: v') |
|
2047 apply(erule Prf.cases) |
|
2048 apply(simp_all)[7] |
|
2049 apply (metis ValOrd.intros(7)) |
|
2050 apply(erule Prf.cases) |
|
2051 apply(simp_all)[7] |
|
2052 apply (metis ValOrd.intros(8)) |
|
2053 apply(erule Prf.cases) |
|
2054 apply(simp_all)[7] |
|
2055 apply (metis ValOrd.intros(6)) |
|
2056 apply (metis ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2057 apply(erule Prf.cases) |
|
2058 apply(simp_all)[7] |
|
2059 apply (metis Prf_flat_L ValOrd.intros(4) length_sprefix seq_empty(1) sprefix_def) |
|
2060 apply (metis ValOrd.intros(5)) |
|
2061 oops |
|
2062 |
|
2063 |
|
2064 lemma admisibility: |
|
2065 assumes "\<rhd> v : r" "\<turnstile> v' : r" |
|
2066 shows "v \<succ>r v'" |
|
2067 using assms |
|
2068 apply(induct arbitrary: v') |
|
2069 prefer 5 |
|
2070 apply(drule royA) |
|
2071 apply(erule Prf.cases) |
|
2072 apply(simp_all)[7] |
|
2073 apply(clarify) |
|
2074 apply(case_tac "v1 = v1a") |
|
2075 apply(simp) |
|
2076 apply(rule ValOrd.intros) |
|
2077 apply metis |
|
2078 apply (metis ValOrd.intros(2)) |
|
2079 apply(erule Prf.cases) |
|
2080 apply(simp_all)[7] |
|
2081 apply (metis ValOrd.intros(7)) |
|
2082 apply(erule Prf.cases) |
|
2083 apply(simp_all)[7] |
|
2084 apply (metis ValOrd.intros(8)) |
|
2085 apply(erule Prf.cases) |
|
2086 apply(simp_all)[7] |
|
2087 apply (metis ValOrd.intros(6)) |
|
2088 apply(rule ValOrd.intros) |
|
2089 defer |
|
2090 apply(erule Prf.cases) |
|
2091 apply(simp_all)[7] |
|
2092 apply(clarify) |
|
2093 apply(rule ValOrd.intros) |
|
2094 (* seq case goes through *) |
|
2095 oops |
|
2096 |
|
2097 |
|
2098 lemma admisibility: |
|
2099 assumes "\<rhd> v : r" "\<turnstile> v' : r" "flat v' \<sqsubseteq> flat v" |
|
2100 shows "v \<succ>r v'" |
|
2101 using assms |
|
2102 apply(induct arbitrary: v') |
|
2103 prefer 5 |
|
2104 apply(drule royA) |
|
2105 apply(erule Prf.cases) |
|
2106 apply(simp_all)[7] |
|
2107 apply(clarify) |
|
2108 apply(case_tac "v1 = v1a") |
|
2109 apply(simp) |
|
2110 apply(rule ValOrd.intros) |
|
2111 apply(subst (asm) (3) prefix_def) |
|
2112 apply(erule exE) |
|
2113 apply(simp) |
|
2114 apply (metis prefix_def) |
|
2115 (* the unequal case *) |
|
2116 apply(subgoal_tac "flat v1 \<sqsubset> flat v1a \<or> flat v1a \<sqsubseteq> flat v1") |
|
2117 prefer 2 |
|
2118 apply(simp add: prefix_def sprefix_def) |
|
2119 apply (metis append_eq_append_conv2) |
|
2120 apply(erule disjE) |
|
2121 (* first case flat v1 \<sqsubset> flat v1a *) |
|
2122 apply(subst (asm) sprefix_def) |
|
2123 apply(subst (asm) (5) prefix_def) |
|
2124 apply(clarify) |
|
2125 apply(subgoal_tac "(s3 @ flat v2a) \<sqsubseteq> flat v2") |
|
2126 prefer 2 |
|
2127 apply(simp) |
|
2128 apply (metis append_assoc prefix_append) |
|
2129 apply(subgoal_tac "s3 \<noteq> []") |
|
2130 prefer 2 |
|
2131 apply (metis append_Nil2) |
|
2132 (* HERE *) |
|
2133 apply(subst (asm) (5) prefix_def) |
|
2134 apply(erule exE) |
|
2135 apply(simp add: ders_correctness Ders_def) |
|
2136 apply(simp add: prefix_def) |
|
2137 apply(clarify) |
|
2138 apply(subst (asm) append_eq_append_conv2) |
|
2139 apply(erule exE) |
|
2140 apply(erule disjE) |
|
2141 apply(clarify) |
|
2142 oops |
|
2143 |
|
2144 |
|
2145 |
|
2146 lemma ValOrd_refl: |
|
2147 assumes "\<turnstile> v : r" |
|
2148 shows "v \<succ>r v" |
|
2149 using assms |
|
2150 apply(induct) |
|
2151 apply(auto intro: ValOrd.intros) |
|
2152 done |
|
2153 |
|
2154 lemma ValOrd_total: |
|
2155 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2 \<or> v2 \<succ>r v1" |
|
2156 apply(induct r arbitrary: v1 v2) |
|
2157 apply(auto) |
|
2158 apply(erule Prf.cases) |
|
2159 apply(simp_all)[7] |
|
2160 apply(erule Prf.cases) |
|
2161 apply(simp_all)[7] |
|
2162 apply(erule Prf.cases) |
|
2163 apply(simp_all)[7] |
|
2164 apply (metis ValOrd.intros(7)) |
|
2165 apply(erule Prf.cases) |
|
2166 apply(simp_all)[7] |
|
2167 apply(erule Prf.cases) |
|
2168 apply(simp_all)[7] |
|
2169 apply (metis ValOrd.intros(8)) |
|
2170 apply(erule Prf.cases) |
|
2171 apply(simp_all)[7] |
|
2172 apply(erule Prf.cases) |
|
2173 apply(simp_all)[7] |
|
2174 apply(clarify) |
|
2175 apply(case_tac "v1a = v1b") |
|
2176 apply(simp) |
|
2177 apply(rule ValOrd.intros(1)) |
|
2178 apply (metis ValOrd.intros(1)) |
|
2179 apply(rule ValOrd.intros(2)) |
|
2180 apply(auto)[2] |
|
2181 apply(erule contrapos_np) |
|
2182 apply(rule ValOrd.intros(2)) |
|
2183 apply(auto) |
|
2184 apply(erule Prf.cases) |
|
2185 apply(simp_all)[7] |
|
2186 apply(erule Prf.cases) |
|
2187 apply(simp_all)[7] |
|
2188 apply(clarify) |
|
2189 apply (metis ValOrd.intros(6)) |
|
2190 apply(rule ValOrd.intros) |
|
2191 apply(erule contrapos_np) |
|
2192 apply(rule ValOrd.intros) |
|
2193 apply (metis le_eq_less_or_eq neq_iff) |
|
2194 apply(erule Prf.cases) |
|
2195 apply(simp_all)[7] |
|
2196 apply(rule ValOrd.intros) |
|
2197 apply(erule contrapos_np) |
|
2198 apply(rule ValOrd.intros) |
|
2199 apply (metis le_eq_less_or_eq neq_iff) |
|
2200 apply(rule ValOrd.intros) |
|
2201 apply(erule contrapos_np) |
|
2202 apply(rule ValOrd.intros) |
|
2203 apply(metis) |
|
2204 apply(erule Prf.cases) |
|
2205 apply(simp_all)[7] |
|
2206 apply(erule Prf.cases) |
|
2207 apply(simp_all)[7] |
|
2208 apply(auto) |
|
2209 apply (metis ValOrd.intros(13)) |
|
2210 apply (metis ValOrd.intros(10) ValOrd.intros(9)) |
|
2211 apply(erule Prf.cases) |
|
2212 apply(simp_all)[7] |
|
2213 apply(auto) |
|
2214 apply (metis ValOrd.intros(10) ValOrd.intros(9)) |
|
2215 apply(case_tac "v = va") |
|
2216 prefer 2 |
|
2217 apply (metis ValOrd.intros(11)) |
|
2218 apply(simp) |
|
2219 apply(rule ValOrd.intros(12)) |
|
2220 apply(erule contrapos_np) |
|
2221 apply(rule ValOrd.intros(12)) |
|
2222 oops |
|
2223 |
|
2224 lemma Roy_posix: |
|
2225 assumes "\<rhd> v : r" "\<turnstile> v' : r" "flat v' \<sqsubseteq> flat v" |
|
2226 shows "v \<succ>r v'" |
|
2227 using assms |
|
2228 apply(induct r arbitrary: v v' rule: rexp.induct) |
|
2229 apply(erule Prf.cases) |
|
2230 apply(simp_all)[7] |
|
2231 apply(erule Prf.cases) |
|
2232 apply(simp_all)[7] |
|
2233 apply(erule Roy.cases) |
|
2234 apply(simp_all) |
|
2235 apply (metis ValOrd.intros(7)) |
|
2236 apply(erule Prf.cases) |
|
2237 apply(simp_all)[7] |
|
2238 apply(erule Roy.cases) |
|
2239 apply(simp_all) |
|
2240 apply (metis ValOrd.intros(8)) |
|
2241 prefer 2 |
|
2242 apply(erule Prf.cases) |
|
2243 apply(simp_all)[7] |
|
2244 apply(erule Roy.cases) |
|
2245 apply(simp_all) |
|
2246 apply(clarify) |
|
2247 apply (metis ValOrd.intros(6)) |
|
2248 apply(clarify) |
|
2249 apply (metis Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2250 apply(erule Roy.cases) |
|
2251 apply(simp_all) |
|
2252 apply (metis ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2253 apply(clarify) |
|
2254 apply (metis ValOrd.intros(5)) |
|
2255 apply(erule Prf.cases) |
|
2256 apply(simp_all)[7] |
|
2257 apply(erule Roy.cases) |
|
2258 apply(simp_all) |
|
2259 apply(clarify) |
|
2260 apply(case_tac "v1a = v1") |
|
2261 apply(simp) |
|
2262 apply(rule ValOrd.intros) |
|
2263 apply (metis prefix_append) |
|
2264 apply(rule ValOrd.intros) |
|
2265 prefer 2 |
|
2266 apply(simp) |
|
2267 apply(simp add: prefix_def) |
|
2268 apply(auto)[1] |
|
2269 apply(simp add: append_eq_append_conv2) |
|
2270 apply(auto)[1] |
|
2271 apply(drule_tac x="v1a" in meta_spec) |
|
2272 apply(rotate_tac 9) |
|
2273 apply(drule_tac x="v1" in meta_spec) |
|
2274 apply(drule_tac meta_mp) |
|
2275 apply(simp) |
|
2276 apply(drule_tac meta_mp) |
|
2277 apply(simp) |
|
2278 apply(drule_tac meta_mp) |
|
2279 apply(simp) |
|
2280 apply(drule_tac x="us" in spec) |
|
2281 apply(drule_tac mp) |
|
2282 apply (metis Prf_flat_L) |
|
2283 apply(auto)[1] |
|
2284 oops |
|
2285 |
|
2286 |
|
2287 lemma ValOrd_anti: |
|
2288 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r; v1 \<succ>r v2; v2 \<succ>r v1\<rbrakk> \<Longrightarrow> v1 = v2" |
|
2289 and "\<lbrakk>\<turnstile> Stars vs1 : r; \<turnstile> Stars vs2 : r; Stars vs1 \<succ>r Stars vs2; Stars vs2 \<succ>r Stars vs1\<rbrakk> \<Longrightarrow> vs1 = vs2" |
|
2290 apply(induct v1 and vs1 arbitrary: r v2 and r vs2 rule: val.inducts) |
|
2291 apply(erule Prf.cases) |
|
2292 apply(simp_all)[7] |
|
2293 apply(erule Prf.cases) |
|
2294 apply(simp_all)[7] |
|
2295 apply(erule Prf.cases) |
|
2296 apply(simp_all)[7] |
|
2297 apply(erule Prf.cases) |
|
2298 apply(simp_all)[7] |
|
2299 apply(erule Prf.cases) |
|
2300 apply(simp_all)[7] |
|
2301 apply(erule Prf.cases) |
|
2302 apply(simp_all)[7] |
|
2303 apply(erule ValOrd.cases) |
|
2304 apply(simp_all) |
|
2305 apply(erule ValOrd.cases) |
|
2306 apply(simp_all) |
|
2307 apply(erule ValOrd.cases) |
|
2308 apply(simp_all) |
|
2309 apply(erule Prf.cases) |
|
2310 apply(simp_all)[7] |
|
2311 apply(erule Prf.cases) |
|
2312 apply(simp_all)[7] |
|
2313 apply(erule ValOrd.cases) |
|
2314 apply(simp_all) |
|
2315 apply(erule ValOrd.cases) |
|
2316 apply(simp_all) |
|
2317 apply(erule ValOrd.cases) |
|
2318 apply(simp_all) |
|
2319 apply(erule ValOrd.cases) |
|
2320 apply(simp_all) |
|
2321 apply(erule Prf.cases) |
|
2322 apply(simp_all)[7] |
|
2323 apply(erule Prf.cases) |
|
2324 apply(simp_all)[7] |
|
2325 apply(erule ValOrd.cases) |
|
2326 apply(simp_all) |
|
2327 apply(erule ValOrd.cases) |
|
2328 apply(simp_all) |
|
2329 apply(erule ValOrd.cases) |
|
2330 apply(simp_all) |
|
2331 apply(erule ValOrd.cases) |
|
2332 apply(simp_all) |
|
2333 apply(erule Prf.cases) |
|
2334 apply(simp_all)[7] |
|
2335 apply(erule Prf.cases) |
|
2336 apply(simp_all)[7] |
|
2337 apply(erule ValOrd.cases) |
|
2338 apply(simp_all) |
|
2339 apply(erule ValOrd.cases) |
|
2340 apply(simp_all) |
|
2341 apply(erule Prf.cases) |
|
2342 apply(simp_all)[7] |
|
2343 apply(erule ValOrd.cases) |
|
2344 apply(simp_all) |
|
2345 apply(erule ValOrd.cases) |
|
2346 apply(simp_all) |
|
2347 apply(erule ValOrd.cases) |
|
2348 apply(simp_all) |
|
2349 apply(erule ValOrd.cases) |
|
2350 apply(simp_all) |
|
2351 apply(auto)[1] |
|
2352 prefer 2 |
|
2353 oops |
|
2354 |
|
2355 |
|
2356 (* |
|
2357 |
|
2358 lemma ValOrd_PMatch: |
|
2359 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 \<sqsubseteq> s" |
|
2360 shows "v1 \<succ>r v2" |
|
2361 using assms |
|
2362 apply(induct r arbitrary: s v1 v2 rule: rexp.induct) |
|
2363 apply(erule Prf.cases) |
|
2364 apply(simp_all)[7] |
|
2365 apply(erule Prf.cases) |
|
2366 apply(simp_all)[7] |
|
2367 apply(erule PMatch.cases) |
|
2368 apply(simp_all)[7] |
|
2369 apply (metis ValOrd.intros(7)) |
|
2370 apply(erule Prf.cases) |
|
2371 apply(simp_all)[7] |
|
2372 apply(erule PMatch.cases) |
|
2373 apply(simp_all)[7] |
|
2374 apply (metis ValOrd.intros(8)) |
|
2375 defer |
|
2376 apply(erule Prf.cases) |
|
2377 apply(simp_all)[7] |
|
2378 apply(erule PMatch.cases) |
|
2379 apply(simp_all)[7] |
|
2380 apply (metis ValOrd.intros(6)) |
|
2381 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2382 apply(clarify) |
|
2383 apply(erule PMatch.cases) |
|
2384 apply(simp_all)[7] |
|
2385 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2386 apply(clarify) |
|
2387 apply (metis ValOrd.intros(5)) |
|
2388 (* Stars case *) |
|
2389 apply(erule Prf.cases) |
|
2390 apply(simp_all)[7] |
|
2391 apply(erule PMatch.cases) |
|
2392 apply(simp_all) |
|
2393 apply (metis Nil_is_append_conv ValOrd.intros(10) flat.simps(7)) |
|
2394 apply (metis ValOrd.intros(13)) |
|
2395 apply(clarify) |
|
2396 apply(erule PMatch.cases) |
|
2397 apply(simp_all) |
|
2398 prefer 2 |
|
2399 apply(rule ValOrd.intros) |
|
2400 apply(simp add: prefix_def) |
|
2401 apply(rule ValOrd.intros) |
|
2402 apply(drule_tac x="s1" in meta_spec) |
|
2403 apply(drule_tac x="va" in meta_spec) |
|
2404 apply(drule_tac x="v" in meta_spec) |
|
2405 apply(drule_tac meta_mp) |
|
2406 apply(simp) |
|
2407 apply(drule_tac meta_mp) |
|
2408 apply(simp) |
|
2409 apply(drule_tac meta_mp) |
|
2410 apply(simp add: prefix_def) |
|
2411 apply(auto)[1] |
|
2412 prefer 3 |
|
2413 (* Seq case *) |
|
2414 apply(erule Prf.cases) |
|
2415 apply(simp_all)[5] |
|
2416 apply(auto) |
|
2417 apply(erule PMatch.cases) |
|
2418 apply(simp_all)[5] |
|
2419 apply(auto) |
|
2420 apply(case_tac "v1b = v1a") |
|
2421 apply(auto) |
|
2422 apply(simp add: prefix_def) |
|
2423 apply(auto)[1] |
|
2424 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2425 apply(simp add: prefix_def) |
|
2426 apply(auto)[1] |
|
2427 apply(simp add: append_eq_append_conv2) |
|
2428 apply(auto) |
|
2429 prefer 2 |
|
2430 apply (metis ValOrd.intros(2)) |
|
2431 prefer 2 |
|
2432 apply (metis ValOrd.intros(2)) |
|
2433 apply(case_tac "us = []") |
|
2434 apply(simp) |
|
2435 apply (metis ValOrd.intros(2) append_Nil2) |
|
2436 apply(drule_tac x="us" in spec) |
|
2437 apply(simp) |
|
2438 apply(drule_tac mp) |
|
2439 apply (metis Prf_flat_L) |
|
2440 apply(drule_tac x="s1 @ us" in meta_spec) |
|
2441 apply(drule_tac x="v1b" in meta_spec) |
|
2442 apply(drule_tac x="v1a" in meta_spec) |
|
2443 apply(drule_tac meta_mp) |
|
2444 |
|
2445 apply(simp) |
|
2446 apply(drule_tac meta_mp) |
|
2447 apply(simp) |
|
2448 apply(simp) |
|
2449 apply(simp) |
|
2450 apply(clarify) |
|
2451 apply (metis ValOrd.intros(6)) |
|
2452 apply(clarify) |
|
2453 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2454 apply(erule Prf.cases) |
|
2455 apply(simp_all)[5] |
|
2456 apply(clarify) |
|
2457 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2458 apply (metis ValOrd.intros(5)) |
|
2459 (* Seq case *) |
|
2460 apply(erule Prf.cases) |
|
2461 apply(simp_all)[5] |
|
2462 apply(auto) |
|
2463 apply(case_tac "v1 = v1a") |
|
2464 apply(auto) |
|
2465 apply(simp add: prefix_def) |
|
2466 apply(auto)[1] |
|
2467 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2468 apply(simp add: prefix_def) |
|
2469 apply(auto)[1] |
|
2470 apply(frule PMatch1) |
|
2471 apply(frule PMatch1(2)[symmetric]) |
|
2472 apply(clarify) |
|
2473 apply(simp add: append_eq_append_conv2) |
|
2474 apply(auto) |
|
2475 prefer 2 |
|
2476 apply (metis ValOrd.intros(2)) |
|
2477 prefer 2 |
|
2478 apply (metis ValOrd.intros(2)) |
|
2479 apply(case_tac "us = []") |
|
2480 apply(simp) |
|
2481 apply (metis ValOrd.intros(2) append_Nil2) |
|
2482 apply(drule_tac x="us" in spec) |
|
2483 apply(simp) |
|
2484 apply(drule mp) |
|
2485 apply (metis Prf_flat_L) |
|
2486 apply(drule_tac x="v1a" in meta_spec) |
|
2487 apply(drule_tac meta_mp) |
|
2488 apply(simp) |
|
2489 apply(drule_tac meta_mp) |
|
2490 apply(simp) |
|
2491 |
|
2492 lemma ValOrd_PMatch: |
|
2493 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 \<sqsubseteq> s" |
|
2494 shows "v1 \<succ>r v2" |
|
2495 using assms |
|
2496 apply(induct arbitrary: v2 rule: .induct) |
|
2497 apply(erule Prf.cases) |
|
2498 apply(simp_all)[5] |
|
2499 apply (metis ValOrd.intros(7)) |
|
2500 apply(erule Prf.cases) |
|
2501 apply(simp_all)[5] |
|
2502 apply (metis ValOrd.intros(8)) |
|
2503 apply(erule Prf.cases) |
|
2504 apply(simp_all)[5] |
|
2505 apply(clarify) |
|
2506 apply (metis ValOrd.intros(6)) |
|
2507 apply(clarify) |
|
2508 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2509 apply(erule Prf.cases) |
|
2510 apply(simp_all)[5] |
|
2511 apply(clarify) |
|
2512 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2513 apply (metis ValOrd.intros(5)) |
|
2514 (* Seq case *) |
|
2515 apply(erule Prf.cases) |
|
2516 apply(simp_all)[5] |
|
2517 apply(auto) |
|
2518 apply(case_tac "v1 = v1a") |
|
2519 apply(auto) |
|
2520 apply(simp add: prefix_def) |
|
2521 apply(auto)[1] |
|
2522 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2523 apply(simp add: prefix_def) |
|
2524 apply(auto)[1] |
|
2525 apply(frule PMatch1) |
|
2526 apply(frule PMatch1(2)[symmetric]) |
|
2527 apply(clarify) |
|
2528 apply(simp add: append_eq_append_conv2) |
|
2529 apply(auto) |
|
2530 prefer 2 |
|
2531 apply (metis ValOrd.intros(2)) |
|
2532 prefer 2 |
|
2533 apply (metis ValOrd.intros(2)) |
|
2534 apply(case_tac "us = []") |
|
2535 apply(simp) |
|
2536 apply (metis ValOrd.intros(2) append_Nil2) |
|
2537 apply(drule_tac x="us" in spec) |
|
2538 apply(simp) |
|
2539 apply(drule mp) |
|
2540 apply (metis Prf_flat_L) |
|
2541 apply(drule_tac x="v1a" in meta_spec) |
|
2542 apply(drule_tac meta_mp) |
|
2543 apply(simp) |
|
2544 apply(drule_tac meta_mp) |
|
2545 apply(simp) |
|
2546 |
|
2547 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2548 apply(rule ValOrd.intros(2)) |
|
2549 apply(auto) |
|
2550 apply(drule_tac x="v1a" in meta_spec) |
|
2551 apply(drule_tac meta_mp) |
|
2552 apply(simp) |
|
2553 apply(drule_tac meta_mp) |
|
2554 prefer 2 |
|
2555 apply(simp) |
|
2556 thm append_eq_append_conv |
|
2557 apply(simp add: append_eq_append_conv2) |
|
2558 apply(auto) |
|
2559 apply (metis Prf_flat_L) |
|
2560 apply(case_tac "us = []") |
|
2561 apply(simp) |
|
2562 apply(drule_tac x="us" in spec) |
|
2563 apply(drule mp) |
|
2564 |
|
2565 |
|
2566 inductive ValOrd2 :: "val \<Rightarrow> val \<Rightarrow> bool" ("_ 2\<succ> _" [100, 100] 100) |
|
2567 where |
|
2568 "v2 2\<succ> v2' \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1 v2')" |
|
2569 | "\<lbrakk>v1 2\<succ> v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1' v2')" |
|
2570 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) 2\<succ> (Right v2)" |
|
2571 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) 2\<succ> (Left v1)" |
|
2572 | "v2 2\<succ> v2' \<Longrightarrow> (Right v2) 2\<succ> (Right v2')" |
|
2573 | "v1 2\<succ> v1' \<Longrightarrow> (Left v1) 2\<succ> (Left v1')" |
|
2574 | "Void 2\<succ> Void" |
|
2575 | "(Char c) 2\<succ> (Char c)" |
|
2576 |
|
2577 lemma Ord1: |
|
2578 "v1 \<succ>r v2 \<Longrightarrow> v1 2\<succ> v2" |
|
2579 apply(induct rule: ValOrd.induct) |
|
2580 apply(auto intro: ValOrd2.intros) |
|
2581 done |
|
2582 |
|
2583 lemma Ord2: |
|
2584 "v1 2\<succ> v2 \<Longrightarrow> \<exists>r. v1 \<succ>r v2" |
|
2585 apply(induct v1 v2 rule: ValOrd2.induct) |
|
2586 apply(auto intro: ValOrd.intros) |
|
2587 done |
|
2588 |
|
2589 lemma Ord3: |
|
2590 "\<lbrakk>v1 2\<succ> v2; \<turnstile> v1 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2" |
|
2591 apply(induct v1 v2 arbitrary: r rule: ValOrd2.induct) |
|
2592 apply(auto intro: ValOrd.intros elim: Prf.cases) |
|
2593 done |
|
2594 |
|
2595 section {* Posix definition *} |
|
2596 |
|
2597 definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
2598 where |
|
2599 "POSIX v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v' \<sqsubseteq> flat v) \<longrightarrow> v \<succ>r v'))" |
|
2600 |
|
2601 lemma ValOrd_refl: |
|
2602 assumes "\<turnstile> v : r" |
|
2603 shows "v \<succ>r v" |
|
2604 using assms |
|
2605 apply(induct) |
|
2606 apply(auto intro: ValOrd.intros) |
|
2607 done |
|
2608 |
|
2609 lemma ValOrd_total: |
|
2610 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2 \<or> v2 \<succ>r v1" |
|
2611 apply(induct r arbitrary: v1 v2) |
|
2612 apply(auto) |
|
2613 apply(erule Prf.cases) |
|
2614 apply(simp_all)[5] |
|
2615 apply(erule Prf.cases) |
|
2616 apply(simp_all)[5] |
|
2617 apply(erule Prf.cases) |
|
2618 apply(simp_all)[5] |
|
2619 apply (metis ValOrd.intros(7)) |
|
2620 apply(erule Prf.cases) |
|
2621 apply(simp_all)[5] |
|
2622 apply(erule Prf.cases) |
|
2623 apply(simp_all)[5] |
|
2624 apply (metis ValOrd.intros(8)) |
|
2625 apply(erule Prf.cases) |
|
2626 apply(simp_all)[5] |
|
2627 apply(erule Prf.cases) |
|
2628 apply(simp_all)[5] |
|
2629 apply(clarify) |
|
2630 apply(case_tac "v1a = v1b") |
|
2631 apply(simp) |
|
2632 apply(rule ValOrd.intros(1)) |
|
2633 apply (metis ValOrd.intros(1)) |
|
2634 apply(rule ValOrd.intros(2)) |
|
2635 apply(auto)[2] |
|
2636 apply(erule contrapos_np) |
|
2637 apply(rule ValOrd.intros(2)) |
|
2638 apply(auto) |
|
2639 apply(erule Prf.cases) |
|
2640 apply(simp_all)[5] |
|
2641 apply(erule Prf.cases) |
|
2642 apply(simp_all)[5] |
|
2643 apply (metis Ord1 Ord3 Prf.intros(2) ValOrd2.intros(6)) |
|
2644 apply(rule ValOrd.intros) |
|
2645 apply(erule contrapos_np) |
|
2646 apply(rule ValOrd.intros) |
|
2647 apply (metis le_eq_less_or_eq neq_iff) |
|
2648 apply(erule Prf.cases) |
|
2649 apply(simp_all)[5] |
|
2650 apply(rule ValOrd.intros) |
|
2651 apply(erule contrapos_np) |
|
2652 apply(rule ValOrd.intros) |
|
2653 apply (metis le_eq_less_or_eq neq_iff) |
|
2654 apply(rule ValOrd.intros) |
|
2655 apply(erule contrapos_np) |
|
2656 apply(rule ValOrd.intros) |
|
2657 by metis |
|
2658 |
|
2659 lemma ValOrd_anti: |
|
2660 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r; v1 \<succ>r v2; v2 \<succ>r v1\<rbrakk> \<Longrightarrow> v1 = v2" |
|
2661 apply(induct r arbitrary: v1 v2) |
|
2662 apply(erule Prf.cases) |
|
2663 apply(simp_all)[5] |
|
2664 apply(erule Prf.cases) |
|
2665 apply(simp_all)[5] |
|
2666 apply(erule Prf.cases) |
|
2667 apply(simp_all)[5] |
|
2668 apply(erule Prf.cases) |
|
2669 apply(simp_all)[5] |
|
2670 apply(erule Prf.cases) |
|
2671 apply(simp_all)[5] |
|
2672 apply(erule Prf.cases) |
|
2673 apply(simp_all)[5] |
|
2674 apply(erule Prf.cases) |
|
2675 apply(simp_all)[5] |
|
2676 apply(erule ValOrd.cases) |
|
2677 apply(simp_all)[8] |
|
2678 apply(erule ValOrd.cases) |
|
2679 apply(simp_all)[8] |
|
2680 apply(erule ValOrd.cases) |
|
2681 apply(simp_all)[8] |
|
2682 apply(erule Prf.cases) |
|
2683 apply(simp_all)[5] |
|
2684 apply(erule Prf.cases) |
|
2685 apply(simp_all)[5] |
|
2686 apply(erule ValOrd.cases) |
|
2687 apply(simp_all)[8] |
|
2688 apply(erule ValOrd.cases) |
|
2689 apply(simp_all)[8] |
|
2690 apply(erule ValOrd.cases) |
|
2691 apply(simp_all)[8] |
|
2692 apply(erule ValOrd.cases) |
|
2693 apply(simp_all)[8] |
|
2694 apply(erule Prf.cases) |
|
2695 apply(simp_all)[5] |
|
2696 apply(erule ValOrd.cases) |
|
2697 apply(simp_all)[8] |
|
2698 apply(erule ValOrd.cases) |
|
2699 apply(simp_all)[8] |
|
2700 apply(erule ValOrd.cases) |
|
2701 apply(simp_all)[8] |
|
2702 apply(erule ValOrd.cases) |
|
2703 apply(simp_all)[8] |
|
2704 done |
|
2705 |
|
2706 lemma POSIX_ALT_I1: |
|
2707 assumes "POSIX v1 r1" |
|
2708 shows "POSIX (Left v1) (ALT r1 r2)" |
|
2709 using assms |
|
2710 unfolding POSIX_def |
|
2711 apply(auto) |
|
2712 apply (metis Prf.intros(2)) |
|
2713 apply(rotate_tac 2) |
|
2714 apply(erule Prf.cases) |
|
2715 apply(simp_all)[5] |
|
2716 apply(auto) |
|
2717 apply(rule ValOrd.intros) |
|
2718 apply(auto) |
|
2719 apply(rule ValOrd.intros) |
|
2720 by (metis le_eq_less_or_eq length_sprefix sprefix_def) |
|
2721 |
|
2722 lemma POSIX_ALT_I2: |
|
2723 assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')" |
|
2724 shows "POSIX (Right v2) (ALT r1 r2)" |
|
2725 using assms |
|
2726 unfolding POSIX_def |
|
2727 apply(auto) |
|
2728 apply (metis Prf.intros) |
|
2729 apply(rotate_tac 3) |
|
2730 apply(erule Prf.cases) |
|
2731 apply(simp_all)[5] |
|
2732 apply(auto) |
|
2733 apply(rule ValOrd.intros) |
|
2734 apply metis |
|
2735 apply(rule ValOrd.intros) |
|
2736 apply metis |
|
2737 done |
|
2738 |
|
2739 thm PMatch.intros[no_vars] |
|
2740 |
|
2741 lemma POSIX_PMatch: |
|
2742 assumes "s \<in> r \<rightarrow> v" "\<turnstile> v' : r" |
|
2743 shows "length (flat v') \<le> length (flat v)" |
|
2744 using assms |
|
2745 apply(induct arbitrary: s v v' rule: rexp.induct) |
|
2746 apply(erule Prf.cases) |
|
2747 apply(simp_all)[5] |
|
2748 apply(erule Prf.cases) |
|
2749 apply(simp_all)[5] |
|
2750 apply(erule Prf.cases) |
|
2751 apply(simp_all)[5] |
|
2752 apply(erule PMatch.cases) |
|
2753 apply(simp_all)[5] |
|
2754 defer |
|
2755 apply(erule Prf.cases) |
|
2756 apply(simp_all)[5] |
|
2757 apply(erule PMatch.cases) |
|
2758 apply(simp_all)[5] |
|
2759 apply(clarify) |
|
2760 apply(simp add: L_flat_Prf) |
|
2761 |
|
2762 apply(clarify) |
|
2763 apply (metis ValOrd.intros(8)) |
|
2764 apply (metis POSIX_ALT_I1) |
|
2765 apply(rule POSIX_ALT_I2) |
|
2766 apply(simp) |
|
2767 apply(auto)[1] |
|
2768 apply(simp add: POSIX_def) |
|
2769 apply(frule PMatch1(1)) |
|
2770 apply(frule PMatch1(2)) |
|
2771 apply(simp) |
|
2772 |
|
2773 |
|
2774 lemma POSIX_PMatch: |
|
2775 assumes "s \<in> r \<rightarrow> v" |
|
2776 shows "POSIX v r" |
|
2777 using assms |
|
2778 apply(induct arbitrary: rule: PMatch.induct) |
|
2779 apply(auto) |
|
2780 apply(simp add: POSIX_def) |
|
2781 apply(auto)[1] |
|
2782 apply (metis Prf.intros(4)) |
|
2783 apply(erule Prf.cases) |
|
2784 apply(simp_all)[5] |
|
2785 apply (metis ValOrd.intros(7)) |
|
2786 apply(simp add: POSIX_def) |
|
2787 apply(auto)[1] |
|
2788 apply (metis Prf.intros(5)) |
|
2789 apply(erule Prf.cases) |
|
2790 apply(simp_all)[5] |
|
2791 apply (metis ValOrd.intros(8)) |
|
2792 apply (metis POSIX_ALT_I1) |
|
2793 apply(rule POSIX_ALT_I2) |
|
2794 apply(simp) |
|
2795 apply(auto)[1] |
|
2796 apply(simp add: POSIX_def) |
|
2797 apply(frule PMatch1(1)) |
|
2798 apply(frule PMatch1(2)) |
|
2799 apply(simp) |
|
2800 |
|
2801 |
|
2802 |
|
2803 lemma ValOrd_PMatch: |
|
2804 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 = s" |
|
2805 shows "v1 \<succ>r v2" |
|
2806 using assms |
|
2807 apply(induct arbitrary: v2 rule: PMatch.induct) |
|
2808 apply(erule Prf.cases) |
|
2809 apply(simp_all)[5] |
|
2810 apply (metis ValOrd.intros(7)) |
|
2811 apply(erule Prf.cases) |
|
2812 apply(simp_all)[5] |
|
2813 apply (metis ValOrd.intros(8)) |
|
2814 apply(erule Prf.cases) |
|
2815 apply(simp_all)[5] |
|
2816 apply(clarify) |
|
2817 apply (metis ValOrd.intros(6)) |
|
2818 apply(clarify) |
|
2819 apply (metis PMatch1(2) ValOrd.intros(3) order_refl) |
|
2820 apply(erule Prf.cases) |
|
2821 apply(simp_all)[5] |
|
2822 apply(clarify) |
|
2823 apply (metis Prf_flat_L) |
|
2824 apply (metis ValOrd.intros(5)) |
|
2825 (* Seq case *) |
|
2826 apply(erule Prf.cases) |
|
2827 apply(simp_all)[5] |
|
2828 apply(auto) |
|
2829 apply(case_tac "v1 = v1a") |
|
2830 apply(auto) |
|
2831 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2832 apply(rule ValOrd.intros(2)) |
|
2833 apply(auto) |
|
2834 apply(drule_tac x="v1a" in meta_spec) |
|
2835 apply(drule_tac meta_mp) |
|
2836 apply(simp) |
|
2837 apply(drule_tac meta_mp) |
|
2838 prefer 2 |
|
2839 apply(simp) |
|
2840 apply(simp add: append_eq_append_conv2) |
|
2841 apply(auto) |
|
2842 apply (metis Prf_flat_L) |
|
2843 apply(case_tac "us = []") |
|
2844 apply(simp) |
|
2845 apply(drule_tac x="us" in spec) |
|
2846 apply(drule mp) |
|
2847 |
|
2848 thm L_flat_Prf |
|
2849 apply(simp add: L_flat_Prf) |
|
2850 thm append_eq_append_conv2 |
|
2851 apply(simp add: append_eq_append_conv2) |
|
2852 apply(auto) |
|
2853 apply(drule_tac x="us" in spec) |
|
2854 apply(drule mp) |
|
2855 apply metis |
|
2856 apply (metis append_Nil2) |
|
2857 apply(case_tac "us = []") |
|
2858 apply(auto) |
|
2859 apply(drule_tac x="s2" in spec) |
|
2860 apply(drule mp) |
|
2861 |
|
2862 apply(auto)[1] |
|
2863 apply(drule_tac x="v1a" in meta_spec) |
|
2864 apply(simp) |
|
2865 |
|
2866 lemma refl_on_ValOrd: |
|
2867 "refl_on (Values r s) {(v1, v2). v1 \<succ>r v2 \<and> v1 \<in> Values r s \<and> v2 \<in> Values r s}" |
|
2868 unfolding refl_on_def |
|
2869 apply(auto) |
|
2870 apply(rule ValOrd_refl) |
|
2871 apply(simp add: Values_def) |
|
2872 done |
|
2873 |
|
2874 |
|
2875 section {* Posix definition *} |
|
2876 |
|
2877 definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
2878 where |
|
2879 "POSIX v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v \<succ>r v'))" |
|
2880 |
|
2881 definition POSIX2 :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
2882 where |
|
2883 "POSIX2 v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v 2\<succ> v'))" |
|
2884 |
|
2885 lemma "POSIX v r = POSIX2 v r" |
|
2886 unfolding POSIX_def POSIX2_def |
|
2887 apply(auto) |
|
2888 apply(rule Ord1) |
|
2889 apply(auto) |
|
2890 apply(rule Ord3) |
|
2891 apply(auto) |
|
2892 done |
|
2893 |
|
2894 section {* POSIX for some constructors *} |
|
2895 |
|
2896 lemma POSIX_SEQ1: |
|
2897 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
2898 shows "POSIX v1 r1" |
|
2899 using assms |
|
2900 unfolding POSIX_def |
|
2901 apply(auto) |
|
2902 apply(drule_tac x="Seq v' v2" in spec) |
|
2903 apply(simp) |
|
2904 apply(erule impE) |
|
2905 apply(rule Prf.intros) |
|
2906 apply(simp) |
|
2907 apply(simp) |
|
2908 apply(erule ValOrd.cases) |
|
2909 apply(simp_all) |
|
2910 apply(clarify) |
|
2911 by (metis ValOrd_refl) |
|
2912 |
|
2913 lemma POSIX_SEQ2: |
|
2914 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
2915 shows "POSIX v2 r2" |
|
2916 using assms |
|
2917 unfolding POSIX_def |
|
2918 apply(auto) |
|
2919 apply(drule_tac x="Seq v1 v'" in spec) |
|
2920 apply(simp) |
|
2921 apply(erule impE) |
|
2922 apply(rule Prf.intros) |
|
2923 apply(simp) |
|
2924 apply(simp) |
|
2925 apply(erule ValOrd.cases) |
|
2926 apply(simp_all) |
|
2927 done |
|
2928 |
|
2929 lemma POSIX_ALT2: |
|
2930 assumes "POSIX (Left v1) (ALT r1 r2)" |
|
2931 shows "POSIX v1 r1" |
|
2932 using assms |
|
2933 unfolding POSIX_def |
|
2934 apply(auto) |
|
2935 apply(erule Prf.cases) |
|
2936 apply(simp_all)[5] |
|
2937 apply(drule_tac x="Left v'" in spec) |
|
2938 apply(simp) |
|
2939 apply(drule mp) |
|
2940 apply(rule Prf.intros) |
|
2941 apply(auto) |
|
2942 apply(erule ValOrd.cases) |
|
2943 apply(simp_all) |
|
2944 done |
|
2945 |
|
2946 lemma POSIX_ALT1a: |
|
2947 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
2948 shows "POSIX v2 r2" |
|
2949 using assms |
|
2950 unfolding POSIX_def |
|
2951 apply(auto) |
|
2952 apply(erule Prf.cases) |
|
2953 apply(simp_all)[5] |
|
2954 apply(drule_tac x="Right v'" in spec) |
|
2955 apply(simp) |
|
2956 apply(drule mp) |
|
2957 apply(rule Prf.intros) |
|
2958 apply(auto) |
|
2959 apply(erule ValOrd.cases) |
|
2960 apply(simp_all) |
|
2961 done |
|
2962 |
|
2963 lemma POSIX_ALT1b: |
|
2964 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
2965 shows "(\<forall>v'. (\<turnstile> v' : r2 \<and> flat v' = flat v2) \<longrightarrow> v2 \<succ>r2 v')" |
|
2966 using assms |
|
2967 apply(drule_tac POSIX_ALT1a) |
|
2968 unfolding POSIX_def |
|
2969 apply(auto) |
|
2970 done |
|
2971 |
|
2972 lemma POSIX_ALT_I1: |
|
2973 assumes "POSIX v1 r1" |
|
2974 shows "POSIX (Left v1) (ALT r1 r2)" |
|
2975 using assms |
|
2976 unfolding POSIX_def |
|
2977 apply(auto) |
|
2978 apply (metis Prf.intros(2)) |
|
2979 apply(rotate_tac 2) |
|
2980 apply(erule Prf.cases) |
|
2981 apply(simp_all)[5] |
|
2982 apply(auto) |
|
2983 apply(rule ValOrd.intros) |
|
2984 apply(auto) |
|
2985 apply(rule ValOrd.intros) |
|
2986 by simp |
|
2987 |
|
2988 lemma POSIX_ALT_I2: |
|
2989 assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')" |
|
2990 shows "POSIX (Right v2) (ALT r1 r2)" |
|
2991 using assms |
|
2992 unfolding POSIX_def |
|
2993 apply(auto) |
|
2994 apply (metis Prf.intros) |
|
2995 apply(rotate_tac 3) |
|
2996 apply(erule Prf.cases) |
|
2997 apply(simp_all)[5] |
|
2998 apply(auto) |
|
2999 apply(rule ValOrd.intros) |
|
3000 apply metis |
|
3001 done |
|
3002 |
|
3003 lemma mkeps_POSIX: |
|
3004 assumes "nullable r" |
|
3005 shows "POSIX (mkeps r) r" |
|
3006 using assms |
|
3007 apply(induct r) |
|
3008 apply(auto)[1] |
|
3009 apply(simp add: POSIX_def) |
|
3010 apply(auto)[1] |
|
3011 apply (metis Prf.intros(4)) |
|
3012 apply(erule Prf.cases) |
|
3013 apply(simp_all)[5] |
|
3014 apply (metis ValOrd.intros) |
|
3015 apply(simp) |
|
3016 apply(auto)[1] |
|
3017 apply(simp add: POSIX_def) |
|
3018 apply(auto)[1] |
|
3019 apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) |
|
3020 apply(rotate_tac 6) |
|
3021 apply(erule Prf.cases) |
|
3022 apply(simp_all)[5] |
|
3023 apply (simp add: mkeps_flat) |
|
3024 apply(case_tac "mkeps r1a = v1") |
|
3025 apply(simp) |
|
3026 apply (metis ValOrd.intros(1)) |
|
3027 apply (rule ValOrd.intros(2)) |
|
3028 apply metis |
|
3029 apply(simp) |
|
3030 (* ALT case *) |
|
3031 thm mkeps.simps |
|
3032 apply(simp) |
|
3033 apply(erule disjE) |
|
3034 apply(simp) |
|
3035 apply (metis POSIX_ALT_I1) |
|
3036 (* *) |
|
3037 apply(auto)[1] |
|
3038 thm POSIX_ALT_I1 |
|
3039 apply (metis POSIX_ALT_I1) |
|
3040 apply(simp (no_asm) add: POSIX_def) |
|
3041 apply(auto)[1] |
|
3042 apply(rule Prf.intros(3)) |
|
3043 apply(simp only: POSIX_def) |
|
3044 apply(rotate_tac 4) |
|
3045 apply(erule Prf.cases) |
|
3046 apply(simp_all)[5] |
|
3047 thm mkeps_flat |
|
3048 apply(simp add: mkeps_flat) |
|
3049 apply(auto)[1] |
|
3050 thm Prf_flat_L nullable_correctness |
|
3051 apply (metis Prf_flat_L nullable_correctness) |
|
3052 apply(rule ValOrd.intros) |
|
3053 apply(subst (asm) POSIX_def) |
|
3054 apply(clarify) |
|
3055 apply(drule_tac x="v2" in spec) |
|
3056 by simp |
|
3057 |
|
3058 |
|
3059 |
|
3060 text {* |
|
3061 Injection value is related to r |
|
3062 *} |
|
3063 |
|
3064 |
|
3065 |
|
3066 text {* |
|
3067 The string behind the injection value is an added c |
|
3068 *} |
|
3069 |
|
3070 |
|
3071 lemma injval_inj: "inj_on (injval r c) {v. \<turnstile> v : der c r}" |
|
3072 apply(induct c r rule: der.induct) |
|
3073 unfolding inj_on_def |
|
3074 apply(auto)[1] |
|
3075 apply(erule Prf.cases) |
|
3076 apply(simp_all)[5] |
|
3077 apply(auto)[1] |
|
3078 apply(erule Prf.cases) |
|
3079 apply(simp_all)[5] |
|
3080 apply(auto)[1] |
|
3081 apply(erule Prf.cases) |
|
3082 apply(simp_all)[5] |
|
3083 apply(erule Prf.cases) |
|
3084 apply(simp_all)[5] |
|
3085 apply(erule Prf.cases) |
|
3086 apply(simp_all)[5] |
|
3087 apply(auto)[1] |
|
3088 apply(erule Prf.cases) |
|
3089 apply(simp_all)[5] |
|
3090 apply(erule Prf.cases) |
|
3091 apply(simp_all)[5] |
|
3092 apply(erule Prf.cases) |
|
3093 apply(simp_all)[5] |
|
3094 apply(auto)[1] |
|
3095 apply(erule Prf.cases) |
|
3096 apply(simp_all)[5] |
|
3097 apply(erule Prf.cases) |
|
3098 apply(simp_all)[5] |
|
3099 apply(clarify) |
|
3100 apply(erule Prf.cases) |
|
3101 apply(simp_all)[5] |
|
3102 apply(erule Prf.cases) |
|
3103 apply(simp_all)[5] |
|
3104 apply(clarify) |
|
3105 apply(erule Prf.cases) |
|
3106 apply(simp_all)[5] |
|
3107 apply(clarify) |
|
3108 apply (metis list.distinct(1) mkeps_flat v4) |
|
3109 apply(erule Prf.cases) |
|
3110 apply(simp_all)[5] |
|
3111 apply(clarify) |
|
3112 apply(rotate_tac 6) |
|
3113 apply(erule Prf.cases) |
|
3114 apply(simp_all)[5] |
|
3115 apply (metis list.distinct(1) mkeps_flat v4) |
|
3116 apply(erule Prf.cases) |
|
3117 apply(simp_all)[5] |
|
3118 apply(erule Prf.cases) |
|
3119 apply(simp_all)[5] |
|
3120 done |
|
3121 |
|
3122 lemma Values_nullable: |
|
3123 assumes "nullable r1" |
|
3124 shows "mkeps r1 \<in> Values r1 s" |
|
3125 using assms |
|
3126 apply(induct r1 arbitrary: s) |
|
3127 apply(simp_all) |
|
3128 apply(simp add: Values_recs) |
|
3129 apply(simp add: Values_recs) |
|
3130 apply(simp add: Values_recs) |
|
3131 apply(auto)[1] |
|
3132 done |
|
3133 |
|
3134 lemma Values_injval: |
|
3135 assumes "v \<in> Values (der c r) s" |
|
3136 shows "injval r c v \<in> Values r (c#s)" |
|
3137 using assms |
|
3138 apply(induct c r arbitrary: v s rule: der.induct) |
|
3139 apply(simp add: Values_recs) |
|
3140 apply(simp add: Values_recs) |
|
3141 apply(case_tac "c = c'") |
|
3142 apply(simp) |
|
3143 apply(simp add: Values_recs) |
|
3144 apply(simp add: prefix_def) |
|
3145 apply(simp) |
|
3146 apply(simp add: Values_recs) |
|
3147 apply(simp) |
|
3148 apply(simp add: Values_recs) |
|
3149 apply(auto)[1] |
|
3150 apply(case_tac "nullable r1") |
|
3151 apply(simp) |
|
3152 apply(simp add: Values_recs) |
|
3153 apply(auto)[1] |
|
3154 apply(simp add: rest_def) |
|
3155 apply(subst v4) |
|
3156 apply(simp add: Values_def) |
|
3157 apply(simp add: Values_def) |
|
3158 apply(rule Values_nullable) |
|
3159 apply(assumption) |
|
3160 apply(simp add: rest_def) |
|
3161 apply(subst mkeps_flat) |
|
3162 apply(assumption) |
|
3163 apply(simp) |
|
3164 apply(simp) |
|
3165 apply(simp add: Values_recs) |
|
3166 apply(auto)[1] |
|
3167 apply(simp add: rest_def) |
|
3168 apply(subst v4) |
|
3169 apply(simp add: Values_def) |
|
3170 apply(simp add: Values_def) |
|
3171 done |
|
3172 |
|
3173 lemma Values_projval: |
|
3174 assumes "v \<in> Values r (c#s)" "\<exists>s. flat v = c # s" |
|
3175 shows "projval r c v \<in> Values (der c r) s" |
|
3176 using assms |
|
3177 apply(induct r arbitrary: v s c rule: rexp.induct) |
|
3178 apply(simp add: Values_recs) |
|
3179 apply(simp add: Values_recs) |
|
3180 apply(case_tac "c = char") |
|
3181 apply(simp) |
|
3182 apply(simp add: Values_recs) |
|
3183 apply(simp) |
|
3184 apply(simp add: Values_recs) |
|
3185 apply(simp add: prefix_def) |
|
3186 apply(case_tac "nullable rexp1") |
|
3187 apply(simp) |
|
3188 apply(simp add: Values_recs) |
|
3189 apply(auto)[1] |
|
3190 apply(simp add: rest_def) |
|
3191 apply (metis hd_Cons_tl hd_append2 list.sel(1)) |
|
3192 apply(simp add: rest_def) |
|
3193 apply(simp add: append_eq_Cons_conv) |
|
3194 apply(auto)[1] |
|
3195 apply(subst v4_proj2) |
|
3196 apply(simp add: Values_def) |
|
3197 apply(assumption) |
|
3198 apply(simp) |
|
3199 apply(simp) |
|
3200 apply(simp add: Values_recs) |
|
3201 apply(auto)[1] |
|
3202 apply(auto simp add: Values_def not_nullable_flat)[1] |
|
3203 apply(simp add: append_eq_Cons_conv) |
|
3204 apply(auto)[1] |
|
3205 apply(simp add: append_eq_Cons_conv) |
|
3206 apply(auto)[1] |
|
3207 apply(simp add: rest_def) |
|
3208 apply(subst v4_proj2) |
|
3209 apply(simp add: Values_def) |
|
3210 apply(assumption) |
|
3211 apply(simp) |
|
3212 apply(simp add: Values_recs) |
|
3213 apply(auto)[1] |
|
3214 done |
|
3215 |
|
3216 |
|
3217 definition "MValue v r s \<equiv> (v \<in> Values r s \<and> (\<forall>v' \<in> Values r s. v 2\<succ> v'))" |
|
3218 |
|
3219 lemma MValue_ALTE: |
|
3220 assumes "MValue v (ALT r1 r2) s" |
|
3221 shows "(\<exists>vl. v = Left vl \<and> MValue vl r1 s \<and> (\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl))) \<or> |
|
3222 (\<exists>vr. v = Right vr \<and> MValue vr r2 s \<and> (\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)))" |
|
3223 using assms |
|
3224 apply(simp add: MValue_def) |
|
3225 apply(simp add: Values_recs) |
|
3226 apply(auto) |
|
3227 apply(drule_tac x="Left x" in bspec) |
|
3228 apply(simp) |
|
3229 apply(erule ValOrd2.cases) |
|
3230 apply(simp_all) |
|
3231 apply(drule_tac x="Right vr" in bspec) |
|
3232 apply(simp) |
|
3233 apply(erule ValOrd2.cases) |
|
3234 apply(simp_all) |
|
3235 apply(drule_tac x="Right x" in bspec) |
|
3236 apply(simp) |
|
3237 apply(erule ValOrd2.cases) |
|
3238 apply(simp_all) |
|
3239 apply(drule_tac x="Left vl" in bspec) |
|
3240 apply(simp) |
|
3241 apply(erule ValOrd2.cases) |
|
3242 apply(simp_all) |
|
3243 done |
|
3244 |
|
3245 lemma MValue_ALTI1: |
|
3246 assumes "MValue vl r1 s" "\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl)" |
|
3247 shows "MValue (Left vl) (ALT r1 r2) s" |
|
3248 using assms |
|
3249 apply(simp add: MValue_def) |
|
3250 apply(simp add: Values_recs) |
|
3251 apply(auto) |
|
3252 apply(rule ValOrd2.intros) |
|
3253 apply metis |
|
3254 apply(rule ValOrd2.intros) |
|
3255 apply metis |
|
3256 done |
|
3257 |
|
3258 lemma MValue_ALTI2: |
|
3259 assumes "MValue vr r2 s" "\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)" |
|
3260 shows "MValue (Right vr) (ALT r1 r2) s" |
|
3261 using assms |
|
3262 apply(simp add: MValue_def) |
|
3263 apply(simp add: Values_recs) |
|
3264 apply(auto) |
|
3265 apply(rule ValOrd2.intros) |
|
3266 apply metis |
|
3267 apply(rule ValOrd2.intros) |
|
3268 apply metis |
|
3269 done |
|
3270 |
|
3271 lemma t: "(c#xs = c#ys) \<Longrightarrow> xs = ys" |
|
3272 by (metis list.sel(3)) |
|
3273 |
|
3274 lemma t2: "(xs = ys) \<Longrightarrow> (c#xs) = (c#ys)" |
|
3275 by (metis) |
|
3276 |
|
3277 lemma "\<not>(nullable r) \<Longrightarrow> \<not>(\<exists>v. \<turnstile> v : r \<and> flat v = [])" |
|
3278 by (metis Prf_flat_L nullable_correctness) |
|
3279 |
|
3280 |
|
3281 lemma LeftRight: |
|
3282 assumes "(Left v1) \<succ>(der c (ALT r1 r2)) (Right v2)" |
|
3283 and "\<turnstile> v1 : der c r1" "\<turnstile> v2 : der c r2" |
|
3284 shows "(injval (ALT r1 r2) c (Left v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Right v2))" |
|
3285 using assms |
|
3286 apply(simp) |
|
3287 apply(erule ValOrd.cases) |
|
3288 apply(simp_all)[8] |
|
3289 apply(rule ValOrd.intros) |
|
3290 apply(clarify) |
|
3291 apply(subst v4) |
|
3292 apply(simp) |
|
3293 apply(subst v4) |
|
3294 apply(simp) |
|
3295 apply(simp) |
|
3296 done |
|
3297 |
|
3298 lemma RightLeft: |
|
3299 assumes "(Right v1) \<succ>(der c (ALT r1 r2)) (Left v2)" |
|
3300 and "\<turnstile> v1 : der c r2" "\<turnstile> v2 : der c r1" |
|
3301 shows "(injval (ALT r1 r2) c (Right v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Left v2))" |
|
3302 using assms |
|
3303 apply(simp) |
|
3304 apply(erule ValOrd.cases) |
|
3305 apply(simp_all)[8] |
|
3306 apply(rule ValOrd.intros) |
|
3307 apply(clarify) |
|
3308 apply(subst v4) |
|
3309 apply(simp) |
|
3310 apply(subst v4) |
|
3311 apply(simp) |
|
3312 apply(simp) |
|
3313 done |
|
3314 |
|
3315 lemma h: |
|
3316 assumes "nullable r1" "\<turnstile> v1 : der c r1" |
|
3317 shows "injval r1 c v1 \<succ>r1 mkeps r1" |
|
3318 using assms |
|
3319 apply(induct r1 arbitrary: v1 rule: der.induct) |
|
3320 apply(simp) |
|
3321 apply(simp) |
|
3322 apply(erule Prf.cases) |
|
3323 apply(simp_all)[5] |
|
3324 apply(simp) |
|
3325 apply(simp) |
|
3326 apply(erule Prf.cases) |
|
3327 apply(simp_all)[5] |
|
3328 apply(clarify) |
|
3329 apply(auto)[1] |
|
3330 apply (metis ValOrd.intros(6)) |
|
3331 apply (metis ValOrd.intros(6)) |
|
3332 apply (metis ValOrd.intros(3) le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral) |
|
3333 apply(auto)[1] |
|
3334 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
3335 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
3336 apply (metis ValOrd.intros(5)) |
|
3337 apply(simp) |
|
3338 apply(erule Prf.cases) |
|
3339 apply(simp_all)[5] |
|
3340 apply(clarify) |
|
3341 apply(erule Prf.cases) |
|
3342 apply(simp_all)[5] |
|
3343 apply(clarify) |
|
3344 apply (metis ValOrd.intros(2) list.distinct(1) mkeps_flat v4) |
|
3345 apply(clarify) |
|
3346 by (metis ValOrd.intros(1)) |
|
3347 |
|
3348 lemma LeftRightSeq: |
|
3349 assumes "(Left (Seq v1 v2)) \<succ>(der c (SEQ r1 r2)) (Right v3)" |
|
3350 and "nullable r1" "\<turnstile> v1 : der c r1" |
|
3351 shows "(injval (SEQ r1 r2) c (Seq v1 v2)) \<succ>(SEQ r1 r2) (injval (SEQ r1 r2) c (Right v2))" |
|
3352 using assms |
|
3353 apply(simp) |
|
3354 apply(erule ValOrd.cases) |
|
3355 apply(simp_all)[8] |
|
3356 apply(clarify) |
|
3357 apply(simp) |
|
3358 apply(rule ValOrd.intros(2)) |
|
3359 prefer 2 |
|
3360 apply (metis list.distinct(1) mkeps_flat v4) |
|
3361 by (metis h) |
|
3362 |
|
3363 lemma rr1: |
|
3364 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
3365 shows "flat v \<noteq> []" |
|
3366 using assms |
|
3367 by (metis Prf_flat_L nullable_correctness) |
|
3368 |
|
3369 (* HERE *) |
|
3370 |
|
3371 lemma Prf_inj_test: |
|
3372 assumes "v1 \<succ>(der c r) v2" |
|
3373 "v1 \<in> Values (der c r) s" |
|
3374 "v2 \<in> Values (der c r) s" |
|
3375 "injval r c v1 \<in> Values r (c#s)" |
|
3376 "injval r c v2 \<in> Values r (c#s)" |
|
3377 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
3378 using assms |
|
3379 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
3380 (* NULL case *) |
|
3381 apply(simp add: Values_recs) |
|
3382 (* EMPTY case *) |
|
3383 apply(simp add: Values_recs) |
|
3384 (* CHAR case *) |
|
3385 apply(case_tac "c = c'") |
|
3386 apply(simp) |
|
3387 apply(simp add: Values_recs) |
|
3388 apply (metis ValOrd2.intros(8)) |
|
3389 apply(simp add: Values_recs) |
|
3390 (* ALT case *) |
|
3391 apply(simp) |
|
3392 apply(simp add: Values_recs) |
|
3393 apply(auto)[1] |
|
3394 apply(erule ValOrd.cases) |
|
3395 apply(simp_all)[8] |
|
3396 apply (metis ValOrd2.intros(6)) |
|
3397 apply(erule ValOrd.cases) |
|
3398 apply(simp_all)[8] |
|
3399 apply(rule ValOrd2.intros) |
|
3400 apply(subst v4) |
|
3401 apply(simp add: Values_def) |
|
3402 apply(subst v4) |
|
3403 apply(simp add: Values_def) |
|
3404 apply(simp) |
|
3405 apply(erule ValOrd.cases) |
|
3406 apply(simp_all)[8] |
|
3407 apply(rule ValOrd2.intros) |
|
3408 apply(subst v4) |
|
3409 apply(simp add: Values_def) |
|
3410 apply(subst v4) |
|
3411 apply(simp add: Values_def) |
|
3412 apply(simp) |
|
3413 apply(erule ValOrd.cases) |
|
3414 apply(simp_all)[8] |
|
3415 apply (metis ValOrd2.intros(5)) |
|
3416 (* SEQ case*) |
|
3417 apply(simp) |
|
3418 apply(case_tac "nullable r1") |
|
3419 apply(simp) |
|
3420 defer |
|
3421 apply(simp) |
|
3422 apply(simp add: Values_recs) |
|
3423 apply(auto)[1] |
|
3424 apply(erule ValOrd.cases) |
|
3425 apply(simp_all)[8] |
|
3426 apply(clarify) |
|
3427 apply(rule ValOrd2.intros) |
|
3428 apply(simp) |
|
3429 apply (metis Ord1) |
|
3430 apply(clarify) |
|
3431 apply(rule ValOrd2.intros) |
|
3432 apply(subgoal_tac "rest v1 (flat v1 @ flat v2) = flat v2") |
|
3433 apply(simp) |
|
3434 apply(subgoal_tac "rest (injval r1 c v1) (c # flat v1 @ flat v2) = flat v2") |
|
3435 apply(simp) |
|
3436 oops |
|
3437 |
|
3438 lemma Prf_inj_test: |
|
3439 assumes "v1 \<succ>(der c r) v2" |
|
3440 "v1 \<in> Values (der c r) s" |
|
3441 "v2 \<in> Values (der c r) s" |
|
3442 "injval r c v1 \<in> Values r (c#s)" |
|
3443 "injval r c v2 \<in> Values r (c#s)" |
|
3444 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
3445 using assms |
|
3446 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
3447 (* NULL case *) |
|
3448 apply(simp add: Values_recs) |
|
3449 (* EMPTY case *) |
|
3450 apply(simp add: Values_recs) |
|
3451 (* CHAR case *) |
|
3452 apply(case_tac "c = c'") |
|
3453 apply(simp) |
|
3454 apply(simp add: Values_recs) |
|
3455 apply (metis ValOrd2.intros(8)) |
|
3456 apply(simp add: Values_recs) |
|
3457 (* ALT case *) |
|
3458 apply(simp) |
|
3459 apply(simp add: Values_recs) |
|
3460 apply(auto)[1] |
|
3461 apply(erule ValOrd.cases) |
|
3462 apply(simp_all)[8] |
|
3463 apply (metis ValOrd2.intros(6)) |
|
3464 apply(erule ValOrd.cases) |
|
3465 apply(simp_all)[8] |
|
3466 apply(rule ValOrd2.intros) |
|
3467 apply(subst v4) |
|
3468 apply(simp add: Values_def) |
|
3469 apply(subst v4) |
|
3470 apply(simp add: Values_def) |
|
3471 apply(simp) |
|
3472 apply(erule ValOrd.cases) |
|
3473 apply(simp_all)[8] |
|
3474 apply(rule ValOrd2.intros) |
|
3475 apply(subst v4) |
|
3476 apply(simp add: Values_def) |
|
3477 apply(subst v4) |
|
3478 apply(simp add: Values_def) |
|
3479 apply(simp) |
|
3480 apply(erule ValOrd.cases) |
|
3481 apply(simp_all)[8] |
|
3482 apply (metis ValOrd2.intros(5)) |
|
3483 (* SEQ case*) |
|
3484 apply(simp) |
|
3485 apply(case_tac "nullable r1") |
|
3486 apply(simp) |
|
3487 defer |
|
3488 apply(simp) |
|
3489 apply(simp add: Values_recs) |
|
3490 apply(auto)[1] |
|
3491 apply(erule ValOrd.cases) |
|
3492 apply(simp_all)[8] |
|
3493 apply(clarify) |
|
3494 apply(rule ValOrd2.intros) |
|
3495 apply(simp) |
|
3496 apply (metis Ord1) |
|
3497 apply(clarify) |
|
3498 apply(rule ValOrd2.intros) |
|
3499 apply metis |
|
3500 using injval_inj |
|
3501 apply(simp add: Values_def inj_on_def) |
|
3502 apply metis |
|
3503 apply(simp add: Values_recs) |
|
3504 apply(auto)[1] |
|
3505 apply(erule ValOrd.cases) |
|
3506 apply(simp_all)[8] |
|
3507 apply(clarify) |
|
3508 apply(erule ValOrd.cases) |
|
3509 apply(simp_all)[8] |
|
3510 apply(clarify) |
|
3511 apply (metis Ord1 ValOrd2.intros(1)) |
|
3512 apply(clarify) |
|
3513 apply(rule ValOrd2.intros(2)) |
|
3514 apply metis |
|
3515 using injval_inj |
|
3516 apply(simp add: Values_def inj_on_def) |
|
3517 apply metis |
|
3518 apply(erule ValOrd.cases) |
|
3519 apply(simp_all)[8] |
|
3520 apply(rule ValOrd2.intros(2)) |
|
3521 thm h |
|
3522 apply(rule Ord1) |
|
3523 apply(rule h) |
|
3524 apply(simp) |
|
3525 apply(simp add: Values_def) |
|
3526 apply(simp add: Values_def) |
|
3527 apply (metis list.distinct(1) mkeps_flat v4) |
|
3528 apply(erule ValOrd.cases) |
|
3529 apply(simp_all)[8] |
|
3530 apply(clarify) |
|
3531 apply(simp add: Values_def) |
|
3532 defer |
|
3533 apply(erule ValOrd.cases) |
|
3534 apply(simp_all)[8] |
|
3535 apply(clarify) |
|
3536 apply(rule ValOrd2.intros(1)) |
|
3537 apply(rotate_tac 1) |
|
3538 apply(drule_tac x="v2" in meta_spec) |
|
3539 apply(rotate_tac 8) |
|
3540 apply(drule_tac x="v2'" in meta_spec) |
|
3541 apply(rotate_tac 8) |
|
3542 oops |
|
3543 |
|
3544 lemma POSIX_der: |
|
3545 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
3546 shows "POSIX (injval r c v) r" |
|
3547 using assms |
|
3548 unfolding POSIX_def |
|
3549 apply(auto) |
|
3550 thm v3 |
|
3551 apply (erule v3) |
|
3552 thm v4 |
|
3553 apply(subst (asm) v4) |
|
3554 apply(assumption) |
|
3555 apply(drule_tac x="projval r c v'" in spec) |
|
3556 apply(drule mp) |
|
3557 apply(rule conjI) |
|
3558 thm v3_proj |
|
3559 apply(rule v3_proj) |
|
3560 apply(simp) |
|
3561 apply(rule_tac x="flat v" in exI) |
|
3562 apply(simp) |
|
3563 thm t |
|
3564 apply(rule_tac c="c" in t) |
|
3565 apply(simp) |
|
3566 thm v4_proj |
|
3567 apply(subst v4_proj) |
|
3568 apply(simp) |
|
3569 apply(rule_tac x="flat v" in exI) |
|
3570 apply(simp) |
|
3571 apply(simp) |
|
3572 oops |
|
3573 |
|
3574 lemma POSIX_der: |
|
3575 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
3576 shows "POSIX (injval r c v) r" |
|
3577 using assms |
|
3578 apply(induct c r arbitrary: v rule: der.induct) |
|
3579 (* null case*) |
|
3580 apply(simp add: POSIX_def) |
|
3581 apply(auto)[1] |
|
3582 apply(erule Prf.cases) |
|
3583 apply(simp_all)[5] |
|
3584 apply(erule Prf.cases) |
|
3585 apply(simp_all)[5] |
|
3586 (* empty case *) |
|
3587 apply(simp add: POSIX_def) |
|
3588 apply(auto)[1] |
|
3589 apply(erule Prf.cases) |
|
3590 apply(simp_all)[5] |
|
3591 apply(erule Prf.cases) |
|
3592 apply(simp_all)[5] |
|
3593 (* char case *) |
|
3594 apply(simp add: POSIX_def) |
|
3595 apply(case_tac "c = c'") |
|
3596 apply(auto)[1] |
|
3597 apply(erule Prf.cases) |
|
3598 apply(simp_all)[5] |
|
3599 apply (metis Prf.intros(5)) |
|
3600 apply(erule Prf.cases) |
|
3601 apply(simp_all)[5] |
|
3602 apply(erule Prf.cases) |
|
3603 apply(simp_all)[5] |
|
3604 apply (metis ValOrd.intros(8)) |
|
3605 apply(auto)[1] |
|
3606 apply(erule Prf.cases) |
|
3607 apply(simp_all)[5] |
|
3608 apply(erule Prf.cases) |
|
3609 apply(simp_all)[5] |
|
3610 (* alt case *) |
|
3611 apply(erule Prf.cases) |
|
3612 apply(simp_all)[5] |
|
3613 apply(clarify) |
|
3614 apply(simp (no_asm) add: POSIX_def) |
|
3615 apply(auto)[1] |
|
3616 apply (metis Prf.intros(2) v3) |
|
3617 apply(rotate_tac 4) |
|
3618 apply(erule Prf.cases) |
|
3619 apply(simp_all)[5] |
|
3620 apply (metis POSIX_ALT2 POSIX_def ValOrd.intros(6)) |
|
3621 apply (metis ValOrd.intros(3) order_refl) |
|
3622 apply(simp (no_asm) add: POSIX_def) |
|
3623 apply(auto)[1] |
|
3624 apply (metis Prf.intros(3) v3) |
|
3625 apply(rotate_tac 4) |
|
3626 apply(erule Prf.cases) |
|
3627 apply(simp_all)[5] |
|
3628 defer |
|
3629 apply (metis POSIX_ALT1a POSIX_def ValOrd.intros(5)) |
|
3630 prefer 2 |
|
3631 apply(subst (asm) (5) POSIX_def) |
|
3632 apply(auto)[1] |
|
3633 apply(rotate_tac 5) |
|
3634 apply(erule Prf.cases) |
|
3635 apply(simp_all)[5] |
|
3636 apply(rule ValOrd.intros) |
|
3637 apply(subst (asm) v4) |
|
3638 apply(simp) |
|
3639 apply(drule_tac x="Left (projval r1a c v1)" in spec) |
|
3640 apply(clarify) |
|
3641 apply(drule mp) |
|
3642 apply(rule conjI) |
|
3643 apply (metis Prf.intros(2) v3_proj) |
|
3644 apply(simp) |
|
3645 apply (metis v4_proj2) |
|
3646 apply(erule ValOrd.cases) |
|
3647 apply(simp_all)[8] |
|
3648 apply (metis less_not_refl v4_proj2) |
|
3649 (* seq case *) |
|
3650 apply(case_tac "nullable r1") |
|
3651 defer |
|
3652 apply(simp add: POSIX_def) |
|
3653 apply(auto)[1] |
|
3654 apply(erule Prf.cases) |
|
3655 apply(simp_all)[5] |
|
3656 apply (metis Prf.intros(1) v3) |
|
3657 apply(erule Prf.cases) |
|
3658 apply(simp_all)[5] |
|
3659 apply(erule Prf.cases) |
|
3660 apply(simp_all)[5] |
|
3661 apply(clarify) |
|
3662 apply(subst (asm) (3) v4) |
|
3663 apply(simp) |
|
3664 apply(simp) |
|
3665 apply(subgoal_tac "flat v1a \<noteq> []") |
|
3666 prefer 2 |
|
3667 apply (metis Prf_flat_L nullable_correctness) |
|
3668 apply(subgoal_tac "\<exists>s. flat v1a = c # s") |
|
3669 prefer 2 |
|
3670 apply (metis append_eq_Cons_conv) |
|
3671 apply(auto)[1] |
|
3672 oops |
|
3673 |
|
3674 |
|
3675 lemma POSIX_ex: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r" |
|
3676 apply(induct r arbitrary: v) |
|
3677 apply(erule Prf.cases) |
|
3678 apply(simp_all)[5] |
|
3679 apply(erule Prf.cases) |
|
3680 apply(simp_all)[5] |
|
3681 apply(rule_tac x="Void" in exI) |
|
3682 apply(simp add: POSIX_def) |
|
3683 apply(auto)[1] |
|
3684 apply (metis Prf.intros(4)) |
|
3685 apply(erule Prf.cases) |
|
3686 apply(simp_all)[5] |
|
3687 apply (metis ValOrd.intros(7)) |
|
3688 apply(erule Prf.cases) |
|
3689 apply(simp_all)[5] |
|
3690 apply(rule_tac x="Char c" in exI) |
|
3691 apply(simp add: POSIX_def) |
|
3692 apply(auto)[1] |
|
3693 apply (metis Prf.intros(5)) |
|
3694 apply(erule Prf.cases) |
|
3695 apply(simp_all)[5] |
|
3696 apply (metis ValOrd.intros(8)) |
|
3697 apply(erule Prf.cases) |
|
3698 apply(simp_all)[5] |
|
3699 apply(auto)[1] |
|
3700 apply(drule_tac x="v1" in meta_spec) |
|
3701 apply(drule_tac x="v2" in meta_spec) |
|
3702 apply(auto)[1] |
|
3703 defer |
|
3704 apply(erule Prf.cases) |
|
3705 apply(simp_all)[5] |
|
3706 apply(auto)[1] |
|
3707 apply (metis POSIX_ALT_I1) |
|
3708 apply (metis POSIX_ALT_I1 POSIX_ALT_I2) |
|
3709 apply(case_tac "nullable r1a") |
|
3710 apply(rule_tac x="Seq (mkeps r1a) va" in exI) |
|
3711 apply(auto simp add: POSIX_def)[1] |
|
3712 apply (metis Prf.intros(1) mkeps_nullable) |
|
3713 apply(simp add: mkeps_flat) |
|
3714 apply(rotate_tac 7) |
|
3715 apply(erule Prf.cases) |
|
3716 apply(simp_all)[5] |
|
3717 apply(case_tac "mkeps r1 = v1a") |
|
3718 apply(simp) |
|
3719 apply (rule ValOrd.intros(1)) |
|
3720 apply (metis append_Nil mkeps_flat) |
|
3721 apply (rule ValOrd.intros(2)) |
|
3722 apply(drule mkeps_POSIX) |
|
3723 apply(simp add: POSIX_def) |
|
3724 oops |
|
3725 |
|
3726 lemma POSIX_ex2: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r \<and> \<turnstile> v : r" |
|
3727 apply(induct r arbitrary: v) |
|
3728 apply(erule Prf.cases) |
|
3729 apply(simp_all)[5] |
|
3730 apply(erule Prf.cases) |
|
3731 apply(simp_all)[5] |
|
3732 apply(rule_tac x="Void" in exI) |
|
3733 apply(simp add: POSIX_def) |
|
3734 apply(auto)[1] |
|
3735 oops |
|
3736 |
|
3737 lemma POSIX_ALT_cases: |
|
3738 assumes "\<turnstile> v : (ALT r1 r2)" "POSIX v (ALT r1 r2)" |
|
3739 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
3740 using assms |
|
3741 apply(erule_tac Prf.cases) |
|
3742 apply(simp_all) |
|
3743 unfolding POSIX_def |
|
3744 apply(auto) |
|
3745 apply (metis POSIX_ALT2 POSIX_def assms(2)) |
|
3746 by (metis POSIX_ALT1b assms(2)) |
|
3747 |
|
3748 lemma POSIX_ALT_cases2: |
|
3749 assumes "POSIX v (ALT r1 r2)" "\<turnstile> v : (ALT r1 r2)" |
|
3750 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
3751 using assms POSIX_ALT_cases by auto |
|
3752 |
|
3753 lemma Prf_flat_empty: |
|
3754 assumes "\<turnstile> v : r" "flat v = []" |
|
3755 shows "nullable r" |
|
3756 using assms |
|
3757 apply(induct) |
|
3758 apply(auto) |
|
3759 done |
|
3760 |
|
3761 lemma POSIX_proj: |
|
3762 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
3763 shows "POSIX (projval r c v) (der c r)" |
|
3764 using assms |
|
3765 apply(induct r c v arbitrary: rule: projval.induct) |
|
3766 defer |
|
3767 defer |
|
3768 defer |
|
3769 defer |
|
3770 apply(erule Prf.cases) |
|
3771 apply(simp_all)[5] |
|
3772 apply(erule Prf.cases) |
|
3773 apply(simp_all)[5] |
|
3774 apply(erule Prf.cases) |
|
3775 apply(simp_all)[5] |
|
3776 apply(erule Prf.cases) |
|
3777 apply(simp_all)[5] |
|
3778 apply(erule Prf.cases) |
|
3779 apply(simp_all)[5] |
|
3780 apply(erule Prf.cases) |
|
3781 apply(simp_all)[5] |
|
3782 apply(erule Prf.cases) |
|
3783 apply(simp_all)[5] |
|
3784 apply(erule Prf.cases) |
|
3785 apply(simp_all)[5] |
|
3786 apply(erule Prf.cases) |
|
3787 apply(simp_all)[5] |
|
3788 apply(erule Prf.cases) |
|
3789 apply(simp_all)[5] |
|
3790 apply(simp add: POSIX_def) |
|
3791 apply(auto)[1] |
|
3792 apply(erule Prf.cases) |
|
3793 apply(simp_all)[5] |
|
3794 oops |
|
3795 |
|
3796 lemma POSIX_proj: |
|
3797 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
3798 shows "POSIX (projval r c v) (der c r)" |
|
3799 using assms |
|
3800 apply(induct r arbitrary: c v rule: rexp.induct) |
|
3801 apply(erule Prf.cases) |
|
3802 apply(simp_all)[5] |
|
3803 apply(erule Prf.cases) |
|
3804 apply(simp_all)[5] |
|
3805 apply(erule Prf.cases) |
|
3806 apply(simp_all)[5] |
|
3807 apply(simp add: POSIX_def) |
|
3808 apply(auto)[1] |
|
3809 apply(erule Prf.cases) |
|
3810 apply(simp_all)[5] |
|
3811 oops |
|
3812 |
|
3813 lemma POSIX_proj: |
|
3814 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
3815 shows "POSIX (projval r c v) (der c r)" |
|
3816 using assms |
|
3817 apply(induct r c v arbitrary: rule: projval.induct) |
|
3818 defer |
|
3819 defer |
|
3820 defer |
|
3821 defer |
|
3822 apply(erule Prf.cases) |
|
3823 apply(simp_all)[5] |
|
3824 apply(erule Prf.cases) |
|
3825 apply(simp_all)[5] |
|
3826 apply(erule Prf.cases) |
|
3827 apply(simp_all)[5] |
|
3828 apply(erule Prf.cases) |
|
3829 apply(simp_all)[5] |
|
3830 apply(erule Prf.cases) |
|
3831 apply(simp_all)[5] |
|
3832 apply(erule Prf.cases) |
|
3833 apply(simp_all)[5] |
|
3834 apply(erule Prf.cases) |
|
3835 apply(simp_all)[5] |
|
3836 apply(erule Prf.cases) |
|
3837 apply(simp_all)[5] |
|
3838 apply(erule Prf.cases) |
|
3839 apply(simp_all)[5] |
|
3840 apply(erule Prf.cases) |
|
3841 apply(simp_all)[5] |
|
3842 apply(simp add: POSIX_def) |
|
3843 apply(auto)[1] |
|
3844 apply(erule Prf.cases) |
|
3845 apply(simp_all)[5] |
|
3846 oops |
|
3847 |
|
3848 lemma Prf_inj: |
|
3849 assumes "v1 \<succ>(der c r) v2" "\<turnstile> v1 : der c r" "\<turnstile> v2 : der c r" "flat v1 = flat v2" |
|
3850 shows "(injval r c v1) \<succ>r (injval r c v2)" |
|
3851 using assms |
|
3852 apply(induct arbitrary: v1 v2 rule: der.induct) |
|
3853 (* NULL case *) |
|
3854 apply(simp) |
|
3855 apply(erule ValOrd.cases) |
|
3856 apply(simp_all)[8] |
|
3857 (* EMPTY case *) |
|
3858 apply(erule ValOrd.cases) |
|
3859 apply(simp_all)[8] |
|
3860 (* CHAR case *) |
|
3861 apply(case_tac "c = c'") |
|
3862 apply(simp) |
|
3863 apply(erule ValOrd.cases) |
|
3864 apply(simp_all)[8] |
|
3865 apply(rule ValOrd.intros) |
|
3866 apply(simp) |
|
3867 apply(erule ValOrd.cases) |
|
3868 apply(simp_all)[8] |
|
3869 (* ALT case *) |
|
3870 apply(simp) |
|
3871 apply(erule ValOrd.cases) |
|
3872 apply(simp_all)[8] |
|
3873 apply(rule ValOrd.intros) |
|
3874 apply(subst v4) |
|
3875 apply(clarify) |
|
3876 apply(rotate_tac 3) |
|
3877 apply(erule Prf.cases) |
|
3878 apply(simp_all)[5] |
|
3879 apply(subst v4) |
|
3880 apply(clarify) |
|
3881 apply(rotate_tac 2) |
|
3882 apply(erule Prf.cases) |
|
3883 apply(simp_all)[5] |
|
3884 apply(simp) |
|
3885 apply(rule ValOrd.intros) |
|
3886 apply(clarify) |
|
3887 apply(rotate_tac 3) |
|
3888 apply(erule Prf.cases) |
|
3889 apply(simp_all)[5] |
|
3890 apply(clarify) |
|
3891 apply(erule Prf.cases) |
|
3892 apply(simp_all)[5] |
|
3893 apply(rule ValOrd.intros) |
|
3894 apply(clarify) |
|
3895 apply(erule Prf.cases) |
|
3896 apply(simp_all)[5] |
|
3897 apply(erule Prf.cases) |
|
3898 apply(simp_all)[5] |
|
3899 (* SEQ case*) |
|
3900 apply(simp) |
|
3901 apply(case_tac "nullable r1") |
|
3902 defer |
|
3903 apply(simp) |
|
3904 apply(erule ValOrd.cases) |
|
3905 apply(simp_all)[8] |
|
3906 apply(clarify) |
|
3907 apply(erule Prf.cases) |
|
3908 apply(simp_all)[5] |
|
3909 apply(erule Prf.cases) |
|
3910 apply(simp_all)[5] |
|
3911 apply(clarify) |
|
3912 apply(rule ValOrd.intros) |
|
3913 apply(simp) |
|
3914 oops |
|
3915 |
|
3916 |
|
3917 text {* |
|
3918 Injection followed by projection is the identity. |
|
3919 *} |
|
3920 |
|
3921 lemma proj_inj_id: |
|
3922 assumes "\<turnstile> v : der c r" |
|
3923 shows "projval r c (injval r c v) = v" |
|
3924 using assms |
|
3925 apply(induct r arbitrary: c v rule: rexp.induct) |
|
3926 apply(simp) |
|
3927 apply(erule Prf.cases) |
|
3928 apply(simp_all)[5] |
|
3929 apply(simp) |
|
3930 apply(erule Prf.cases) |
|
3931 apply(simp_all)[5] |
|
3932 apply(simp) |
|
3933 apply(case_tac "c = char") |
|
3934 apply(simp) |
|
3935 apply(erule Prf.cases) |
|
3936 apply(simp_all)[5] |
|
3937 apply(simp) |
|
3938 apply(erule Prf.cases) |
|
3939 apply(simp_all)[5] |
|
3940 defer |
|
3941 apply(simp) |
|
3942 apply(erule Prf.cases) |
|
3943 apply(simp_all)[5] |
|
3944 apply(simp) |
|
3945 apply(case_tac "nullable rexp1") |
|
3946 apply(simp) |
|
3947 apply(erule Prf.cases) |
|
3948 apply(simp_all)[5] |
|
3949 apply(auto)[1] |
|
3950 apply(erule Prf.cases) |
|
3951 apply(simp_all)[5] |
|
3952 apply(auto)[1] |
|
3953 apply (metis list.distinct(1) v4) |
|
3954 apply(auto)[1] |
|
3955 apply (metis mkeps_flat) |
|
3956 apply(auto) |
|
3957 apply(erule Prf.cases) |
|
3958 apply(simp_all)[5] |
|
3959 apply(auto)[1] |
|
3960 apply(simp add: v4) |
|
3961 done |
|
3962 |
|
3963 text {* |
|
3964 |
|
3965 HERE: Crucial lemma that does not go through in the sequence case. |
|
3966 |
|
3967 *} |
|
3968 lemma v5: |
|
3969 assumes "\<turnstile> v : der c r" "POSIX v (der c r)" |
|
3970 shows "POSIX (injval r c v) r" |
|
3971 using assms |
|
3972 apply(induct arbitrary: v rule: der.induct) |
|
3973 (* NULL case *) |
|
3974 apply(simp) |
|
3975 apply(erule Prf.cases) |
|
3976 apply(simp_all)[5] |
|
3977 (* EMPTY case *) |
|
3978 apply(simp) |
|
3979 apply(erule Prf.cases) |
|
3980 apply(simp_all)[5] |
|
3981 (* CHAR case *) |
|
3982 apply(simp) |
|
3983 apply(case_tac "c = c'") |
|
3984 apply(auto simp add: POSIX_def)[1] |
|
3985 apply(erule Prf.cases) |
|
3986 apply(simp_all)[5] |
|
3987 oops |
|
3988 *) |
|
3989 |
|
3990 |
|
3991 end |