|
1 |
|
2 theory Re1 |
|
3 imports "Main" |
|
4 begin |
|
5 |
|
6 |
|
7 section {* Sequential Composition of Sets *} |
|
8 |
|
9 definition |
|
10 Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
11 where |
|
12 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
13 |
|
14 text {* Two Simple Properties about Sequential Composition *} |
|
15 |
|
16 lemma seq_empty [simp]: |
|
17 shows "A ;; {[]} = A" |
|
18 and "{[]} ;; A = A" |
|
19 by (simp_all add: Sequ_def) |
|
20 |
|
21 lemma seq_null [simp]: |
|
22 shows "A ;; {} = {}" |
|
23 and "{} ;; A = {}" |
|
24 by (simp_all add: Sequ_def) |
|
25 |
|
26 section {* Regular Expressions *} |
|
27 |
|
28 datatype rexp = |
|
29 NULL |
|
30 | EMPTY |
|
31 | CHAR char |
|
32 | SEQ rexp rexp |
|
33 | ALT rexp rexp |
|
34 |
|
35 fun SEQS :: "rexp \<Rightarrow> rexp list \<Rightarrow> rexp" |
|
36 where |
|
37 "SEQS r [] = r" |
|
38 | "SEQS r (r'#rs) = SEQ r (SEQS r' rs)" |
|
39 |
|
40 section {* Semantics of Regular Expressions *} |
|
41 |
|
42 fun |
|
43 L :: "rexp \<Rightarrow> string set" |
|
44 where |
|
45 "L (NULL) = {}" |
|
46 | "L (EMPTY) = {[]}" |
|
47 | "L (CHAR c) = {[c]}" |
|
48 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
49 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
50 |
|
51 fun zeroable where |
|
52 "zeroable NULL = True" |
|
53 | "zeroable EMPTY = False" |
|
54 | "zeroable (CHAR c) = False" |
|
55 | "zeroable (ALT r1 r2) = (zeroable r1 \<and> zeroable r2)" |
|
56 | "zeroable (SEQ r1 r2) = (zeroable r1 \<or> zeroable r2)" |
|
57 |
|
58 lemma L_ALT_cases: |
|
59 "L (ALT r1 r2) \<noteq> {} \<Longrightarrow> (L r1 \<noteq> {}) \<or> (L r1 = {} \<and> L r2 \<noteq> {})" |
|
60 by(auto) |
|
61 |
|
62 fun |
|
63 nullable :: "rexp \<Rightarrow> bool" |
|
64 where |
|
65 "nullable (NULL) = False" |
|
66 | "nullable (EMPTY) = True" |
|
67 | "nullable (CHAR c) = False" |
|
68 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
69 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
70 |
|
71 lemma nullable_correctness: |
|
72 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
73 apply (induct r) |
|
74 apply(auto simp add: Sequ_def) |
|
75 done |
|
76 |
|
77 section {* Values *} |
|
78 |
|
79 datatype val = |
|
80 Void |
|
81 | Char char |
|
82 | Seq val val |
|
83 | Right val |
|
84 | Left val |
|
85 |
|
86 |
|
87 fun Seqs :: "val \<Rightarrow> val list \<Rightarrow> val" |
|
88 where |
|
89 "Seqs v [] = v" |
|
90 | "Seqs v (v'#vs) = Seqs (Seq v v') vs" |
|
91 |
|
92 section {* The string behind a value *} |
|
93 |
|
94 fun flat :: "val \<Rightarrow> string" |
|
95 where |
|
96 "flat(Void) = []" |
|
97 | "flat(Char c) = [c]" |
|
98 | "flat(Left v) = flat(v)" |
|
99 | "flat(Right v) = flat(v)" |
|
100 | "flat(Seq v1 v2) = flat(v1) @ flat(v2)" |
|
101 |
|
102 fun flats :: "val \<Rightarrow> string list" |
|
103 where |
|
104 "flats(Void) = [[]]" |
|
105 | "flats(Char c) = [[c]]" |
|
106 | "flats(Left v) = flats(v)" |
|
107 | "flats(Right v) = flats(v)" |
|
108 | "flats(Seq v1 v2) = (flats v1) @ (flats v2)" |
|
109 |
|
110 value "flats(Seq(Char c)(Char b))" |
|
111 |
|
112 section {* Relation between values and regular expressions *} |
|
113 |
|
114 |
|
115 inductive Prfs :: "string \<Rightarrow> val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile>_ _ : _" [100, 100, 100] 100) |
|
116 where |
|
117 "\<lbrakk>\<Turnstile>s1 v1 : r1; \<Turnstile>s2 v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile>(s1 @ s2) (Seq v1 v2) : SEQ r1 r2" |
|
118 | "\<Turnstile>s v1 : r1 \<Longrightarrow> \<Turnstile>s (Left v1) : ALT r1 r2" |
|
119 | "\<Turnstile>s v2 : r2 \<Longrightarrow> \<Turnstile>s (Right v2) : ALT r1 r2" |
|
120 | "\<Turnstile>[] Void : EMPTY" |
|
121 | "\<Turnstile>[c] (Char c) : CHAR c" |
|
122 |
|
123 lemma Prfs_flat: |
|
124 "\<Turnstile>s v : r \<Longrightarrow> flat v = s" |
|
125 apply(induct s v r rule: Prfs.induct) |
|
126 apply(auto) |
|
127 done |
|
128 |
|
129 inductive Prfn :: "nat \<Rightarrow> val \<Rightarrow> rexp \<Rightarrow> bool" ("\<TTurnstile>_ _ : _" [100, 100, 100] 100) |
|
130 where |
|
131 "\<lbrakk>\<TTurnstile>n1 v1 : r1; \<TTurnstile>n2 v2 : r2\<rbrakk> \<Longrightarrow> \<TTurnstile>(n1 + n2) (Seq v1 v2) : SEQ r1 r2" |
|
132 | "\<TTurnstile>n v1 : r1 \<Longrightarrow> \<TTurnstile>n (Left v1) : ALT r1 r2" |
|
133 | "\<TTurnstile>n v2 : r2 \<Longrightarrow> \<TTurnstile>n (Right v2) : ALT r1 r2" |
|
134 | "\<TTurnstile>0 Void : EMPTY" |
|
135 | "\<TTurnstile>1 (Char c) : CHAR c" |
|
136 |
|
137 lemma Prfn_flat: |
|
138 "\<TTurnstile>n v : r \<Longrightarrow> length (flat v) = n" |
|
139 apply(induct rule: Prfn.induct) |
|
140 apply(auto) |
|
141 done |
|
142 |
|
143 inductive Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100) |
|
144 where |
|
145 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2" |
|
146 | "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2" |
|
147 | "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2" |
|
148 | "\<turnstile> Void : EMPTY" |
|
149 | "\<turnstile> Char c : CHAR c" |
|
150 |
|
151 lemma Prf_Prfn: |
|
152 shows "\<turnstile> v : r \<Longrightarrow> \<TTurnstile>(length (flat v)) v : r" |
|
153 apply(induct v r rule: Prf.induct) |
|
154 apply(auto intro: Prfn.intros) |
|
155 by (metis One_nat_def Prfn.intros(5)) |
|
156 |
|
157 lemma Prfn_Prf: |
|
158 shows "\<TTurnstile>n v : r \<Longrightarrow> \<turnstile> v : r" |
|
159 apply(induct n v r rule: Prfn.induct) |
|
160 apply(auto intro: Prf.intros) |
|
161 done |
|
162 |
|
163 lemma Prf_Prfs: |
|
164 shows "\<turnstile> v : r \<Longrightarrow> \<Turnstile>(flat v) v : r" |
|
165 apply(induct v r rule: Prf.induct) |
|
166 apply(auto intro: Prfs.intros) |
|
167 done |
|
168 |
|
169 lemma Prfs_Prf: |
|
170 shows "\<Turnstile>s v : r \<Longrightarrow> \<turnstile> v : r" |
|
171 apply(induct s v r rule: Prfs.induct) |
|
172 apply(auto intro: Prf.intros) |
|
173 done |
|
174 |
|
175 lemma not_nullable_flat: |
|
176 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
177 shows "flat v \<noteq> []" |
|
178 using assms |
|
179 apply(induct) |
|
180 apply(auto) |
|
181 done |
|
182 |
|
183 |
|
184 fun mkeps :: "rexp \<Rightarrow> val" |
|
185 where |
|
186 "mkeps(EMPTY) = Void" |
|
187 | "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" |
|
188 | "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" |
|
189 |
|
190 lemma mkeps_nullable: |
|
191 assumes "nullable(r)" shows "\<turnstile> mkeps r : r" |
|
192 using assms |
|
193 apply(induct rule: nullable.induct) |
|
194 apply(auto intro: Prf.intros) |
|
195 done |
|
196 |
|
197 lemma mkeps_nullable_n: |
|
198 assumes "nullable(r)" shows "\<TTurnstile>0 (mkeps r) : r" |
|
199 using assms |
|
200 apply(induct rule: nullable.induct) |
|
201 apply(auto intro: Prfn.intros) |
|
202 apply(drule Prfn.intros(1)) |
|
203 apply(assumption) |
|
204 apply(simp) |
|
205 done |
|
206 |
|
207 lemma mkeps_nullable_s: |
|
208 assumes "nullable(r)" shows "\<Turnstile>[] (mkeps r) : r" |
|
209 using assms |
|
210 apply(induct rule: nullable.induct) |
|
211 apply(auto intro: Prfs.intros) |
|
212 apply(drule Prfs.intros(1)) |
|
213 apply(assumption) |
|
214 apply(simp) |
|
215 done |
|
216 |
|
217 lemma mkeps_flat: |
|
218 assumes "nullable(r)" shows "flat (mkeps r) = []" |
|
219 using assms |
|
220 apply(induct rule: nullable.induct) |
|
221 apply(auto) |
|
222 done |
|
223 |
|
224 text {* |
|
225 The value mkeps returns is always the correct POSIX |
|
226 value. |
|
227 *} |
|
228 |
|
229 lemma Prf_flat_L: |
|
230 assumes "\<turnstile> v : r" shows "flat v \<in> L r" |
|
231 using assms |
|
232 apply(induct v r rule: Prf.induct) |
|
233 apply(auto simp add: Sequ_def) |
|
234 done |
|
235 |
|
236 lemma L_flat_Prf: |
|
237 "L(r) = {flat v | v. \<turnstile> v : r}" |
|
238 apply(induct r) |
|
239 apply(auto dest: Prf_flat_L simp add: Sequ_def) |
|
240 apply (metis Prf.intros(4) flat.simps(1)) |
|
241 apply (metis Prf.intros(5) flat.simps(2)) |
|
242 apply (metis Prf.intros(1) flat.simps(5)) |
|
243 apply (metis Prf.intros(2) flat.simps(3)) |
|
244 apply (metis Prf.intros(3) flat.simps(4)) |
|
245 apply(erule Prf.cases) |
|
246 apply(auto) |
|
247 done |
|
248 |
|
249 |
|
250 definition prefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubseteq> _" [100, 100] 100) |
|
251 where |
|
252 "s1 \<sqsubseteq> s2 \<equiv> \<exists>s3. s1 @ s3 = s2" |
|
253 |
|
254 definition sprefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubset> _" [100, 100] 100) |
|
255 where |
|
256 "s1 \<sqsubset> s2 \<equiv> (s1 \<sqsubseteq> s2 \<and> s1 \<noteq> s2)" |
|
257 |
|
258 lemma length_sprefix: |
|
259 "s1 \<sqsubset> s2 \<Longrightarrow> length s1 < length s2" |
|
260 unfolding sprefix_def prefix_def |
|
261 by (auto) |
|
262 |
|
263 definition Prefixes :: "string \<Rightarrow> string set" where |
|
264 "Prefixes s \<equiv> {sp. sp \<sqsubseteq> s}" |
|
265 |
|
266 definition Suffixes :: "string \<Rightarrow> string set" where |
|
267 "Suffixes s \<equiv> rev ` (Prefixes (rev s))" |
|
268 |
|
269 lemma Suffixes_in: |
|
270 "\<exists>s1. s1 @ s2 = s3 \<Longrightarrow> s2 \<in> Suffixes s3" |
|
271 unfolding Suffixes_def Prefixes_def prefix_def image_def |
|
272 apply(auto) |
|
273 by (metis rev_rev_ident) |
|
274 |
|
275 lemma Prefixes_Cons: |
|
276 "Prefixes (c # s) = {[]} \<union> {c # sp | sp. sp \<in> Prefixes s}" |
|
277 unfolding Prefixes_def prefix_def |
|
278 apply(auto simp add: append_eq_Cons_conv) |
|
279 done |
|
280 |
|
281 lemma finite_Prefixes: |
|
282 "finite (Prefixes s)" |
|
283 apply(induct s) |
|
284 apply(auto simp add: Prefixes_def prefix_def)[1] |
|
285 apply(simp add: Prefixes_Cons) |
|
286 done |
|
287 |
|
288 lemma finite_Suffixes: |
|
289 "finite (Suffixes s)" |
|
290 unfolding Suffixes_def |
|
291 apply(rule finite_imageI) |
|
292 apply(rule finite_Prefixes) |
|
293 done |
|
294 |
|
295 lemma prefix_Cons: |
|
296 "((c # s1) \<sqsubseteq> (c # s2)) = (s1 \<sqsubseteq> s2)" |
|
297 apply(auto simp add: prefix_def) |
|
298 done |
|
299 |
|
300 lemma prefix_append: |
|
301 "((s @ s1) \<sqsubseteq> (s @ s2)) = (s1 \<sqsubseteq> s2)" |
|
302 apply(induct s) |
|
303 apply(simp) |
|
304 apply(simp add: prefix_Cons) |
|
305 done |
|
306 |
|
307 |
|
308 |
|
309 definition Values :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
310 "Values r s \<equiv> {v. \<turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
|
311 |
|
312 definition rest :: "val \<Rightarrow> string \<Rightarrow> string" where |
|
313 "rest v s \<equiv> drop (length (flat v)) s" |
|
314 |
|
315 lemma rest_Suffixes: |
|
316 "rest v s \<in> Suffixes s" |
|
317 unfolding rest_def |
|
318 by (metis Suffixes_in append_take_drop_id) |
|
319 |
|
320 |
|
321 lemma Values_recs: |
|
322 "Values (NULL) s = {}" |
|
323 "Values (EMPTY) s = {Void}" |
|
324 "Values (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
|
325 "Values (ALT r1 r2) s = {Left v | v. v \<in> Values r1 s} \<union> {Right v | v. v \<in> Values r2 s}" |
|
326 "Values (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" |
|
327 unfolding Values_def |
|
328 apply(auto) |
|
329 (*NULL*) |
|
330 apply(erule Prf.cases) |
|
331 apply(simp_all)[5] |
|
332 (*EMPTY*) |
|
333 apply(erule Prf.cases) |
|
334 apply(simp_all)[5] |
|
335 apply(rule Prf.intros) |
|
336 apply (metis append_Nil prefix_def) |
|
337 (*CHAR*) |
|
338 apply(erule Prf.cases) |
|
339 apply(simp_all)[5] |
|
340 apply(rule Prf.intros) |
|
341 apply(erule Prf.cases) |
|
342 apply(simp_all)[5] |
|
343 (*ALT*) |
|
344 apply(erule Prf.cases) |
|
345 apply(simp_all)[5] |
|
346 apply (metis Prf.intros(2)) |
|
347 apply (metis Prf.intros(3)) |
|
348 (*SEQ*) |
|
349 apply(erule Prf.cases) |
|
350 apply(simp_all)[5] |
|
351 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
352 apply (metis Prf.intros(1)) |
|
353 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
354 done |
|
355 |
|
356 lemma Values_finite: |
|
357 "finite (Values r s)" |
|
358 apply(induct r arbitrary: s) |
|
359 apply(simp_all add: Values_recs) |
|
360 thm finite_surj |
|
361 apply(rule_tac f="\<lambda>(x, y). Seq x y" and |
|
362 A="{(v1, v2) | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" in finite_surj) |
|
363 prefer 2 |
|
364 apply(auto)[1] |
|
365 apply(rule_tac B="\<Union>sp \<in> Suffixes s. {(v1, v2). v1 \<in> Values r1 s \<and> v2 \<in> Values r2 sp}" in finite_subset) |
|
366 apply(auto)[1] |
|
367 apply (metis rest_Suffixes) |
|
368 apply(rule finite_UN_I) |
|
369 apply(rule finite_Suffixes) |
|
370 apply(simp) |
|
371 done |
|
372 |
|
373 section {* Greedy Ordering according to Frisch/Cardelli *} |
|
374 |
|
375 inductive GrOrd :: "val \<Rightarrow> val \<Rightarrow> bool" ("_ \<prec> _") |
|
376 where |
|
377 "v1 \<prec> v1' \<Longrightarrow> (Seq v1 v2) \<prec> (Seq v1' v2')" |
|
378 | "v2 \<prec> v2' \<Longrightarrow> (Seq v1 v2) \<prec> (Seq v1 v2')" |
|
379 | "v1 \<prec> v2 \<Longrightarrow> (Left v1) \<prec> (Left v2)" |
|
380 | "v1 \<prec> v2 \<Longrightarrow> (Right v1) \<prec> (Right v2)" |
|
381 | "(Right v1) \<prec> (Left v2)" |
|
382 | "(Char c) \<prec> (Char c)" |
|
383 | "(Void) \<prec> (Void)" |
|
384 |
|
385 lemma Gr_refl: |
|
386 assumes "\<turnstile> v : r" |
|
387 shows "v \<prec> v" |
|
388 using assms |
|
389 apply(induct) |
|
390 apply(auto intro: GrOrd.intros) |
|
391 done |
|
392 |
|
393 lemma Gr_total: |
|
394 assumes "\<turnstile> v1 : r" "\<turnstile> v2 : r" |
|
395 shows "v1 \<prec> v2 \<or> v2 \<prec> v1" |
|
396 using assms |
|
397 apply(induct v1 r arbitrary: v2 rule: Prf.induct) |
|
398 apply(rotate_tac 4) |
|
399 apply(erule Prf.cases) |
|
400 apply(simp_all)[5] |
|
401 apply(clarify) |
|
402 apply (metis GrOrd.intros(1) GrOrd.intros(2)) |
|
403 apply(rotate_tac 2) |
|
404 apply(erule Prf.cases) |
|
405 apply(simp_all) |
|
406 apply(clarify) |
|
407 apply (metis GrOrd.intros(3)) |
|
408 apply(clarify) |
|
409 apply (metis GrOrd.intros(5)) |
|
410 apply(rotate_tac 2) |
|
411 apply(erule Prf.cases) |
|
412 apply(simp_all) |
|
413 apply(clarify) |
|
414 apply (metis GrOrd.intros(5)) |
|
415 apply(clarify) |
|
416 apply (metis GrOrd.intros(4)) |
|
417 apply(erule Prf.cases) |
|
418 apply(simp_all) |
|
419 apply (metis GrOrd.intros(7)) |
|
420 apply(erule Prf.cases) |
|
421 apply(simp_all) |
|
422 apply (metis GrOrd.intros(6)) |
|
423 done |
|
424 |
|
425 lemma Gr_trans: |
|
426 assumes "v1 \<prec> v2" "v2 \<prec> v3" "\<turnstile> v1 : r" "\<turnstile> v2 : r" "\<turnstile> v3 : r" |
|
427 shows "v1 \<prec> v3" |
|
428 using assms |
|
429 apply(induct r arbitrary: v1 v2 v3) |
|
430 apply(erule Prf.cases) |
|
431 apply(simp_all)[5] |
|
432 apply(erule Prf.cases) |
|
433 apply(simp_all)[5] |
|
434 apply(erule Prf.cases) |
|
435 apply(simp_all)[5] |
|
436 apply(erule Prf.cases) |
|
437 apply(simp_all)[5] |
|
438 apply(erule Prf.cases) |
|
439 apply(simp_all)[5] |
|
440 defer |
|
441 (* ALT case *) |
|
442 apply(erule Prf.cases) |
|
443 apply(simp_all (no_asm_use))[5] |
|
444 apply(erule Prf.cases) |
|
445 apply(simp_all (no_asm_use))[5] |
|
446 apply(erule Prf.cases) |
|
447 apply(simp_all (no_asm_use))[5] |
|
448 apply(clarify) |
|
449 apply(erule GrOrd.cases) |
|
450 apply(simp_all (no_asm_use))[7] |
|
451 apply(erule GrOrd.cases) |
|
452 apply(simp_all (no_asm_use))[7] |
|
453 apply (metis GrOrd.intros(3)) |
|
454 apply(clarify) |
|
455 apply(erule GrOrd.cases) |
|
456 apply(simp_all (no_asm_use))[7] |
|
457 apply(erule GrOrd.cases) |
|
458 apply(simp_all (no_asm_use))[7] |
|
459 apply(erule Prf.cases) |
|
460 apply(simp_all (no_asm_use))[5] |
|
461 apply(clarify) |
|
462 apply(erule GrOrd.cases) |
|
463 apply(simp_all (no_asm_use))[7] |
|
464 apply(clarify) |
|
465 apply(erule GrOrd.cases) |
|
466 apply(simp_all (no_asm_use))[7] |
|
467 apply(erule Prf.cases) |
|
468 apply(simp_all (no_asm_use))[5] |
|
469 apply(erule Prf.cases) |
|
470 apply(simp_all (no_asm_use))[5] |
|
471 apply(clarify) |
|
472 apply(erule GrOrd.cases) |
|
473 apply(simp_all (no_asm_use))[7] |
|
474 apply(erule GrOrd.cases) |
|
475 apply(simp_all (no_asm_use))[7] |
|
476 apply (metis GrOrd.intros(5)) |
|
477 apply(clarify) |
|
478 apply(erule GrOrd.cases) |
|
479 apply(simp_all (no_asm_use))[7] |
|
480 apply(erule GrOrd.cases) |
|
481 apply(simp_all (no_asm_use))[7] |
|
482 apply(erule Prf.cases) |
|
483 apply(simp_all (no_asm_use))[5] |
|
484 apply(clarify) |
|
485 apply(erule GrOrd.cases) |
|
486 apply(simp_all (no_asm_use))[7] |
|
487 apply(erule GrOrd.cases) |
|
488 apply(simp_all (no_asm_use))[7] |
|
489 apply (metis GrOrd.intros(5)) |
|
490 apply(clarify) |
|
491 apply(erule GrOrd.cases) |
|
492 apply(simp_all (no_asm_use))[7] |
|
493 apply(erule GrOrd.cases) |
|
494 apply(simp_all (no_asm_use))[7] |
|
495 apply (metis GrOrd.intros(4)) |
|
496 (* seq case *) |
|
497 apply(erule Prf.cases) |
|
498 apply(simp_all (no_asm_use))[5] |
|
499 apply(erule Prf.cases) |
|
500 apply(simp_all (no_asm_use))[5] |
|
501 apply(erule Prf.cases) |
|
502 apply(simp_all (no_asm_use))[5] |
|
503 apply(clarify) |
|
504 apply(erule GrOrd.cases) |
|
505 apply(simp_all (no_asm_use))[7] |
|
506 apply(erule GrOrd.cases) |
|
507 apply(simp_all (no_asm_use))[7] |
|
508 apply(clarify) |
|
509 apply (metis GrOrd.intros(1)) |
|
510 apply (metis GrOrd.intros(1)) |
|
511 apply(erule GrOrd.cases) |
|
512 apply(simp_all (no_asm_use))[7] |
|
513 apply (metis GrOrd.intros(1)) |
|
514 by (metis GrOrd.intros(1) Gr_refl) |
|
515 |
|
516 definition |
|
517 GrMaxM :: "val set => val" where |
|
518 "GrMaxM S == SOME v. v \<in> S \<and> (\<forall>v' \<in> S. v' \<prec> v)" |
|
519 |
|
520 definition |
|
521 "GrMax r s \<equiv> GrMaxM {v. \<turnstile> v : r \<and> flat v = s}" |
|
522 |
|
523 inductive ValOrd3 :: "val \<Rightarrow> val \<Rightarrow> bool" ("_ 3\<succ> _" [100, 100] 100) |
|
524 where |
|
525 "v2 3\<succ> v2' \<Longrightarrow> (Seq v1 v2) 3\<succ> (Seq v1 v2')" |
|
526 | "v1 3\<succ> v1' \<Longrightarrow> (Seq v1 v2) 3\<succ> (Seq v1' v2')" |
|
527 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) 3\<succ> (Right v2)" |
|
528 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) 3\<succ> (Left v1)" |
|
529 | "v2 3\<succ> v2' \<Longrightarrow> (Right v2) 3\<succ> (Right v2')" |
|
530 | "v1 3\<succ> v1' \<Longrightarrow> (Left v1) 3\<succ> (Left v1')" |
|
531 | "Void 3\<succ> Void" |
|
532 | "(Char c) 3\<succ> (Char c)" |
|
533 |
|
534 |
|
535 section {* Sulzmann's Ordering of values *} |
|
536 |
|
537 inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<succ>_ _" [100, 100, 100] 100) |
|
538 where |
|
539 "v2 \<succ>r2 v2' \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
540 | "\<lbrakk>v1 \<succ>r1 v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
541 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Right v2)" |
|
542 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Left v1)" |
|
543 | "v2 \<succ>r2 v2' \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Right v2')" |
|
544 | "v1 \<succ>r1 v1' \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Left v1')" |
|
545 | "Void \<succ>EMPTY Void" |
|
546 | "(Char c) \<succ>(CHAR c) (Char c)" |
|
547 |
|
548 inductive ValOrdStr :: "string \<Rightarrow> val \<Rightarrow> val \<Rightarrow> bool" ("_ \<turnstile> _ \<succ>_" [100, 100, 100] 100) |
|
549 where |
|
550 "\<lbrakk>s \<turnstile> v1 \<succ> v1'; rest v1 s \<turnstile> v2 \<succ> v2'\<rbrakk> \<Longrightarrow> s \<turnstile> (Seq v1 v2) \<succ> (Seq v1' v2')" |
|
551 | "\<lbrakk>flat v2 \<sqsubseteq> flat v1; flat v1 \<sqsubseteq> s\<rbrakk> \<Longrightarrow> s \<turnstile> (Left v1) \<succ> (Right v2)" |
|
552 | "\<lbrakk>flat v1 \<sqsubset> flat v2; flat v2 \<sqsubseteq> s\<rbrakk> \<Longrightarrow> s \<turnstile> (Right v2) \<succ> (Left v1)" |
|
553 | "s \<turnstile> v2 \<succ> v2' \<Longrightarrow> s \<turnstile> (Right v2) \<succ> (Right v2')" |
|
554 | "s \<turnstile> v1 \<succ> v1' \<Longrightarrow> s \<turnstile> (Left v1) \<succ> (Left v1')" |
|
555 | "s \<turnstile> Void \<succ> Void" |
|
556 | "(c#s) \<turnstile> (Char c) \<succ> (Char c)" |
|
557 |
|
558 inductive ValOrd2 :: "val \<Rightarrow> val \<Rightarrow> bool" ("_ 2\<succ> _" [100, 100] 100) |
|
559 where |
|
560 "v2 2\<succ> v2' \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1 v2')" |
|
561 | "\<lbrakk>v1 2\<succ> v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1' v2')" |
|
562 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) 2\<succ> (Right v2)" |
|
563 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) 2\<succ> (Left v1)" |
|
564 | "v2 2\<succ> v2' \<Longrightarrow> (Right v2) 2\<succ> (Right v2')" |
|
565 | "v1 2\<succ> v1' \<Longrightarrow> (Left v1) 2\<succ> (Left v1')" |
|
566 | "Void 2\<succ> Void" |
|
567 | "(Char c) 2\<succ> (Char c)" |
|
568 |
|
569 lemma Ord1: |
|
570 "v1 \<succ>r v2 \<Longrightarrow> v1 2\<succ> v2" |
|
571 apply(induct rule: ValOrd.induct) |
|
572 apply(auto intro: ValOrd2.intros) |
|
573 done |
|
574 |
|
575 lemma Ord2: |
|
576 "v1 2\<succ> v2 \<Longrightarrow> \<exists>r. v1 \<succ>r v2" |
|
577 apply(induct v1 v2 rule: ValOrd2.induct) |
|
578 apply(auto intro: ValOrd.intros) |
|
579 done |
|
580 |
|
581 lemma Ord3: |
|
582 "\<lbrakk>v1 2\<succ> v2; \<turnstile> v1 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2" |
|
583 apply(induct v1 v2 arbitrary: r rule: ValOrd2.induct) |
|
584 apply(auto intro: ValOrd.intros elim: Prf.cases) |
|
585 done |
|
586 |
|
587 |
|
588 lemma ValOrd_refl: |
|
589 assumes "\<turnstile> v : r" |
|
590 shows "v \<succ>r v" |
|
591 using assms |
|
592 apply(induct) |
|
593 apply(auto intro: ValOrd.intros) |
|
594 done |
|
595 |
|
596 lemma |
|
597 "flat Void = []" |
|
598 "flat (Seq Void Void) = []" |
|
599 apply(simp_all) |
|
600 done |
|
601 |
|
602 |
|
603 lemma ValOrd_total: |
|
604 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2 \<or> v2 \<succ>r v1" |
|
605 apply(induct r arbitrary: v1 v2) |
|
606 apply(auto) |
|
607 apply(erule Prf.cases) |
|
608 apply(simp_all)[5] |
|
609 apply(erule Prf.cases) |
|
610 apply(simp_all)[5] |
|
611 apply(erule Prf.cases) |
|
612 apply(simp_all)[5] |
|
613 apply (metis ValOrd.intros(7)) |
|
614 apply(erule Prf.cases) |
|
615 apply(simp_all)[5] |
|
616 apply(erule Prf.cases) |
|
617 apply(simp_all)[5] |
|
618 apply (metis ValOrd.intros(8)) |
|
619 apply(erule Prf.cases) |
|
620 apply(simp_all)[5] |
|
621 apply(erule Prf.cases) |
|
622 apply(simp_all)[5] |
|
623 apply(clarify) |
|
624 apply(case_tac "v1a = v1b") |
|
625 apply(simp) |
|
626 apply(rule ValOrd.intros(1)) |
|
627 apply (metis ValOrd.intros(1)) |
|
628 apply(rule ValOrd.intros(2)) |
|
629 apply(auto)[2] |
|
630 apply(erule contrapos_np) |
|
631 apply(rule ValOrd.intros(2)) |
|
632 apply(auto) |
|
633 apply(erule Prf.cases) |
|
634 apply(simp_all)[5] |
|
635 apply(erule Prf.cases) |
|
636 apply(simp_all)[5] |
|
637 apply (metis Ord1 Ord3 Prf.intros(2) ValOrd2.intros(6)) |
|
638 apply(rule ValOrd.intros) |
|
639 apply(erule contrapos_np) |
|
640 apply(rule ValOrd.intros) |
|
641 apply (metis le_eq_less_or_eq neq_iff) |
|
642 apply(erule Prf.cases) |
|
643 apply(simp_all)[5] |
|
644 apply(rule ValOrd.intros) |
|
645 apply(erule contrapos_np) |
|
646 apply(rule ValOrd.intros) |
|
647 apply (metis le_eq_less_or_eq neq_iff) |
|
648 apply(rule ValOrd.intros) |
|
649 apply(erule contrapos_np) |
|
650 apply(rule ValOrd.intros) |
|
651 by metis |
|
652 |
|
653 lemma ValOrd_anti: |
|
654 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r; v1 \<succ>r v2; v2 \<succ>r v1\<rbrakk> \<Longrightarrow> v1 = v2" |
|
655 apply(induct r arbitrary: v1 v2) |
|
656 apply(erule Prf.cases) |
|
657 apply(simp_all)[5] |
|
658 apply(erule Prf.cases) |
|
659 apply(simp_all)[5] |
|
660 apply(erule Prf.cases) |
|
661 apply(simp_all)[5] |
|
662 apply(erule Prf.cases) |
|
663 apply(simp_all)[5] |
|
664 apply(erule Prf.cases) |
|
665 apply(simp_all)[5] |
|
666 apply(erule Prf.cases) |
|
667 apply(simp_all)[5] |
|
668 apply(erule Prf.cases) |
|
669 apply(simp_all)[5] |
|
670 apply(erule ValOrd.cases) |
|
671 apply(simp_all)[8] |
|
672 apply(erule ValOrd.cases) |
|
673 apply(simp_all)[8] |
|
674 apply(erule ValOrd.cases) |
|
675 apply(simp_all)[8] |
|
676 apply(erule Prf.cases) |
|
677 apply(simp_all)[5] |
|
678 apply(erule Prf.cases) |
|
679 apply(simp_all)[5] |
|
680 apply(erule ValOrd.cases) |
|
681 apply(simp_all)[8] |
|
682 apply(erule ValOrd.cases) |
|
683 apply(simp_all)[8] |
|
684 apply(erule ValOrd.cases) |
|
685 apply(simp_all)[8] |
|
686 apply(erule ValOrd.cases) |
|
687 apply(simp_all)[8] |
|
688 apply(erule Prf.cases) |
|
689 apply(simp_all)[5] |
|
690 apply(erule ValOrd.cases) |
|
691 apply(simp_all)[8] |
|
692 apply(erule ValOrd.cases) |
|
693 apply(simp_all)[8] |
|
694 apply(erule ValOrd.cases) |
|
695 apply(simp_all)[8] |
|
696 apply(erule ValOrd.cases) |
|
697 apply(simp_all)[8] |
|
698 done |
|
699 |
|
700 lemma refl_on_ValOrd: |
|
701 "refl_on (Values r s) {(v1, v2). v1 \<succ>r v2 \<and> v1 \<in> Values r s \<and> v2 \<in> Values r s}" |
|
702 unfolding refl_on_def |
|
703 apply(auto) |
|
704 apply(rule ValOrd_refl) |
|
705 apply(simp add: Values_def) |
|
706 done |
|
707 |
|
708 (* |
|
709 inductive ValOrd3 :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ 3\<succ>_ _" [100, 100, 100] 100) |
|
710 where |
|
711 "\<lbrakk>v2 3\<succ>r2 v2'; \<turnstile> v1 : r1\<rbrakk> \<Longrightarrow> (Seq v1 v2) 3\<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
712 | "\<lbrakk>v1 3\<succ>r1 v1'; v1 \<noteq> v1'; flat v2 = flat v2'; \<turnstile> v2 : r2; \<turnstile> v2' : r2\<rbrakk> |
|
713 \<Longrightarrow> (Seq v1 v2) 3\<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
714 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) 3\<succ>(ALT r1 r2) (Right v2)" |
|
715 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) 3\<succ>(ALT r1 r2) (Left v1)" |
|
716 | "v2 3\<succ>r2 v2' \<Longrightarrow> (Right v2) 3\<succ>(ALT r1 r2) (Right v2')" |
|
717 | "v1 3\<succ>r1 v1' \<Longrightarrow> (Left v1) 3\<succ>(ALT r1 r2) (Left v1')" |
|
718 | "Void 3\<succ>EMPTY Void" |
|
719 | "(Char c) 3\<succ>(CHAR c) (Char c)" |
|
720 *) |
|
721 |
|
722 section {* Posix definition *} |
|
723 |
|
724 definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
725 where |
|
726 "POSIX v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v \<succ>r v'))" |
|
727 |
|
728 definition POSIX2 :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
729 where |
|
730 "POSIX2 v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v 2\<succ> v'))" |
|
731 |
|
732 lemma "POSIX v r = POSIX2 v r" |
|
733 unfolding POSIX_def POSIX2_def |
|
734 apply(auto) |
|
735 apply(rule Ord1) |
|
736 apply(auto) |
|
737 apply(rule Ord3) |
|
738 apply(auto) |
|
739 done |
|
740 |
|
741 definition POSIXs :: "val \<Rightarrow> rexp \<Rightarrow> string \<Rightarrow> bool" |
|
742 where |
|
743 "POSIXs v r s \<equiv> (\<Turnstile>s v : r \<and> (\<forall>v'. (\<Turnstile>s v' : r \<longrightarrow> v 2\<succ> v')))" |
|
744 |
|
745 definition POSIXn :: "val \<Rightarrow> rexp \<Rightarrow> nat \<Rightarrow> bool" |
|
746 where |
|
747 "POSIXn v r n \<equiv> (\<TTurnstile>n v : r \<and> (\<forall>v'. (\<TTurnstile>n v' : r \<longrightarrow> v 2\<succ> v')))" |
|
748 |
|
749 lemma "POSIXn v r (length (flat v)) \<Longrightarrow> POSIX2 v r" |
|
750 unfolding POSIXn_def POSIX2_def |
|
751 apply(auto) |
|
752 apply (metis Prfn_Prf) |
|
753 by (metis Prf_Prfn) |
|
754 |
|
755 lemma Prfs_POSIX: |
|
756 "POSIXs v r s \<Longrightarrow> \<Turnstile>s v: r \<and> flat v = s" |
|
757 apply(simp add: POSIXs_def) |
|
758 by (metis Prfs_flat) |
|
759 |
|
760 |
|
761 lemma "POSIXs v r (flat v) = POSIX2 v r" |
|
762 unfolding POSIXs_def POSIX2_def |
|
763 apply(auto) |
|
764 apply (metis Prfs_Prf) |
|
765 apply (metis Prf_Prfs) |
|
766 apply (metis Prf_Prfs) |
|
767 by (metis Prfs_Prf Prfs_flat) |
|
768 |
|
769 section {* POSIX for some constructors *} |
|
770 |
|
771 lemma POSIX_SEQ1: |
|
772 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
773 shows "POSIX v1 r1" |
|
774 using assms |
|
775 unfolding POSIX_def |
|
776 apply(auto) |
|
777 apply(drule_tac x="Seq v' v2" in spec) |
|
778 apply(simp) |
|
779 apply(erule impE) |
|
780 apply(rule Prf.intros) |
|
781 apply(simp) |
|
782 apply(simp) |
|
783 apply(erule ValOrd.cases) |
|
784 apply(simp_all) |
|
785 apply(clarify) |
|
786 by (metis ValOrd_refl) |
|
787 |
|
788 lemma POSIXn_SEQ1: |
|
789 assumes "POSIXn (Seq v1 v2) (SEQ r1 r2) (n1 + n2)" "\<TTurnstile>n1 v1 : r1" "\<TTurnstile>n2 v2 : r2" |
|
790 shows "POSIXn v1 r1 n1" |
|
791 using assms |
|
792 unfolding POSIXn_def |
|
793 apply(auto) |
|
794 apply(drule_tac x="Seq v' v2" in spec) |
|
795 apply(erule impE) |
|
796 apply(rule Prfn.intros) |
|
797 apply(simp) |
|
798 apply(simp) |
|
799 apply(erule ValOrd2.cases) |
|
800 apply(simp_all) |
|
801 apply(clarify) |
|
802 by (metis Ord1 Prfn_Prf ValOrd_refl) |
|
803 |
|
804 lemma POSIXs_SEQ1: |
|
805 assumes "POSIXs (Seq v1 v2) (SEQ r1 r2) (s1 @ s2)" "\<Turnstile>s1 v1 : r1" "\<Turnstile>s2 v2 : r2" |
|
806 shows "POSIXs v1 r1 s1" |
|
807 using assms |
|
808 unfolding POSIXs_def |
|
809 apply(auto) |
|
810 apply(drule_tac x="Seq v' v2" in spec) |
|
811 apply(erule impE) |
|
812 apply(rule Prfs.intros) |
|
813 apply(simp) |
|
814 apply(simp) |
|
815 apply(erule ValOrd2.cases) |
|
816 apply(simp_all) |
|
817 apply(clarify) |
|
818 by (metis Ord1 Prfs_Prf ValOrd_refl) |
|
819 |
|
820 lemma POSIX_SEQ2: |
|
821 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
822 shows "POSIX v2 r2" |
|
823 using assms |
|
824 unfolding POSIX_def |
|
825 apply(auto) |
|
826 apply(drule_tac x="Seq v1 v'" in spec) |
|
827 apply(simp) |
|
828 apply(erule impE) |
|
829 apply(rule Prf.intros) |
|
830 apply(simp) |
|
831 apply(simp) |
|
832 apply(erule ValOrd.cases) |
|
833 apply(simp_all) |
|
834 done |
|
835 |
|
836 lemma POSIXn_SEQ2: |
|
837 assumes "POSIXn (Seq v1 v2) (SEQ r1 r2) (n1 + n2)" "\<TTurnstile>n1 v1 : r1" "\<TTurnstile>n2 v2 : r2" |
|
838 shows "POSIXn v2 r2 n2" |
|
839 using assms |
|
840 unfolding POSIXn_def |
|
841 apply(auto) |
|
842 apply(drule_tac x="Seq v1 v'" in spec) |
|
843 apply(erule impE) |
|
844 apply(rule Prfn.intros) |
|
845 apply(simp) |
|
846 apply(simp) |
|
847 apply(erule ValOrd2.cases) |
|
848 apply(simp_all) |
|
849 done |
|
850 |
|
851 lemma POSIXs_SEQ2: |
|
852 assumes "POSIXs (Seq v1 v2) (SEQ r1 r2) (s1 @ s2)" "\<Turnstile>s1 v1 : r1" "\<Turnstile>s2 v2 : r2" |
|
853 shows "POSIXs v2 r2 s2" |
|
854 using assms |
|
855 unfolding POSIXs_def |
|
856 apply(auto) |
|
857 apply(drule_tac x="Seq v1 v'" in spec) |
|
858 apply(erule impE) |
|
859 apply(rule Prfs.intros) |
|
860 apply(simp) |
|
861 apply(simp) |
|
862 apply(erule ValOrd2.cases) |
|
863 apply(simp_all) |
|
864 done |
|
865 |
|
866 lemma POSIX_ALT2: |
|
867 assumes "POSIX (Left v1) (ALT r1 r2)" |
|
868 shows "POSIX v1 r1" |
|
869 using assms |
|
870 unfolding POSIX_def |
|
871 apply(auto) |
|
872 apply(erule Prf.cases) |
|
873 apply(simp_all)[5] |
|
874 apply(drule_tac x="Left v'" in spec) |
|
875 apply(simp) |
|
876 apply(drule mp) |
|
877 apply(rule Prf.intros) |
|
878 apply(auto) |
|
879 apply(erule ValOrd.cases) |
|
880 apply(simp_all) |
|
881 done |
|
882 |
|
883 lemma POSIXn_ALT2: |
|
884 assumes "POSIXn (Left v1) (ALT r1 r2) n" |
|
885 shows "POSIXn v1 r1 n" |
|
886 using assms |
|
887 unfolding POSIXn_def |
|
888 apply(auto) |
|
889 apply(erule Prfn.cases) |
|
890 apply(simp_all)[5] |
|
891 apply(drule_tac x="Left v'" in spec) |
|
892 apply(drule mp) |
|
893 apply(rule Prfn.intros) |
|
894 apply(auto) |
|
895 apply(erule ValOrd2.cases) |
|
896 apply(simp_all) |
|
897 done |
|
898 |
|
899 lemma POSIXs_ALT2: |
|
900 assumes "POSIXs (Left v1) (ALT r1 r2) s" |
|
901 shows "POSIXs v1 r1 s" |
|
902 using assms |
|
903 unfolding POSIXs_def |
|
904 apply(auto) |
|
905 apply(erule Prfs.cases) |
|
906 apply(simp_all)[5] |
|
907 apply(drule_tac x="Left v'" in spec) |
|
908 apply(drule mp) |
|
909 apply(rule Prfs.intros) |
|
910 apply(auto) |
|
911 apply(erule ValOrd2.cases) |
|
912 apply(simp_all) |
|
913 done |
|
914 |
|
915 lemma POSIX_ALT1a: |
|
916 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
917 shows "POSIX v2 r2" |
|
918 using assms |
|
919 unfolding POSIX_def |
|
920 apply(auto) |
|
921 apply(erule Prf.cases) |
|
922 apply(simp_all)[5] |
|
923 apply(drule_tac x="Right v'" in spec) |
|
924 apply(simp) |
|
925 apply(drule mp) |
|
926 apply(rule Prf.intros) |
|
927 apply(auto) |
|
928 apply(erule ValOrd.cases) |
|
929 apply(simp_all) |
|
930 done |
|
931 |
|
932 lemma POSIXn_ALT1a: |
|
933 assumes "POSIXn (Right v2) (ALT r1 r2) n" |
|
934 shows "POSIXn v2 r2 n" |
|
935 using assms |
|
936 unfolding POSIXn_def |
|
937 apply(auto) |
|
938 apply(erule Prfn.cases) |
|
939 apply(simp_all)[5] |
|
940 apply(drule_tac x="Right v'" in spec) |
|
941 apply(drule mp) |
|
942 apply(rule Prfn.intros) |
|
943 apply(auto) |
|
944 apply(erule ValOrd2.cases) |
|
945 apply(simp_all) |
|
946 done |
|
947 |
|
948 lemma POSIXs_ALT1a: |
|
949 assumes "POSIXs (Right v2) (ALT r1 r2) s" |
|
950 shows "POSIXs v2 r2 s" |
|
951 using assms |
|
952 unfolding POSIXs_def |
|
953 apply(auto) |
|
954 apply(erule Prfs.cases) |
|
955 apply(simp_all)[5] |
|
956 apply(drule_tac x="Right v'" in spec) |
|
957 apply(drule mp) |
|
958 apply(rule Prfs.intros) |
|
959 apply(auto) |
|
960 apply(erule ValOrd2.cases) |
|
961 apply(simp_all) |
|
962 done |
|
963 |
|
964 lemma POSIX_ALT1b: |
|
965 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
966 shows "(\<forall>v'. (\<turnstile> v' : r2 \<and> flat v' = flat v2) \<longrightarrow> v2 \<succ>r2 v')" |
|
967 using assms |
|
968 apply(drule_tac POSIX_ALT1a) |
|
969 unfolding POSIX_def |
|
970 apply(auto) |
|
971 done |
|
972 |
|
973 lemma POSIXn_ALT1b: |
|
974 assumes "POSIXn (Right v2) (ALT r1 r2) n" |
|
975 shows "(\<forall>v'. (\<TTurnstile>n v' : r2 \<longrightarrow> v2 2\<succ> v'))" |
|
976 using assms |
|
977 apply(drule_tac POSIXn_ALT1a) |
|
978 unfolding POSIXn_def |
|
979 apply(auto) |
|
980 done |
|
981 |
|
982 lemma POSIXs_ALT1b: |
|
983 assumes "POSIXs (Right v2) (ALT r1 r2) s" |
|
984 shows "(\<forall>v'. (\<Turnstile>s v' : r2 \<longrightarrow> v2 2\<succ> v'))" |
|
985 using assms |
|
986 apply(drule_tac POSIXs_ALT1a) |
|
987 unfolding POSIXs_def |
|
988 apply(auto) |
|
989 done |
|
990 |
|
991 lemma POSIX_ALT_I1: |
|
992 assumes "POSIX v1 r1" |
|
993 shows "POSIX (Left v1) (ALT r1 r2)" |
|
994 using assms |
|
995 unfolding POSIX_def |
|
996 apply(auto) |
|
997 apply (metis Prf.intros(2)) |
|
998 apply(rotate_tac 2) |
|
999 apply(erule Prf.cases) |
|
1000 apply(simp_all)[5] |
|
1001 apply(auto) |
|
1002 apply(rule ValOrd.intros) |
|
1003 apply(auto) |
|
1004 apply(rule ValOrd.intros) |
|
1005 by simp |
|
1006 |
|
1007 lemma POSIXn_ALT_I1: |
|
1008 assumes "POSIXn v1 r1 n" |
|
1009 shows "POSIXn (Left v1) (ALT r1 r2) n" |
|
1010 using assms |
|
1011 unfolding POSIXn_def |
|
1012 apply(auto) |
|
1013 apply (metis Prfn.intros(2)) |
|
1014 apply(rotate_tac 2) |
|
1015 apply(erule Prfn.cases) |
|
1016 apply(simp_all)[5] |
|
1017 apply(auto) |
|
1018 apply(rule ValOrd2.intros) |
|
1019 apply(auto) |
|
1020 apply(rule ValOrd2.intros) |
|
1021 by (metis Prfn_flat order_refl) |
|
1022 |
|
1023 lemma POSIXs_ALT_I1: |
|
1024 assumes "POSIXs v1 r1 s" |
|
1025 shows "POSIXs (Left v1) (ALT r1 r2) s" |
|
1026 using assms |
|
1027 unfolding POSIXs_def |
|
1028 apply(auto) |
|
1029 apply (metis Prfs.intros(2)) |
|
1030 apply(rotate_tac 2) |
|
1031 apply(erule Prfs.cases) |
|
1032 apply(simp_all)[5] |
|
1033 apply(auto) |
|
1034 apply(rule ValOrd2.intros) |
|
1035 apply(auto) |
|
1036 apply(rule ValOrd2.intros) |
|
1037 by (metis Prfs_flat order_refl) |
|
1038 |
|
1039 lemma POSIX_ALT_I2: |
|
1040 assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')" |
|
1041 shows "POSIX (Right v2) (ALT r1 r2)" |
|
1042 using assms |
|
1043 unfolding POSIX_def |
|
1044 apply(auto) |
|
1045 apply (metis Prf.intros) |
|
1046 apply(rotate_tac 3) |
|
1047 apply(erule Prf.cases) |
|
1048 apply(simp_all)[5] |
|
1049 apply(auto) |
|
1050 apply(rule ValOrd.intros) |
|
1051 apply metis |
|
1052 done |
|
1053 |
|
1054 lemma POSIXs_ALT_I2: |
|
1055 assumes "POSIXs v2 r2 s" "\<forall>s' v'. \<Turnstile>s' v' : r1 \<longrightarrow> length s > length s'" |
|
1056 shows "POSIXs (Right v2) (ALT r1 r2) s" |
|
1057 using assms |
|
1058 unfolding POSIXs_def |
|
1059 apply(auto) |
|
1060 apply (metis Prfs.intros) |
|
1061 apply(rotate_tac 3) |
|
1062 apply(erule Prfs.cases) |
|
1063 apply(simp_all)[5] |
|
1064 apply(auto) |
|
1065 apply(rule ValOrd2.intros) |
|
1066 apply metis |
|
1067 done |
|
1068 |
|
1069 lemma |
|
1070 "\<lbrakk>POSIX (mkeps r2) r2; nullable r2; \<not> nullable r1\<rbrakk> |
|
1071 \<Longrightarrow> POSIX (Right (mkeps r2)) (ALT r1 r2)" |
|
1072 apply(auto simp add: POSIX_def) |
|
1073 apply(rule Prf.intros(3)) |
|
1074 apply(auto) |
|
1075 apply(rotate_tac 3) |
|
1076 apply(erule Prf.cases) |
|
1077 apply(simp_all)[5] |
|
1078 apply(simp add: mkeps_flat) |
|
1079 apply(auto)[1] |
|
1080 apply (metis Prf_flat_L nullable_correctness) |
|
1081 apply(rule ValOrd.intros) |
|
1082 apply(auto) |
|
1083 done |
|
1084 |
|
1085 lemma mkeps_POSIX: |
|
1086 assumes "nullable r" |
|
1087 shows "POSIX (mkeps r) r" |
|
1088 using assms |
|
1089 apply(induct r) |
|
1090 apply(auto)[1] |
|
1091 apply(simp add: POSIX_def) |
|
1092 apply(auto)[1] |
|
1093 apply (metis Prf.intros(4)) |
|
1094 apply(erule Prf.cases) |
|
1095 apply(simp_all)[5] |
|
1096 apply (metis ValOrd.intros) |
|
1097 apply(simp) |
|
1098 apply(auto)[1] |
|
1099 apply(simp add: POSIX_def) |
|
1100 apply(auto)[1] |
|
1101 apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) |
|
1102 apply(rotate_tac 6) |
|
1103 apply(erule Prf.cases) |
|
1104 apply(simp_all)[5] |
|
1105 apply (simp add: mkeps_flat) |
|
1106 apply(case_tac "mkeps r1a = v1") |
|
1107 apply(simp) |
|
1108 apply (metis ValOrd.intros(1)) |
|
1109 apply (rule ValOrd.intros(2)) |
|
1110 apply metis |
|
1111 apply(simp) |
|
1112 (* ALT case *) |
|
1113 thm mkeps.simps |
|
1114 apply(simp) |
|
1115 apply(erule disjE) |
|
1116 apply(simp) |
|
1117 apply (metis POSIX_ALT_I1) |
|
1118 (* *) |
|
1119 apply(auto)[1] |
|
1120 thm POSIX_ALT_I1 |
|
1121 apply (metis POSIX_ALT_I1) |
|
1122 apply(simp (no_asm) add: POSIX_def) |
|
1123 apply(auto)[1] |
|
1124 apply(rule Prf.intros(3)) |
|
1125 apply(simp only: POSIX_def) |
|
1126 apply(rotate_tac 4) |
|
1127 apply(erule Prf.cases) |
|
1128 apply(simp_all)[5] |
|
1129 thm mkeps_flat |
|
1130 apply(simp add: mkeps_flat) |
|
1131 apply(auto)[1] |
|
1132 thm Prf_flat_L nullable_correctness |
|
1133 apply (metis Prf_flat_L nullable_correctness) |
|
1134 apply(rule ValOrd.intros) |
|
1135 apply(subst (asm) POSIX_def) |
|
1136 apply(clarify) |
|
1137 apply(drule_tac x="v2" in spec) |
|
1138 by simp |
|
1139 |
|
1140 |
|
1141 section {* Derivatives *} |
|
1142 |
|
1143 fun |
|
1144 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
1145 where |
|
1146 "der c (NULL) = NULL" |
|
1147 | "der c (EMPTY) = NULL" |
|
1148 | "der c (CHAR c') = (if c = c' then EMPTY else NULL)" |
|
1149 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
1150 | "der c (SEQ r1 r2) = |
|
1151 (if nullable r1 |
|
1152 then ALT (SEQ (der c r1) r2) (der c r2) |
|
1153 else SEQ (der c r1) r2)" |
|
1154 |
|
1155 fun |
|
1156 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
1157 where |
|
1158 "ders [] r = r" |
|
1159 | "ders (c # s) r = ders s (der c r)" |
|
1160 |
|
1161 fun |
|
1162 red :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
1163 where |
|
1164 "red c (NULL) = NULL" |
|
1165 | "red c (EMPTY) = CHAR c" |
|
1166 | "red c (CHAR c') = SEQ (CHAR c) (CHAR c')" |
|
1167 | "red c (ALT r1 r2) = ALT (red c r1) (red c r2)" |
|
1168 | "red c (SEQ r1 r2) = |
|
1169 (if nullable r1 |
|
1170 then ALT (SEQ (red c r1) r2) (red c r2) |
|
1171 else SEQ (red c r1) r2)" |
|
1172 |
|
1173 lemma L_der: |
|
1174 shows "L (der c r) = {s. c#s \<in> L r}" |
|
1175 apply(induct r) |
|
1176 apply(simp_all) |
|
1177 apply(simp add: Sequ_def) |
|
1178 apply(auto)[1] |
|
1179 apply (metis append_Cons) |
|
1180 apply (metis append_Nil nullable_correctness) |
|
1181 apply (metis append_eq_Cons_conv) |
|
1182 apply (metis append_Cons) |
|
1183 apply (metis Cons_eq_append_conv nullable_correctness) |
|
1184 apply(auto) |
|
1185 done |
|
1186 |
|
1187 lemma L_red: |
|
1188 shows "L (red c r) = {c#s | s. s \<in> L r}" |
|
1189 apply(induct r) |
|
1190 apply(simp_all) |
|
1191 apply(simp add: Sequ_def) |
|
1192 apply(simp add: Sequ_def) |
|
1193 apply(auto)[1] |
|
1194 apply (metis append_Nil nullable_correctness) |
|
1195 apply (metis append_Cons) |
|
1196 apply (metis append_Cons) |
|
1197 apply(auto) |
|
1198 done |
|
1199 |
|
1200 lemma L_red_der: |
|
1201 "L(red c (der c r)) = {c#s | s. c#s \<in> L r}" |
|
1202 apply(simp add: L_red) |
|
1203 apply(simp add: L_der) |
|
1204 done |
|
1205 |
|
1206 lemma L_der_red: |
|
1207 "L(der c (red c r)) = L r" |
|
1208 apply(simp add: L_der) |
|
1209 apply(simp add: L_red) |
|
1210 done |
|
1211 |
|
1212 section {* Injection function *} |
|
1213 |
|
1214 fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
1215 where |
|
1216 "injval (EMPTY) c Void = Char c" |
|
1217 | "injval (CHAR d) c Void = Char d" |
|
1218 | "injval (CHAR d) c (Char c') = Seq (Char d) (Char c')" |
|
1219 | "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" |
|
1220 | "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" |
|
1221 | "injval (SEQ r1 r2) c (Char c') = Seq (Char c) (Char c')" |
|
1222 | "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" |
|
1223 | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" |
|
1224 | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" |
|
1225 |
|
1226 |
|
1227 section {* Projection function *} |
|
1228 |
|
1229 fun projval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
1230 where |
|
1231 "projval (CHAR d) c _ = Void" |
|
1232 | "projval (ALT r1 r2) c (Left v1) = Left (projval r1 c v1)" |
|
1233 | "projval (ALT r1 r2) c (Right v2) = Right (projval r2 c v2)" |
|
1234 | "projval (SEQ r1 r2) c (Seq v1 v2) = |
|
1235 (if flat v1 = [] then Right(projval r2 c v2) |
|
1236 else if nullable r1 then Left (Seq (projval r1 c v1) v2) |
|
1237 else Seq (projval r1 c v1) v2)" |
|
1238 |
|
1239 text {* |
|
1240 Injection value is related to r |
|
1241 *} |
|
1242 |
|
1243 lemma v3: |
|
1244 assumes "\<turnstile> v : der c r" shows "\<turnstile> (injval r c v) : r" |
|
1245 using assms |
|
1246 apply(induct arbitrary: v rule: der.induct) |
|
1247 apply(simp) |
|
1248 apply(erule Prf.cases) |
|
1249 apply(simp_all)[5] |
|
1250 apply(simp) |
|
1251 apply(erule Prf.cases) |
|
1252 apply(simp_all)[5] |
|
1253 apply(case_tac "c = c'") |
|
1254 apply(simp) |
|
1255 apply(erule Prf.cases) |
|
1256 apply(simp_all)[5] |
|
1257 apply (metis Prf.intros(5)) |
|
1258 apply(simp) |
|
1259 apply(erule Prf.cases) |
|
1260 apply(simp_all)[5] |
|
1261 apply(simp) |
|
1262 apply(erule Prf.cases) |
|
1263 apply(simp_all)[5] |
|
1264 apply (metis Prf.intros(2)) |
|
1265 apply (metis Prf.intros(3)) |
|
1266 apply(simp) |
|
1267 apply(case_tac "nullable r1") |
|
1268 apply(simp) |
|
1269 apply(erule Prf.cases) |
|
1270 apply(simp_all)[5] |
|
1271 apply(auto)[1] |
|
1272 apply(erule Prf.cases) |
|
1273 apply(simp_all)[5] |
|
1274 apply(auto)[1] |
|
1275 apply (metis Prf.intros(1)) |
|
1276 apply(auto)[1] |
|
1277 apply (metis Prf.intros(1) mkeps_nullable) |
|
1278 apply(simp) |
|
1279 apply(erule Prf.cases) |
|
1280 apply(simp_all)[5] |
|
1281 apply(auto)[1] |
|
1282 apply(rule Prf.intros) |
|
1283 apply(auto)[2] |
|
1284 done |
|
1285 |
|
1286 lemma v3_red: |
|
1287 assumes "\<turnstile> v : r" shows "\<turnstile> (injval (red c r) c v) : (red c r)" |
|
1288 using assms |
|
1289 apply(induct c r arbitrary: v rule: red.induct) |
|
1290 apply(simp) |
|
1291 apply(erule Prf.cases) |
|
1292 apply(simp_all)[5] |
|
1293 apply(simp) |
|
1294 apply(erule Prf.cases) |
|
1295 apply(simp_all)[5] |
|
1296 apply (metis Prf.intros(5)) |
|
1297 apply(erule Prf.cases) |
|
1298 apply(simp_all)[5] |
|
1299 apply (metis Prf.intros(1) Prf.intros(5)) |
|
1300 apply(erule Prf.cases) |
|
1301 apply(simp_all)[5] |
|
1302 apply (metis Prf.intros(2)) |
|
1303 apply (metis Prf.intros(3)) |
|
1304 apply(erule Prf.cases) |
|
1305 apply(simp_all)[5] |
|
1306 apply(auto) |
|
1307 prefer 2 |
|
1308 apply (metis Prf.intros(1)) |
|
1309 oops |
|
1310 |
|
1311 lemma v3s: |
|
1312 assumes "\<Turnstile>s v : der c r" shows "\<Turnstile>(c#s) (injval r c v) : r" |
|
1313 using assms |
|
1314 apply(induct arbitrary: s v rule: der.induct) |
|
1315 apply(simp) |
|
1316 apply(erule Prfs.cases) |
|
1317 apply(simp_all)[5] |
|
1318 apply(simp) |
|
1319 apply(erule Prfs.cases) |
|
1320 apply(simp_all)[5] |
|
1321 apply(case_tac "c = c'") |
|
1322 apply(simp) |
|
1323 apply(erule Prfs.cases) |
|
1324 apply(simp_all)[5] |
|
1325 apply (metis Prfs.intros(5)) |
|
1326 apply(simp) |
|
1327 apply(erule Prfs.cases) |
|
1328 apply(simp_all)[5] |
|
1329 apply(simp) |
|
1330 apply(erule Prfs.cases) |
|
1331 apply(simp_all)[5] |
|
1332 apply (metis Prfs.intros(2)) |
|
1333 apply (metis Prfs.intros(3)) |
|
1334 apply(simp) |
|
1335 apply(case_tac "nullable r1") |
|
1336 apply(simp) |
|
1337 apply(erule Prfs.cases) |
|
1338 apply(simp_all)[5] |
|
1339 apply(auto)[1] |
|
1340 apply(erule Prfs.cases) |
|
1341 apply(simp_all)[5] |
|
1342 apply(auto)[1] |
|
1343 apply (metis Prfs.intros(1) append_Cons) |
|
1344 apply(auto)[1] |
|
1345 apply (metis Prfs.intros(1) append_Nil mkeps_nullable_s) |
|
1346 apply(simp) |
|
1347 apply(erule Prfs.cases) |
|
1348 apply(simp_all)[5] |
|
1349 apply(auto)[1] |
|
1350 by (metis Prfs.intros(1) append_Cons) |
|
1351 |
|
1352 lemma v3n: |
|
1353 assumes "\<TTurnstile>n v : der c r" shows "\<TTurnstile>(Suc n) (injval r c v) : r" |
|
1354 using assms |
|
1355 apply(induct arbitrary: n v rule: der.induct) |
|
1356 apply(simp) |
|
1357 apply(erule Prfn.cases) |
|
1358 apply(simp_all)[5] |
|
1359 apply(simp) |
|
1360 apply(erule Prfn.cases) |
|
1361 apply(simp_all)[5] |
|
1362 apply(case_tac "c = c'") |
|
1363 apply(simp) |
|
1364 apply(erule Prfn.cases) |
|
1365 apply(simp_all)[5] |
|
1366 apply (metis One_nat_def Prfn.intros(5)) |
|
1367 apply(simp) |
|
1368 apply(erule Prfn.cases) |
|
1369 apply(simp_all)[5] |
|
1370 apply(simp) |
|
1371 apply(erule Prfn.cases) |
|
1372 apply(simp_all)[5] |
|
1373 apply (metis Prfn.intros(2)) |
|
1374 apply (metis Prfn.intros(3)) |
|
1375 apply(simp) |
|
1376 apply(case_tac "nullable r1") |
|
1377 apply(simp) |
|
1378 apply(erule Prfn.cases) |
|
1379 apply(simp_all)[5] |
|
1380 apply(auto)[1] |
|
1381 apply(erule Prfn.cases) |
|
1382 apply(simp_all)[5] |
|
1383 apply(auto)[1] |
|
1384 apply (metis Prfn.intros(1) add.commute add_Suc_right) |
|
1385 apply(auto)[1] |
|
1386 apply (metis Prfn.intros(1) mkeps_nullable_n plus_nat.add_0) |
|
1387 apply(simp) |
|
1388 apply(erule Prfn.cases) |
|
1389 apply(simp_all)[5] |
|
1390 apply(auto)[1] |
|
1391 by (metis Prfn.intros(1) add_Suc) |
|
1392 |
|
1393 lemma v3_proj: |
|
1394 assumes "\<turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
1395 shows "\<turnstile> (projval r c v) : der c r" |
|
1396 using assms |
|
1397 apply(induct rule: Prf.induct) |
|
1398 prefer 4 |
|
1399 apply(simp) |
|
1400 prefer 4 |
|
1401 apply(simp) |
|
1402 apply (metis Prf.intros(4)) |
|
1403 prefer 2 |
|
1404 apply(simp) |
|
1405 apply (metis Prf.intros(2)) |
|
1406 prefer 2 |
|
1407 apply(simp) |
|
1408 apply (metis Prf.intros(3)) |
|
1409 apply(auto) |
|
1410 apply(rule Prf.intros) |
|
1411 apply(simp) |
|
1412 apply (metis Prf_flat_L nullable_correctness) |
|
1413 apply(rule Prf.intros) |
|
1414 apply(rule Prf.intros) |
|
1415 apply (metis Cons_eq_append_conv) |
|
1416 apply(simp) |
|
1417 apply(rule Prf.intros) |
|
1418 apply (metis Cons_eq_append_conv) |
|
1419 apply(simp) |
|
1420 done |
|
1421 |
|
1422 lemma v3s_proj: |
|
1423 assumes "\<Turnstile>(c#s) v : r" |
|
1424 shows "\<Turnstile>s (projval r c v) : der c r" |
|
1425 using assms |
|
1426 apply(induct s\<equiv>"c#s" v r arbitrary: s rule: Prfs.induct) |
|
1427 prefer 4 |
|
1428 apply(simp) |
|
1429 apply (metis Prfs.intros(4)) |
|
1430 prefer 2 |
|
1431 apply(simp) |
|
1432 apply (metis Prfs.intros(2)) |
|
1433 prefer 2 |
|
1434 apply(simp) |
|
1435 apply (metis Prfs.intros(3)) |
|
1436 apply(auto) |
|
1437 apply(rule Prfs.intros) |
|
1438 apply (metis Prfs_flat append_Nil) |
|
1439 prefer 2 |
|
1440 apply(rule Prfs.intros) |
|
1441 apply(subst (asm) append_eq_Cons_conv) |
|
1442 apply(auto)[1] |
|
1443 apply (metis Prfs_flat) |
|
1444 apply(rule Prfs.intros) |
|
1445 apply metis |
|
1446 apply(simp) |
|
1447 apply(subst (asm) append_eq_Cons_conv) |
|
1448 apply(auto)[1] |
|
1449 apply (metis Prf_flat_L Prfs_Prf nullable_correctness) |
|
1450 apply (metis Prfs_flat list.distinct(1)) |
|
1451 apply(subst (asm) append_eq_Cons_conv) |
|
1452 apply(auto)[1] |
|
1453 apply (metis Prfs_flat) |
|
1454 by (metis Prfs.intros(1)) |
|
1455 |
|
1456 text {* |
|
1457 The string behind the injection value is an added c |
|
1458 *} |
|
1459 |
|
1460 lemma v4s: |
|
1461 assumes "\<Turnstile>s v : der c r" shows "flat (injval r c v) = c # (flat v)" |
|
1462 using assms |
|
1463 apply(induct arbitrary: s v rule: der.induct) |
|
1464 apply(simp) |
|
1465 apply(erule Prfs.cases) |
|
1466 apply(simp_all)[5] |
|
1467 apply(simp) |
|
1468 apply(erule Prfs.cases) |
|
1469 apply(simp_all)[5] |
|
1470 apply(simp) |
|
1471 apply(case_tac "c = c'") |
|
1472 apply(simp) |
|
1473 apply(auto)[1] |
|
1474 apply(erule Prfs.cases) |
|
1475 apply(simp_all)[5] |
|
1476 apply(simp) |
|
1477 apply(erule Prfs.cases) |
|
1478 apply(simp_all)[5] |
|
1479 apply(simp) |
|
1480 apply(erule Prfs.cases) |
|
1481 apply(simp_all)[5] |
|
1482 apply(simp) |
|
1483 apply(case_tac "nullable r1") |
|
1484 apply(simp) |
|
1485 apply(erule Prfs.cases) |
|
1486 apply(simp_all (no_asm_use))[5] |
|
1487 apply(auto)[1] |
|
1488 apply(erule Prfs.cases) |
|
1489 apply(simp_all)[5] |
|
1490 apply(clarify) |
|
1491 apply(simp only: injval.simps flat.simps) |
|
1492 apply(auto)[1] |
|
1493 apply (metis mkeps_flat) |
|
1494 apply(simp) |
|
1495 apply(erule Prfs.cases) |
|
1496 apply(simp_all)[5] |
|
1497 done |
|
1498 |
|
1499 lemma v4: |
|
1500 assumes "\<turnstile> v : der c r" shows "flat (injval r c v) = c # (flat v)" |
|
1501 using assms |
|
1502 apply(induct arbitrary: v rule: der.induct) |
|
1503 apply(simp) |
|
1504 apply(erule Prf.cases) |
|
1505 apply(simp_all)[5] |
|
1506 apply(simp) |
|
1507 apply(erule Prf.cases) |
|
1508 apply(simp_all)[5] |
|
1509 apply(simp) |
|
1510 apply(case_tac "c = c'") |
|
1511 apply(simp) |
|
1512 apply(auto)[1] |
|
1513 apply(erule Prf.cases) |
|
1514 apply(simp_all)[5] |
|
1515 apply(simp) |
|
1516 apply(erule Prf.cases) |
|
1517 apply(simp_all)[5] |
|
1518 apply(simp) |
|
1519 apply(erule Prf.cases) |
|
1520 apply(simp_all)[5] |
|
1521 apply(simp) |
|
1522 apply(case_tac "nullable r1") |
|
1523 apply(simp) |
|
1524 apply(erule Prf.cases) |
|
1525 apply(simp_all (no_asm_use))[5] |
|
1526 apply(auto)[1] |
|
1527 apply(erule Prf.cases) |
|
1528 apply(simp_all)[5] |
|
1529 apply(clarify) |
|
1530 apply(simp only: injval.simps flat.simps) |
|
1531 apply(auto)[1] |
|
1532 apply (metis mkeps_flat) |
|
1533 apply(simp) |
|
1534 apply(erule Prf.cases) |
|
1535 apply(simp_all)[5] |
|
1536 done |
|
1537 |
|
1538 lemma v4_proj: |
|
1539 assumes "\<turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
1540 shows "c # flat (projval r c v) = flat v" |
|
1541 using assms |
|
1542 apply(induct rule: Prf.induct) |
|
1543 prefer 4 |
|
1544 apply(simp) |
|
1545 prefer 4 |
|
1546 apply(simp) |
|
1547 prefer 2 |
|
1548 apply(simp) |
|
1549 prefer 2 |
|
1550 apply(simp) |
|
1551 apply(auto) |
|
1552 by (metis Cons_eq_append_conv) |
|
1553 |
|
1554 lemma v4_proj2: |
|
1555 assumes "\<turnstile> v : r" and "(flat v) = c # s" |
|
1556 shows "flat (projval r c v) = s" |
|
1557 using assms |
|
1558 by (metis list.inject v4_proj) |
|
1559 |
|
1560 lemma injval_inj: "inj_on (injval r c) {v. \<turnstile> v : der c r}" |
|
1561 apply(induct c r rule: der.induct) |
|
1562 unfolding inj_on_def |
|
1563 apply(auto)[1] |
|
1564 apply(erule Prf.cases) |
|
1565 apply(simp_all)[5] |
|
1566 apply(auto)[1] |
|
1567 apply(erule Prf.cases) |
|
1568 apply(simp_all)[5] |
|
1569 apply(auto)[1] |
|
1570 apply(erule Prf.cases) |
|
1571 apply(simp_all)[5] |
|
1572 apply(erule Prf.cases) |
|
1573 apply(simp_all)[5] |
|
1574 apply(erule Prf.cases) |
|
1575 apply(simp_all)[5] |
|
1576 apply(auto)[1] |
|
1577 apply(erule Prf.cases) |
|
1578 apply(simp_all)[5] |
|
1579 apply(erule Prf.cases) |
|
1580 apply(simp_all)[5] |
|
1581 apply(erule Prf.cases) |
|
1582 apply(simp_all)[5] |
|
1583 apply(auto)[1] |
|
1584 apply(erule Prf.cases) |
|
1585 apply(simp_all)[5] |
|
1586 apply(erule Prf.cases) |
|
1587 apply(simp_all)[5] |
|
1588 apply(clarify) |
|
1589 apply(erule Prf.cases) |
|
1590 apply(simp_all)[5] |
|
1591 apply(erule Prf.cases) |
|
1592 apply(simp_all)[5] |
|
1593 apply(clarify) |
|
1594 apply(erule Prf.cases) |
|
1595 apply(simp_all)[5] |
|
1596 apply(clarify) |
|
1597 apply (metis list.distinct(1) mkeps_flat v4) |
|
1598 apply(erule Prf.cases) |
|
1599 apply(simp_all)[5] |
|
1600 apply(clarify) |
|
1601 apply(rotate_tac 6) |
|
1602 apply(erule Prf.cases) |
|
1603 apply(simp_all)[5] |
|
1604 apply (metis list.distinct(1) mkeps_flat v4) |
|
1605 apply(erule Prf.cases) |
|
1606 apply(simp_all)[5] |
|
1607 apply(erule Prf.cases) |
|
1608 apply(simp_all)[5] |
|
1609 done |
|
1610 |
|
1611 lemma Values_nullable: |
|
1612 assumes "nullable r1" |
|
1613 shows "mkeps r1 \<in> Values r1 s" |
|
1614 using assms |
|
1615 apply(induct r1 arbitrary: s) |
|
1616 apply(simp_all) |
|
1617 apply(simp add: Values_recs) |
|
1618 apply(simp add: Values_recs) |
|
1619 apply(simp add: Values_recs) |
|
1620 apply(auto)[1] |
|
1621 done |
|
1622 |
|
1623 lemma Values_injval: |
|
1624 assumes "v \<in> Values (der c r) s" |
|
1625 shows "injval r c v \<in> Values r (c#s)" |
|
1626 using assms |
|
1627 apply(induct c r arbitrary: v s rule: der.induct) |
|
1628 apply(simp add: Values_recs) |
|
1629 apply(simp add: Values_recs) |
|
1630 apply(case_tac "c = c'") |
|
1631 apply(simp) |
|
1632 apply(simp add: Values_recs) |
|
1633 apply(simp add: prefix_def) |
|
1634 apply(simp) |
|
1635 apply(simp add: Values_recs) |
|
1636 apply(simp) |
|
1637 apply(simp add: Values_recs) |
|
1638 apply(auto)[1] |
|
1639 apply(case_tac "nullable r1") |
|
1640 apply(simp) |
|
1641 apply(simp add: Values_recs) |
|
1642 apply(auto)[1] |
|
1643 apply(simp add: rest_def) |
|
1644 apply(subst v4) |
|
1645 apply(simp add: Values_def) |
|
1646 apply(simp add: Values_def) |
|
1647 apply(rule Values_nullable) |
|
1648 apply(assumption) |
|
1649 apply(simp add: rest_def) |
|
1650 apply(subst mkeps_flat) |
|
1651 apply(assumption) |
|
1652 apply(simp) |
|
1653 apply(simp) |
|
1654 apply(simp add: Values_recs) |
|
1655 apply(auto)[1] |
|
1656 apply(simp add: rest_def) |
|
1657 apply(subst v4) |
|
1658 apply(simp add: Values_def) |
|
1659 apply(simp add: Values_def) |
|
1660 done |
|
1661 |
|
1662 lemma Values_projval: |
|
1663 assumes "v \<in> Values r (c#s)" "\<exists>s. flat v = c # s" |
|
1664 shows "projval r c v \<in> Values (der c r) s" |
|
1665 using assms |
|
1666 apply(induct r arbitrary: v s c rule: rexp.induct) |
|
1667 apply(simp add: Values_recs) |
|
1668 apply(simp add: Values_recs) |
|
1669 apply(case_tac "c = x") |
|
1670 apply(simp) |
|
1671 apply(simp add: Values_recs) |
|
1672 apply(simp) |
|
1673 apply(simp add: Values_recs) |
|
1674 apply(simp add: prefix_def) |
|
1675 apply(case_tac "nullable x1") |
|
1676 apply(simp) |
|
1677 apply(simp add: Values_recs) |
|
1678 apply(auto)[1] |
|
1679 apply(simp add: rest_def) |
|
1680 apply (metis hd_Cons_tl hd_append2 list.sel(1)) |
|
1681 apply(simp add: rest_def) |
|
1682 apply(simp add: append_eq_Cons_conv) |
|
1683 apply(auto)[1] |
|
1684 apply(subst v4_proj2) |
|
1685 apply(simp add: Values_def) |
|
1686 apply(assumption) |
|
1687 apply(simp) |
|
1688 apply(simp) |
|
1689 apply(simp add: Values_recs) |
|
1690 apply(auto)[1] |
|
1691 apply(auto simp add: Values_def not_nullable_flat)[1] |
|
1692 apply(simp add: append_eq_Cons_conv) |
|
1693 apply(auto)[1] |
|
1694 apply(simp add: append_eq_Cons_conv) |
|
1695 apply(auto)[1] |
|
1696 apply(simp add: rest_def) |
|
1697 apply(subst v4_proj2) |
|
1698 apply(simp add: Values_def) |
|
1699 apply(assumption) |
|
1700 apply(simp) |
|
1701 apply(simp add: Values_recs) |
|
1702 apply(auto)[1] |
|
1703 done |
|
1704 |
|
1705 |
|
1706 definition "MValue v r s \<equiv> (v \<in> Values r s \<and> (\<forall>v' \<in> Values r s. v 2\<succ> v'))" |
|
1707 |
|
1708 lemma |
|
1709 assumes "MValue v1 r1 s" |
|
1710 shows "MValue (Seq v1 v2) (SEQ r1 r2) s |
|
1711 |
|
1712 |
|
1713 lemma MValue_SEQE: |
|
1714 assumes "MValue v (SEQ r1 r2) s" |
|
1715 shows "(\<exists>v1 v2. MValue v1 r1 s \<and> MValue v2 r2 (rest v1 s) \<and> v = Seq v1 v2)" |
|
1716 using assms |
|
1717 apply(simp add: MValue_def) |
|
1718 apply(simp add: Values_recs) |
|
1719 apply(erule conjE) |
|
1720 apply(erule exE)+ |
|
1721 apply(erule conjE)+ |
|
1722 apply(simp) |
|
1723 apply(auto) |
|
1724 apply(drule_tac x="Seq x v2" in spec) |
|
1725 apply(drule mp) |
|
1726 apply(rule_tac x="x" in exI) |
|
1727 apply(rule_tac x="v2" in exI) |
|
1728 apply(simp) |
|
1729 oops |
|
1730 |
|
1731 |
|
1732 lemma MValue_ALTE: |
|
1733 assumes "MValue v (ALT r1 r2) s" |
|
1734 shows "(\<exists>vl. v = Left vl \<and> MValue vl r1 s \<and> (\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl))) \<or> |
|
1735 (\<exists>vr. v = Right vr \<and> MValue vr r2 s \<and> (\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)))" |
|
1736 using assms |
|
1737 apply(simp add: MValue_def) |
|
1738 apply(simp add: Values_recs) |
|
1739 apply(auto) |
|
1740 apply(drule_tac x="Left x" in bspec) |
|
1741 apply(simp) |
|
1742 apply(erule ValOrd2.cases) |
|
1743 apply(simp_all) |
|
1744 apply(drule_tac x="Right vr" in bspec) |
|
1745 apply(simp) |
|
1746 apply(erule ValOrd2.cases) |
|
1747 apply(simp_all) |
|
1748 apply(drule_tac x="Right x" in bspec) |
|
1749 apply(simp) |
|
1750 apply(erule ValOrd2.cases) |
|
1751 apply(simp_all) |
|
1752 apply(drule_tac x="Left vl" in bspec) |
|
1753 apply(simp) |
|
1754 apply(erule ValOrd2.cases) |
|
1755 apply(simp_all) |
|
1756 done |
|
1757 |
|
1758 lemma MValue_ALTI1: |
|
1759 assumes "MValue vl r1 s" "\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl)" |
|
1760 shows "MValue (Left vl) (ALT r1 r2) s" |
|
1761 using assms |
|
1762 apply(simp add: MValue_def) |
|
1763 apply(simp add: Values_recs) |
|
1764 apply(auto) |
|
1765 apply(rule ValOrd2.intros) |
|
1766 apply metis |
|
1767 apply(rule ValOrd2.intros) |
|
1768 apply metis |
|
1769 done |
|
1770 |
|
1771 lemma MValue_ALTI2: |
|
1772 assumes "MValue vr r2 s" "\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)" |
|
1773 shows "MValue (Right vr) (ALT r1 r2) s" |
|
1774 using assms |
|
1775 apply(simp add: MValue_def) |
|
1776 apply(simp add: Values_recs) |
|
1777 apply(auto) |
|
1778 apply(rule ValOrd2.intros) |
|
1779 apply metis |
|
1780 apply(rule ValOrd2.intros) |
|
1781 apply metis |
|
1782 done |
|
1783 |
|
1784 lemma MValue_injval: |
|
1785 assumes "MValue v (der c r) s" |
|
1786 shows "MValue (injval r c v) r (c#s)" |
|
1787 using assms |
|
1788 apply(induct c r arbitrary: v s rule: der.induct) |
|
1789 apply(simp add: MValue_def) |
|
1790 apply(simp add: Values_recs) |
|
1791 apply(simp add: MValue_def) |
|
1792 apply(simp add: Values_recs) |
|
1793 apply(case_tac "c = c'") |
|
1794 apply(simp) |
|
1795 apply(simp add: MValue_def) |
|
1796 apply(simp add: Values_recs) |
|
1797 apply(simp add: prefix_def) |
|
1798 apply(rule ValOrd2.intros) |
|
1799 apply(simp) |
|
1800 apply(simp add: MValue_def) |
|
1801 apply(simp add: Values_recs) |
|
1802 apply(simp) |
|
1803 apply(drule MValue_ALTE) |
|
1804 apply(erule disjE) |
|
1805 apply(auto)[1] |
|
1806 apply(rule MValue_ALTI1) |
|
1807 apply(simp) |
|
1808 apply(subst v4) |
|
1809 apply(simp add: MValue_def Values_def) |
|
1810 apply(rule ballI) |
|
1811 apply(simp) |
|
1812 apply(case_tac "flat vr = []") |
|
1813 apply(simp) |
|
1814 apply(drule_tac x="projval r2 c vr" in bspec) |
|
1815 apply(rule Values_projval) |
|
1816 apply(simp) |
|
1817 apply(simp add: Values_def prefix_def) |
|
1818 apply(auto)[1] |
|
1819 apply(simp add: append_eq_Cons_conv) |
|
1820 apply(auto)[1] |
|
1821 apply(simp add: Values_def prefix_def) |
|
1822 apply(auto)[1] |
|
1823 apply(simp add: append_eq_Cons_conv) |
|
1824 apply(auto)[1] |
|
1825 apply(subst (asm) v4_proj2) |
|
1826 apply(assumption) |
|
1827 apply(assumption) |
|
1828 apply(simp) |
|
1829 apply(auto)[1] |
|
1830 apply(rule MValue_ALTI2) |
|
1831 apply(simp) |
|
1832 apply(subst v4) |
|
1833 apply(simp add: MValue_def Values_def) |
|
1834 apply(rule ballI) |
|
1835 apply(simp) |
|
1836 apply(case_tac "flat vl = []") |
|
1837 apply(simp) |
|
1838 apply(drule_tac x="projval r1 c vl" in bspec) |
|
1839 apply(rule Values_projval) |
|
1840 apply(simp) |
|
1841 apply(simp add: Values_def prefix_def) |
|
1842 apply(auto)[1] |
|
1843 apply(simp add: append_eq_Cons_conv) |
|
1844 apply(auto)[1] |
|
1845 apply(simp add: Values_def prefix_def) |
|
1846 apply(auto)[1] |
|
1847 apply(simp add: append_eq_Cons_conv) |
|
1848 apply(auto)[1] |
|
1849 apply(subst (asm) v4_proj2) |
|
1850 apply(simp add: MValue_def Values_def) |
|
1851 apply(assumption) |
|
1852 apply(assumption) |
|
1853 apply(case_tac "nullable r1") |
|
1854 defer |
|
1855 apply(simp) |
|
1856 apply(frule MValue_SEQE) |
|
1857 apply(auto)[1] |
|
1858 |
|
1859 |
|
1860 apply(simp add: MValue_def) |
|
1861 apply(simp add: Values_recs) |
|
1862 |
|
1863 lemma nullable_red: |
|
1864 "\<not>nullable (red c r)" |
|
1865 apply(induct r) |
|
1866 apply(auto) |
|
1867 done |
|
1868 |
|
1869 lemma twq: |
|
1870 assumes "\<turnstile> v : r" |
|
1871 shows "\<turnstile> injval r c v : red c r" |
|
1872 using assms |
|
1873 apply(induct) |
|
1874 apply(auto) |
|
1875 oops |
|
1876 |
|
1877 lemma injval_inj_red: "inj_on (injval (red c r) c) {v. \<turnstile> v : r}" |
|
1878 using injval_inj |
|
1879 apply(auto simp add: inj_on_def) |
|
1880 apply(drule_tac x="red c r" in meta_spec) |
|
1881 apply(drule_tac x="c" in meta_spec) |
|
1882 apply(drule_tac x="x" in spec) |
|
1883 apply(drule mp) |
|
1884 oops |
|
1885 |
|
1886 lemma |
|
1887 assumes "POSIXs v (der c r) s" |
|
1888 shows "POSIXs (injval r c v) r (c # s)" |
|
1889 using assms |
|
1890 apply(induct c r arbitrary: v s rule: der.induct) |
|
1891 apply(auto simp add: POSIXs_def)[1] |
|
1892 apply(erule Prfs.cases) |
|
1893 apply(simp_all)[5] |
|
1894 apply(erule Prfs.cases) |
|
1895 apply(simp_all)[5] |
|
1896 apply(auto simp add: POSIXs_def)[1] |
|
1897 apply(erule Prfs.cases) |
|
1898 apply(simp_all)[5] |
|
1899 apply(erule Prfs.cases) |
|
1900 apply(simp_all)[5] |
|
1901 apply(case_tac "c = c'") |
|
1902 apply(auto simp add: POSIXs_def)[1] |
|
1903 apply(erule Prfs.cases) |
|
1904 apply(simp_all)[5] |
|
1905 apply (metis Prfs.intros(5)) |
|
1906 apply(erule Prfs.cases) |
|
1907 apply(simp_all)[5] |
|
1908 apply(erule Prfs.cases) |
|
1909 apply(simp_all)[5] |
|
1910 apply (metis ValOrd2.intros(8)) |
|
1911 apply(auto simp add: POSIXs_def)[1] |
|
1912 apply(erule Prfs.cases) |
|
1913 apply(simp_all)[5] |
|
1914 apply(erule Prfs.cases) |
|
1915 apply(simp_all)[5] |
|
1916 apply(frule Prfs_POSIX) |
|
1917 apply(drule conjunct1) |
|
1918 apply(erule Prfs.cases) |
|
1919 apply(simp_all)[5] |
|
1920 apply(rule POSIXs_ALT_I1) |
|
1921 apply (metis POSIXs_ALT2) |
|
1922 apply(rule POSIXs_ALT_I2) |
|
1923 apply (metis POSIXs_ALT1a) |
|
1924 apply(frule POSIXs_ALT1b) |
|
1925 apply(auto) |
|
1926 apply(frule POSIXs_ALT1a) |
|
1927 (* HERE *) |
|
1928 oops |
|
1929 |
|
1930 lemma t: "(c#xs = c#ys) \<Longrightarrow> xs = ys" |
|
1931 by (metis list.sel(3)) |
|
1932 |
|
1933 lemma t2: "(xs = ys) \<Longrightarrow> (c#xs) = (c#ys)" |
|
1934 by (metis) |
|
1935 |
|
1936 lemma "\<not>(nullable r) \<Longrightarrow> \<not>(\<exists>v. \<turnstile> v : r \<and> flat v = [])" |
|
1937 by (metis Prf_flat_L nullable_correctness) |
|
1938 |
|
1939 |
|
1940 lemma LeftRight: |
|
1941 assumes "(Left v1) \<succ>(der c (ALT r1 r2)) (Right v2)" |
|
1942 and "\<turnstile> v1 : der c r1" "\<turnstile> v2 : der c r2" |
|
1943 shows "(injval (ALT r1 r2) c (Left v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Right v2))" |
|
1944 using assms |
|
1945 apply(simp) |
|
1946 apply(erule ValOrd.cases) |
|
1947 apply(simp_all)[8] |
|
1948 apply(rule ValOrd.intros) |
|
1949 apply(clarify) |
|
1950 apply(subst v4) |
|
1951 apply(simp) |
|
1952 apply(subst v4) |
|
1953 apply(simp) |
|
1954 apply(simp) |
|
1955 done |
|
1956 |
|
1957 lemma RightLeft: |
|
1958 assumes "(Right v1) \<succ>(der c (ALT r1 r2)) (Left v2)" |
|
1959 and "\<turnstile> v1 : der c r2" "\<turnstile> v2 : der c r1" |
|
1960 shows "(injval (ALT r1 r2) c (Right v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Left v2))" |
|
1961 using assms |
|
1962 apply(simp) |
|
1963 apply(erule ValOrd.cases) |
|
1964 apply(simp_all)[8] |
|
1965 apply(rule ValOrd.intros) |
|
1966 apply(clarify) |
|
1967 apply(subst v4) |
|
1968 apply(simp) |
|
1969 apply(subst v4) |
|
1970 apply(simp) |
|
1971 apply(simp) |
|
1972 done |
|
1973 |
|
1974 lemma h: |
|
1975 assumes "nullable r1" "\<turnstile> v1 : der c r1" |
|
1976 shows "injval r1 c v1 \<succ>r1 mkeps r1" |
|
1977 using assms |
|
1978 apply(induct r1 arbitrary: v1 rule: der.induct) |
|
1979 apply(simp) |
|
1980 apply(simp) |
|
1981 apply(erule Prf.cases) |
|
1982 apply(simp_all)[5] |
|
1983 apply(simp) |
|
1984 apply(simp) |
|
1985 apply(erule Prf.cases) |
|
1986 apply(simp_all)[5] |
|
1987 apply(clarify) |
|
1988 apply(auto)[1] |
|
1989 apply (metis ValOrd.intros(6)) |
|
1990 apply (metis ValOrd.intros(6)) |
|
1991 apply (metis ValOrd.intros(3) le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral) |
|
1992 apply(auto)[1] |
|
1993 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
1994 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
1995 apply (metis ValOrd.intros(5)) |
|
1996 apply(simp) |
|
1997 apply(erule Prf.cases) |
|
1998 apply(simp_all)[5] |
|
1999 apply(clarify) |
|
2000 apply(erule Prf.cases) |
|
2001 apply(simp_all)[5] |
|
2002 apply(clarify) |
|
2003 apply (metis ValOrd.intros(2) list.distinct(1) mkeps_flat v4) |
|
2004 apply(clarify) |
|
2005 by (metis ValOrd.intros(1)) |
|
2006 |
|
2007 lemma LeftRightSeq: |
|
2008 assumes "(Left (Seq v1 v2)) \<succ>(der c (SEQ r1 r2)) (Right v3)" |
|
2009 and "nullable r1" "\<turnstile> v1 : der c r1" |
|
2010 shows "(injval (SEQ r1 r2) c (Seq v1 v2)) \<succ>(SEQ r1 r2) (injval (SEQ r1 r2) c (Right v2))" |
|
2011 using assms |
|
2012 apply(simp) |
|
2013 apply(erule ValOrd.cases) |
|
2014 apply(simp_all)[8] |
|
2015 apply(clarify) |
|
2016 apply(simp) |
|
2017 apply(rule ValOrd.intros(2)) |
|
2018 prefer 2 |
|
2019 apply (metis list.distinct(1) mkeps_flat v4) |
|
2020 by (metis h) |
|
2021 |
|
2022 lemma rr1: |
|
2023 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
2024 shows "flat v \<noteq> []" |
|
2025 using assms |
|
2026 by (metis Prf_flat_L nullable_correctness) |
|
2027 |
|
2028 section {* TESTTEST *} |
|
2029 |
|
2030 inductive ValOrdA :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ A\<succ>_ _" [100, 100, 100] 100) |
|
2031 where |
|
2032 "v2 A\<succ>r2 v2' \<Longrightarrow> (Seq v1 v2) A\<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
2033 | "v1 A\<succ>r1 v1' \<Longrightarrow> (Seq v1 v2) A\<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
2034 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) A\<succ>(ALT r1 r2) (Right v2)" |
|
2035 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) A\<succ>(ALT r1 r2) (Left v1)" |
|
2036 | "v2 A\<succ>r2 v2' \<Longrightarrow> (Right v2) A\<succ>(ALT r1 r2) (Right v2')" |
|
2037 | "v1 A\<succ>r1 v1' \<Longrightarrow> (Left v1) A\<succ>(ALT r1 r2) (Left v1')" |
|
2038 | "Void A\<succ>EMPTY Void" |
|
2039 | "(Char c) A\<succ>(CHAR c) (Char c)" |
|
2040 |
|
2041 inductive ValOrd4 :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ 4\<succ> _ _" [100, 100] 100) |
|
2042 where |
|
2043 (*"v1 4\<succ>(der c r) v1' \<Longrightarrow> (injval r c v1) 4\<succ>r (injval r c v1')" |
|
2044 | "\<lbrakk>v1 4\<succ>r v2; v2 4\<succ>r v3\<rbrakk> \<Longrightarrow> v1 4\<succ>r v3" |
|
2045 |*) |
|
2046 "\<lbrakk>v1 4\<succ>r1 v1'; flat v2 = flat v2'; \<turnstile> v2 : r2; \<turnstile> v2' : r2\<rbrakk> \<Longrightarrow> (Seq v1 v2) 4\<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
2047 | "\<lbrakk>v2 4\<succ>r2 v2'; \<turnstile> v1 : r1\<rbrakk> \<Longrightarrow> (Seq v1 v2) 4\<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
2048 | "\<lbrakk>flat v1 = flat v2; \<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> (Left v1) 4\<succ>(ALT r1 r2) (Right v2)" |
|
2049 | "v2 4\<succ>r2 v2' \<Longrightarrow> (Right v2) 4\<succ>(ALT r1 r2) (Right v2')" |
|
2050 | "v1 4\<succ>r1 v1' \<Longrightarrow> (Left v1) 4\<succ>(ALT r1 r2) (Left v1')" |
|
2051 | "Void 4\<succ>(EMPTY) Void" |
|
2052 | "(Char c) 4\<succ>(CHAR c) (Char c)" |
|
2053 |
|
2054 lemma ValOrd4_Prf: |
|
2055 assumes "v1 4\<succ>r v2" |
|
2056 shows "\<turnstile> v1 : r \<and> \<turnstile> v2 : r" |
|
2057 using assms |
|
2058 apply(induct v1 r v2) |
|
2059 apply(auto intro: Prf.intros) |
|
2060 done |
|
2061 |
|
2062 lemma ValOrd4_flat: |
|
2063 assumes "v1 4\<succ>r v2" |
|
2064 shows "flat v1 = flat v2" |
|
2065 using assms |
|
2066 apply(induct v1 r v2) |
|
2067 apply(simp_all) |
|
2068 done |
|
2069 |
|
2070 lemma ValOrd4_refl: |
|
2071 assumes "\<turnstile> v : r" |
|
2072 shows "v 4\<succ>r v" |
|
2073 using assms |
|
2074 apply(induct v r) |
|
2075 apply(auto intro: ValOrd4.intros) |
|
2076 done |
|
2077 |
|
2078 lemma |
|
2079 assumes "v1 4\<succ>r v2" "v2 4\<succ>r v3" |
|
2080 shows "v1 A\<succ>r v3" |
|
2081 using assms |
|
2082 apply(induct v1 r v2 arbitrary: v3) |
|
2083 apply(rotate_tac 5) |
|
2084 apply(erule ValOrd4.cases) |
|
2085 apply(simp_all) |
|
2086 apply(clarify) |
|
2087 apply (metis ValOrdA.intros(2)) |
|
2088 apply(clarify) |
|
2089 apply (metis ValOrd4_refl ValOrdA.intros(2)) |
|
2090 apply(rotate_tac 3) |
|
2091 apply(erule ValOrd4.cases) |
|
2092 apply(simp_all) |
|
2093 apply(clarify) |
|
2094 |
|
2095 apply (metis ValOrdA.intros(2)) |
|
2096 apply (metis ValOrdA.intros(1)) |
|
2097 apply (metis ValOrdA.intros(3) order_refl) |
|
2098 apply (auto intro: ValOrdA.intros) |
|
2099 done |
|
2100 |
|
2101 lemma |
|
2102 assumes "v1 4\<succ>r v2" |
|
2103 shows "v1 A\<succ>r v2" |
|
2104 using assms |
|
2105 apply(induct v1 r v2 arbitrary:) |
|
2106 apply (metis ValOrdA.intros(2)) |
|
2107 apply (metis ValOrdA.intros(1)) |
|
2108 apply (metis ValOrdA.intros(3) order_refl) |
|
2109 apply (auto intro: ValOrdA.intros) |
|
2110 done |
|
2111 |
|
2112 lemma |
|
2113 assumes "v1 \<succ>r v2" "\<turnstile> v1 : r" "\<turnstile> v2 : r" "flat v1 = flat v2" |
|
2114 shows "v1 4\<succ>r v2" |
|
2115 using assms |
|
2116 apply(induct v1 r v2 arbitrary:) |
|
2117 apply(erule Prf.cases) |
|
2118 apply(simp_all (no_asm_use))[5] |
|
2119 apply(erule Prf.cases) |
|
2120 apply(simp_all (no_asm_use))[5] |
|
2121 apply(clarify) |
|
2122 apply (metis ValOrd4.intros(4) ValOrd4_flat ValOrd4_refl) |
|
2123 apply(simp) |
|
2124 apply(erule Prf.cases) |
|
2125 apply(simp_all (no_asm_use))[5] |
|
2126 apply(erule Prf.cases) |
|
2127 apply(simp_all (no_asm_use))[5] |
|
2128 apply(clarify) |
|
2129 |
|
2130 lemma |
|
2131 assumes "v1 \<succ>r v2" "\<turnstile> v1 : r" "\<turnstile> v2 : r" "flat v1 = flat v2" |
|
2132 shows "v1 4\<succ>r v2" |
|
2133 using assms |
|
2134 apply(induct v1 r v2 arbitrary:) |
|
2135 apply(erule Prf.cases) |
|
2136 apply(simp_all (no_asm_use))[5] |
|
2137 apply(erule Prf.cases) |
|
2138 apply(simp_all (no_asm_use))[5] |
|
2139 apply(clarify) |
|
2140 apply (metis ValOrd4.intros(4) ValOrd4_flat ValOrd4_refl) |
|
2141 apply(simp) |
|
2142 apply(erule Prf.cases) |
|
2143 apply(simp_all (no_asm_use))[5] |
|
2144 apply(erule Prf.cases) |
|
2145 apply(simp_all (no_asm_use))[5] |
|
2146 apply(clarify) |
|
2147 |
|
2148 |
|
2149 apply(simp) |
|
2150 apply(erule Prf.cases) |
|
2151 |
|
2152 |
|
2153 |
|
2154 |
|
2155 lemma rr2: "hd (flats v) \<noteq> [] \<Longrightarrow> flats v \<noteq> []" |
|
2156 apply(induct v) |
|
2157 apply(auto) |
|
2158 done |
|
2159 |
|
2160 lemma rr3: "flats v = [] \<Longrightarrow> flat v = []" |
|
2161 apply(induct v) |
|
2162 apply(auto) |
|
2163 done |
|
2164 |
|
2165 lemma POSIXs_der: |
|
2166 assumes "POSIXs v (der c r) s" "\<Turnstile>s v : der c r" |
|
2167 shows "POSIXs (injval r c v) r (c#s)" |
|
2168 using assms |
|
2169 unfolding POSIXs_def |
|
2170 apply(auto) |
|
2171 thm v3s |
|
2172 apply (erule v3s) |
|
2173 apply(drule_tac x="projval r c v'" in spec) |
|
2174 apply(drule mp) |
|
2175 thm v3s_proj |
|
2176 apply(rule v3s_proj) |
|
2177 apply(simp) |
|
2178 thm v3s_proj |
|
2179 apply(drule v3s_proj) |
|
2180 oops |
|
2181 |
|
2182 term Values |
|
2183 (* HERE *) |
|
2184 |
|
2185 lemma Prf_inj_test: |
|
2186 assumes "v1 \<succ>(der c r) v2" |
|
2187 "v1 \<in> Values (der c r) s" |
|
2188 "v2 \<in> Values (der c r) s" |
|
2189 "injval r c v1 \<in> Values r (c#s)" |
|
2190 "injval r c v2 \<in> Values r (c#s)" |
|
2191 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
2192 using assms |
|
2193 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
2194 (* NULL case *) |
|
2195 apply(simp add: Values_recs) |
|
2196 (* EMPTY case *) |
|
2197 apply(simp add: Values_recs) |
|
2198 (* CHAR case *) |
|
2199 apply(case_tac "c = c'") |
|
2200 apply(simp) |
|
2201 apply(simp add: Values_recs) |
|
2202 apply (metis ValOrd2.intros(8)) |
|
2203 apply(simp add: Values_recs) |
|
2204 (* ALT case *) |
|
2205 apply(simp) |
|
2206 apply(simp add: Values_recs) |
|
2207 apply(auto)[1] |
|
2208 apply(erule ValOrd.cases) |
|
2209 apply(simp_all)[8] |
|
2210 apply (metis ValOrd2.intros(6)) |
|
2211 apply(erule ValOrd.cases) |
|
2212 apply(simp_all)[8] |
|
2213 apply(rule ValOrd2.intros) |
|
2214 apply(subst v4) |
|
2215 apply(simp add: Values_def) |
|
2216 apply(subst v4) |
|
2217 apply(simp add: Values_def) |
|
2218 apply(simp) |
|
2219 apply(erule ValOrd.cases) |
|
2220 apply(simp_all)[8] |
|
2221 apply(rule ValOrd2.intros) |
|
2222 apply(subst v4) |
|
2223 apply(simp add: Values_def) |
|
2224 apply(subst v4) |
|
2225 apply(simp add: Values_def) |
|
2226 apply(simp) |
|
2227 apply(erule ValOrd.cases) |
|
2228 apply(simp_all)[8] |
|
2229 apply (metis ValOrd2.intros(5)) |
|
2230 (* SEQ case*) |
|
2231 apply(simp) |
|
2232 apply(case_tac "nullable r1") |
|
2233 apply(simp) |
|
2234 defer |
|
2235 apply(simp) |
|
2236 apply(simp add: Values_recs) |
|
2237 apply(auto)[1] |
|
2238 apply(erule ValOrd.cases) |
|
2239 apply(simp_all)[8] |
|
2240 apply(clarify) |
|
2241 apply(rule ValOrd2.intros) |
|
2242 apply(simp) |
|
2243 apply (metis Ord1) |
|
2244 apply(clarify) |
|
2245 apply(rule ValOrd2.intros) |
|
2246 apply(subgoal_tac "rest v1 (flat v1 @ flat v2) = flat v2") |
|
2247 apply(simp) |
|
2248 apply(subgoal_tac "rest (injval r1 c v1) (c # flat v1 @ flat v2) = flat v2") |
|
2249 apply(simp) |
|
2250 |
|
2251 apply metis |
|
2252 using injval_inj |
|
2253 apply(simp add: Values_def inj_on_def) |
|
2254 apply metis |
|
2255 apply(simp add: Values_recs) |
|
2256 apply(auto)[1] |
|
2257 apply(erule ValOrd.cases) |
|
2258 apply(simp_all)[8] |
|
2259 apply(clarify) |
|
2260 apply(erule ValOrd.cases) |
|
2261 apply(simp_all)[8] |
|
2262 apply(clarify) |
|
2263 apply (metis Ord1 ValOrd2.intros(1)) |
|
2264 apply(clarify) |
|
2265 apply(rule ValOrd2.intros(2)) |
|
2266 apply metis |
|
2267 using injval_inj |
|
2268 apply(simp add: Values_def inj_on_def) |
|
2269 apply metis |
|
2270 apply(erule ValOrd.cases) |
|
2271 apply(simp_all)[8] |
|
2272 apply(rule ValOrd2.intros(2)) |
|
2273 thm h |
|
2274 apply(rule Ord1) |
|
2275 apply(rule h) |
|
2276 apply(simp) |
|
2277 apply(simp add: Values_def) |
|
2278 apply(simp add: Values_def) |
|
2279 apply (metis list.distinct(1) mkeps_flat v4) |
|
2280 apply(erule ValOrd.cases) |
|
2281 apply(simp_all)[8] |
|
2282 apply(clarify) |
|
2283 apply(simp add: Values_def) |
|
2284 defer |
|
2285 apply(erule ValOrd.cases) |
|
2286 apply(simp_all)[8] |
|
2287 apply(clarify) |
|
2288 apply(rule ValOrd2.intros(1)) |
|
2289 apply(rotate_tac 1) |
|
2290 apply(drule_tac x="v2" in meta_spec) |
|
2291 apply(rotate_tac 8) |
|
2292 apply(drule_tac x="v2'" in meta_spec) |
|
2293 apply(rotate_tac 8) |
|
2294 apply(drule_tac x="s" in meta_spec) |
|
2295 apply(simp) |
|
2296 apply(drule_tac meta_mp) |
|
2297 apply(simp add: rest_def mkeps_flat) |
|
2298 apply(drule_tac meta_mp) |
|
2299 apply(simp add: rest_def mkeps_flat) |
|
2300 apply(simp) |
|
2301 apply(simp add: rest_def mkeps_flat) |
|
2302 apply(subst (asm) (5) v4) |
|
2303 apply(simp) |
|
2304 apply(subst (asm) (5) v4) |
|
2305 apply(simp) |
|
2306 apply(subst (asm) (5) v4) |
|
2307 apply(simp) |
|
2308 apply(simp) |
|
2309 apply(clarify) |
|
2310 apply(simp add: prefix_Cons) |
|
2311 apply(subgoal_tac "((flat v1c) @ (flat v2b)) \<sqsubseteq> (flat v2)") |
|
2312 prefer 2 |
|
2313 apply(simp add: prefix_def) |
|
2314 apply(auto)[1] |
|
2315 (* HEREHERE *) |
|
2316 |
|
2317 |
|
2318 lemma Prf_inj_test: |
|
2319 assumes "v1 \<succ>r v2" |
|
2320 "v1 \<in> Values r s" |
|
2321 "v2 \<in> Values r s" |
|
2322 "injval r c v1 \<in> Values (red c r) (c#s)" |
|
2323 "injval r c v2 \<in> Values (red c r) (c#s)" |
|
2324 shows "(injval r c v1) \<succ>(red c r) (injval r c v2)" |
|
2325 using assms |
|
2326 apply(induct v1 r v2 arbitrary: s rule: ValOrd.induct) |
|
2327 apply(simp add: Values_recs) |
|
2328 apply (metis ValOrd.intros(1)) |
|
2329 apply(simp add: Values_recs) |
|
2330 apply(rule ValOrd.intros(2)) |
|
2331 apply(metis) |
|
2332 defer |
|
2333 apply(simp add: Values_recs) |
|
2334 apply(rule ValOrd.intros) |
|
2335 apply(subst v4) |
|
2336 apply(simp add: Values_def) |
|
2337 apply(subst v4) |
|
2338 apply(simp add: Values_def) |
|
2339 using injval_inj_red |
|
2340 apply(simp add: Values_def inj_on_def) |
|
2341 apply(rule notI) |
|
2342 apply(drule_tac x="r1" in meta_spec) |
|
2343 apply(drule_tac x="c" in meta_spec) |
|
2344 apply(drule_tac x="injval r1 c v1" in spec) |
|
2345 apply(simp) |
|
2346 |
|
2347 apply(drule_tac x="c" in meta_spec) |
|
2348 |
|
2349 apply metis |
|
2350 apply (metis ValOrd.intros(1)) |
|
2351 |
|
2352 |
|
2353 |
|
2354 done |
|
2355 (* EMPTY case *) |
|
2356 apply(simp add: Values_recs) |
|
2357 (* CHAR case *) |
|
2358 apply(case_tac "c = c'") |
|
2359 apply(simp) |
|
2360 apply(simp add: Values_recs) |
|
2361 apply (metis ValOrd2.intros(8)) |
|
2362 apply(simp add: Values_recs) |
|
2363 (* ALT case *) |
|
2364 apply(simp) |
|
2365 apply(simp add: Values_recs) |
|
2366 apply(auto)[1] |
|
2367 apply(erule ValOrd.cases) |
|
2368 apply(simp_all)[8] |
|
2369 apply (metis ValOrd2.intros(6)) |
|
2370 apply(erule ValOrd.cases) |
|
2371 apply(simp_all)[8] |
|
2372 apply(rule ValOrd2.intros) |
|
2373 apply(subst v4) |
|
2374 apply(simp add: Values_def) |
|
2375 apply(subst v4) |
|
2376 apply(simp add: Values_def) |
|
2377 apply(simp) |
|
2378 apply(erule ValOrd.cases) |
|
2379 apply(simp_all)[8] |
|
2380 apply(rule ValOrd2.intros) |
|
2381 apply(subst v4) |
|
2382 apply(simp add: Values_def) |
|
2383 apply(subst v4) |
|
2384 apply(simp add: Values_def) |
|
2385 apply(simp) |
|
2386 apply(erule ValOrd.cases) |
|
2387 apply(simp_all)[8] |
|
2388 apply (metis ValOrd2.intros(5)) |
|
2389 (* SEQ case*) |
|
2390 apply(simp) |
|
2391 apply(case_tac "nullable r1") |
|
2392 apply(simp) |
|
2393 defer |
|
2394 apply(simp) |
|
2395 apply(simp add: Values_recs) |
|
2396 apply(auto)[1] |
|
2397 apply(erule ValOrd.cases) |
|
2398 apply(simp_all)[8] |
|
2399 apply(clarify) |
|
2400 apply(rule ValOrd2.intros) |
|
2401 apply(simp) |
|
2402 apply (metis Ord1) |
|
2403 apply(clarify) |
|
2404 apply(rule ValOrd2.intros) |
|
2405 apply metis |
|
2406 using injval_inj |
|
2407 apply(simp add: Values_def inj_on_def) |
|
2408 apply metis |
|
2409 apply(simp add: Values_recs) |
|
2410 apply(auto)[1] |
|
2411 apply(erule ValOrd.cases) |
|
2412 apply(simp_all)[8] |
|
2413 apply(clarify) |
|
2414 apply(erule ValOrd.cases) |
|
2415 apply(simp_all)[8] |
|
2416 apply(clarify) |
|
2417 apply (metis Ord1 ValOrd2.intros(1)) |
|
2418 apply(clarify) |
|
2419 apply(rule ValOrd2.intros(2)) |
|
2420 apply metis |
|
2421 using injval_inj |
|
2422 apply(simp add: Values_def inj_on_def) |
|
2423 apply metis |
|
2424 apply(erule ValOrd.cases) |
|
2425 apply(simp_all)[8] |
|
2426 apply(rule ValOrd2.intros(2)) |
|
2427 thm h |
|
2428 apply(rule Ord1) |
|
2429 apply(rule h) |
|
2430 apply(simp) |
|
2431 apply(simp add: Values_def) |
|
2432 apply(simp add: Values_def) |
|
2433 apply (metis list.distinct(1) mkeps_flat v4) |
|
2434 apply(erule ValOrd.cases) |
|
2435 apply(simp_all)[8] |
|
2436 apply(clarify) |
|
2437 apply(simp add: Values_def) |
|
2438 defer |
|
2439 apply(erule ValOrd.cases) |
|
2440 apply(simp_all)[8] |
|
2441 apply(clarify) |
|
2442 apply(rule ValOrd2.intros(1)) |
|
2443 apply(rotate_tac 1) |
|
2444 apply(drule_tac x="v2" in meta_spec) |
|
2445 apply(rotate_tac 8) |
|
2446 apply(drule_tac x="v2'" in meta_spec) |
|
2447 apply(rotate_tac 8) |
|
2448 apply(drule_tac x="s" in meta_spec) |
|
2449 apply(simp) |
|
2450 apply(drule_tac meta_mp) |
|
2451 apply(simp add: rest_def mkeps_flat) |
|
2452 apply(drule_tac meta_mp) |
|
2453 apply(simp add: rest_def mkeps_flat) |
|
2454 apply(simp) |
|
2455 apply(simp add: rest_def mkeps_flat) |
|
2456 apply(subst (asm) (5) v4) |
|
2457 apply(simp) |
|
2458 apply(subst (asm) (5) v4) |
|
2459 apply(simp) |
|
2460 apply(subst (asm) (5) v4) |
|
2461 apply(simp) |
|
2462 apply(simp) |
|
2463 apply(clarify) |
|
2464 apply(simp add: prefix_Cons) |
|
2465 apply(subgoal_tac "((flat v1c) @ (flat v2b)) \<sqsubseteq> (flat v2)") |
|
2466 prefer 2 |
|
2467 apply(simp add: prefix_def) |
|
2468 apply(auto)[1] |
|
2469 (* HEREHERE *) |
|
2470 |
|
2471 lemma Prf_inj_test: |
|
2472 assumes "v1 \<succ>(der c r) v2" |
|
2473 "v1 \<in> Values (der c r) s" |
|
2474 "v2 \<in> Values (der c r) s" |
|
2475 "injval r c v1 \<in> Values r (c#s)" |
|
2476 "injval r c v2 \<in> Values r (c#s)" |
|
2477 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
2478 using assms |
|
2479 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
2480 (* NULL case *) |
|
2481 apply(simp add: Values_recs) |
|
2482 (* EMPTY case *) |
|
2483 apply(simp add: Values_recs) |
|
2484 (* CHAR case *) |
|
2485 apply(case_tac "c = c'") |
|
2486 apply(simp) |
|
2487 apply(simp add: Values_recs) |
|
2488 apply (metis ValOrd2.intros(8)) |
|
2489 apply(simp add: Values_recs) |
|
2490 (* ALT case *) |
|
2491 apply(simp) |
|
2492 apply(simp add: Values_recs) |
|
2493 apply(auto)[1] |
|
2494 apply(erule ValOrd.cases) |
|
2495 apply(simp_all)[8] |
|
2496 apply (metis ValOrd2.intros(6)) |
|
2497 apply(erule ValOrd.cases) |
|
2498 apply(simp_all)[8] |
|
2499 apply(rule ValOrd2.intros) |
|
2500 apply(subst v4) |
|
2501 apply(simp add: Values_def) |
|
2502 apply(subst v4) |
|
2503 apply(simp add: Values_def) |
|
2504 apply(simp) |
|
2505 apply(erule ValOrd.cases) |
|
2506 apply(simp_all)[8] |
|
2507 apply(rule ValOrd2.intros) |
|
2508 apply(subst v4) |
|
2509 apply(simp add: Values_def) |
|
2510 apply(subst v4) |
|
2511 apply(simp add: Values_def) |
|
2512 apply(simp) |
|
2513 apply(erule ValOrd.cases) |
|
2514 apply(simp_all)[8] |
|
2515 apply (metis ValOrd2.intros(5)) |
|
2516 (* SEQ case*) |
|
2517 apply(simp) |
|
2518 apply(case_tac "nullable r1") |
|
2519 apply(simp) |
|
2520 defer |
|
2521 apply(simp) |
|
2522 apply(simp add: Values_recs) |
|
2523 apply(auto)[1] |
|
2524 apply(erule ValOrd.cases) |
|
2525 apply(simp_all)[8] |
|
2526 apply(clarify) |
|
2527 apply(rule ValOrd2.intros) |
|
2528 apply(simp) |
|
2529 apply (metis Ord1) |
|
2530 apply(clarify) |
|
2531 apply(rule ValOrd2.intros) |
|
2532 apply metis |
|
2533 using injval_inj |
|
2534 apply(simp add: Values_def inj_on_def) |
|
2535 apply metis |
|
2536 apply(simp add: Values_recs) |
|
2537 apply(auto)[1] |
|
2538 apply(erule ValOrd.cases) |
|
2539 apply(simp_all)[8] |
|
2540 apply(clarify) |
|
2541 apply(erule ValOrd.cases) |
|
2542 apply(simp_all)[8] |
|
2543 apply(clarify) |
|
2544 apply (metis Ord1 ValOrd2.intros(1)) |
|
2545 apply(clarify) |
|
2546 apply(rule ValOrd2.intros(2)) |
|
2547 apply metis |
|
2548 using injval_inj |
|
2549 apply(simp add: Values_def inj_on_def) |
|
2550 apply metis |
|
2551 apply(erule ValOrd.cases) |
|
2552 apply(simp_all)[8] |
|
2553 apply(rule ValOrd2.intros(2)) |
|
2554 thm h |
|
2555 apply(rule Ord1) |
|
2556 apply(rule h) |
|
2557 apply(simp) |
|
2558 apply(simp add: Values_def) |
|
2559 apply(simp add: Values_def) |
|
2560 apply (metis list.distinct(1) mkeps_flat v4) |
|
2561 apply(erule ValOrd.cases) |
|
2562 apply(simp_all)[8] |
|
2563 apply(clarify) |
|
2564 apply(simp add: Values_def) |
|
2565 defer |
|
2566 apply(erule ValOrd.cases) |
|
2567 apply(simp_all)[8] |
|
2568 apply(clarify) |
|
2569 apply(rule ValOrd2.intros(1)) |
|
2570 apply(rotate_tac 1) |
|
2571 apply(drule_tac x="v2" in meta_spec) |
|
2572 apply(rotate_tac 8) |
|
2573 apply(drule_tac x="v2'" in meta_spec) |
|
2574 apply(rotate_tac 8) |
|
2575 apply(drule_tac x="s" in meta_spec) |
|
2576 apply(simp) |
|
2577 apply(drule_tac meta_mp) |
|
2578 apply(simp add: rest_def mkeps_flat) |
|
2579 apply(drule_tac meta_mp) |
|
2580 apply(simp add: rest_def mkeps_flat) |
|
2581 apply(simp) |
|
2582 apply(simp add: rest_def mkeps_flat) |
|
2583 apply(subst (asm) (5) v4) |
|
2584 apply(simp) |
|
2585 apply(subst (asm) (5) v4) |
|
2586 apply(simp) |
|
2587 apply(subst (asm) (5) v4) |
|
2588 apply(simp) |
|
2589 apply(simp) |
|
2590 apply(clarify) |
|
2591 apply(simp add: prefix_Cons) |
|
2592 apply(subgoal_tac "((flat v1c) @ (flat v2b)) \<sqsubseteq> (flat v2)") |
|
2593 prefer 2 |
|
2594 apply(simp add: prefix_def) |
|
2595 apply(auto)[1] |
|
2596 (* HEREHERE *) |
|
2597 |
|
2598 apply(subst (asm) (7) v4) |
|
2599 apply(simp) |
|
2600 |
|
2601 |
|
2602 (* HEREHERE *) |
|
2603 |
|
2604 apply(simp add: Values_def) |
|
2605 apply(simp add: Values_recs) |
|
2606 apply(simp add: Values_recs) |
|
2607 done |
|
2608 |
|
2609 lemma POSIX_der: |
|
2610 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
2611 shows "POSIX (injval r c v) r" |
|
2612 using assms |
|
2613 unfolding POSIX_def |
|
2614 apply(auto) |
|
2615 thm v3 |
|
2616 apply (erule v3) |
|
2617 thm v4 |
|
2618 apply(subst (asm) v4) |
|
2619 apply(assumption) |
|
2620 apply(drule_tac x="projval r c v'" in spec) |
|
2621 apply(drule mp) |
|
2622 apply(rule conjI) |
|
2623 thm v3_proj |
|
2624 apply(rule v3_proj) |
|
2625 apply(simp) |
|
2626 apply(rule_tac x="flat v" in exI) |
|
2627 apply(simp) |
|
2628 thm t |
|
2629 apply(rule_tac c="c" in t) |
|
2630 apply(simp) |
|
2631 thm v4_proj |
|
2632 apply(subst v4_proj) |
|
2633 apply(simp) |
|
2634 apply(rule_tac x="flat v" in exI) |
|
2635 apply(simp) |
|
2636 apply(simp) |
|
2637 thm Prf_inj_test |
|
2638 apply(drule_tac r="r" in Prf_inj_test) |
|
2639 oops |
|
2640 |
|
2641 lemma POSIX_der: |
|
2642 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
2643 shows "POSIX (injval r c v) r" |
|
2644 using assms |
|
2645 apply(induct c r arbitrary: v rule: der.induct) |
|
2646 (* null case*) |
|
2647 apply(simp add: POSIX_def) |
|
2648 apply(auto)[1] |
|
2649 apply(erule Prf.cases) |
|
2650 apply(simp_all)[5] |
|
2651 apply(erule Prf.cases) |
|
2652 apply(simp_all)[5] |
|
2653 (* empty case *) |
|
2654 apply(simp add: POSIX_def) |
|
2655 apply(auto)[1] |
|
2656 apply(erule Prf.cases) |
|
2657 apply(simp_all)[5] |
|
2658 apply(erule Prf.cases) |
|
2659 apply(simp_all)[5] |
|
2660 (* char case *) |
|
2661 apply(simp add: POSIX_def) |
|
2662 apply(case_tac "c = c'") |
|
2663 apply(auto)[1] |
|
2664 apply(erule Prf.cases) |
|
2665 apply(simp_all)[5] |
|
2666 apply (metis Prf.intros(5)) |
|
2667 apply(erule Prf.cases) |
|
2668 apply(simp_all)[5] |
|
2669 apply(erule Prf.cases) |
|
2670 apply(simp_all)[5] |
|
2671 apply (metis ValOrd.intros(8)) |
|
2672 apply(auto)[1] |
|
2673 apply(erule Prf.cases) |
|
2674 apply(simp_all)[5] |
|
2675 apply(erule Prf.cases) |
|
2676 apply(simp_all)[5] |
|
2677 (* alt case *) |
|
2678 apply(erule Prf.cases) |
|
2679 apply(simp_all)[5] |
|
2680 apply(clarify) |
|
2681 apply(simp (no_asm) add: POSIX_def) |
|
2682 apply(auto)[1] |
|
2683 apply (metis Prf.intros(2) v3) |
|
2684 apply(rotate_tac 4) |
|
2685 apply(erule Prf.cases) |
|
2686 apply(simp_all)[5] |
|
2687 apply (metis POSIX_ALT2 POSIX_def ValOrd.intros(6)) |
|
2688 apply (metis ValOrd.intros(3) order_refl) |
|
2689 apply(simp (no_asm) add: POSIX_def) |
|
2690 apply(auto)[1] |
|
2691 apply (metis Prf.intros(3) v3) |
|
2692 apply(rotate_tac 4) |
|
2693 apply(erule Prf.cases) |
|
2694 apply(simp_all)[5] |
|
2695 defer |
|
2696 apply (metis POSIX_ALT1a POSIX_def ValOrd.intros(5)) |
|
2697 prefer 2 |
|
2698 apply(subst (asm) (5) POSIX_def) |
|
2699 apply(auto)[1] |
|
2700 apply(rotate_tac 5) |
|
2701 apply(erule Prf.cases) |
|
2702 apply(simp_all)[5] |
|
2703 apply(rule ValOrd.intros) |
|
2704 apply(subst (asm) v4) |
|
2705 apply(simp) |
|
2706 apply(drule_tac x="Left (projval r1a c v1)" in spec) |
|
2707 apply(clarify) |
|
2708 apply(drule mp) |
|
2709 apply(rule conjI) |
|
2710 apply (metis Prf.intros(2) v3_proj) |
|
2711 apply(simp) |
|
2712 apply (metis v4_proj2) |
|
2713 apply(erule ValOrd.cases) |
|
2714 apply(simp_all)[8] |
|
2715 apply (metis less_not_refl v4_proj2) |
|
2716 (* seq case *) |
|
2717 apply(case_tac "nullable r1") |
|
2718 defer |
|
2719 apply(simp add: POSIX_def) |
|
2720 apply(auto)[1] |
|
2721 apply(erule Prf.cases) |
|
2722 apply(simp_all)[5] |
|
2723 apply (metis Prf.intros(1) v3) |
|
2724 apply(erule Prf.cases) |
|
2725 apply(simp_all)[5] |
|
2726 apply(erule Prf.cases) |
|
2727 apply(simp_all)[5] |
|
2728 apply(clarify) |
|
2729 apply(subst (asm) (3) v4) |
|
2730 apply(simp) |
|
2731 apply(simp) |
|
2732 apply(subgoal_tac "flat v1a \<noteq> []") |
|
2733 prefer 2 |
|
2734 apply (metis Prf_flat_L nullable_correctness) |
|
2735 apply(subgoal_tac "\<exists>s. flat v1a = c # s") |
|
2736 prefer 2 |
|
2737 apply (metis append_eq_Cons_conv) |
|
2738 apply(auto)[1] |
|
2739 |
|
2740 |
|
2741 apply(auto) |
|
2742 thm v3 |
|
2743 apply (erule v3) |
|
2744 thm v4 |
|
2745 apply(subst (asm) v4) |
|
2746 apply(assumption) |
|
2747 apply(drule_tac x="projval r c v'" in spec) |
|
2748 apply(drule mp) |
|
2749 apply(rule conjI) |
|
2750 thm v3_proj |
|
2751 apply(rule v3_proj) |
|
2752 apply(simp) |
|
2753 apply(rule_tac x="flat v" in exI) |
|
2754 apply(simp) |
|
2755 thm t |
|
2756 apply(rule_tac c="c" in t) |
|
2757 apply(simp) |
|
2758 thm v4_proj |
|
2759 apply(subst v4_proj) |
|
2760 apply(simp) |
|
2761 apply(rule_tac x="flat v" in exI) |
|
2762 apply(simp) |
|
2763 apply(simp) |
|
2764 oops |
|
2765 |
|
2766 |
|
2767 lemma POSIX_ex: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r" |
|
2768 apply(induct r arbitrary: v) |
|
2769 apply(erule Prf.cases) |
|
2770 apply(simp_all)[5] |
|
2771 apply(erule Prf.cases) |
|
2772 apply(simp_all)[5] |
|
2773 apply(rule_tac x="Void" in exI) |
|
2774 apply(simp add: POSIX_def) |
|
2775 apply(auto)[1] |
|
2776 apply (metis Prf.intros(4)) |
|
2777 apply(erule Prf.cases) |
|
2778 apply(simp_all)[5] |
|
2779 apply (metis ValOrd.intros(7)) |
|
2780 apply(erule Prf.cases) |
|
2781 apply(simp_all)[5] |
|
2782 apply(rule_tac x="Char c" in exI) |
|
2783 apply(simp add: POSIX_def) |
|
2784 apply(auto)[1] |
|
2785 apply (metis Prf.intros(5)) |
|
2786 apply(erule Prf.cases) |
|
2787 apply(simp_all)[5] |
|
2788 apply (metis ValOrd.intros(8)) |
|
2789 apply(erule Prf.cases) |
|
2790 apply(simp_all)[5] |
|
2791 apply(auto)[1] |
|
2792 apply(drule_tac x="v1" in meta_spec) |
|
2793 apply(drule_tac x="v2" in meta_spec) |
|
2794 apply(auto)[1] |
|
2795 defer |
|
2796 apply(erule Prf.cases) |
|
2797 apply(simp_all)[5] |
|
2798 apply(auto)[1] |
|
2799 apply (metis POSIX_ALT_I1) |
|
2800 apply (metis POSIX_ALT_I1 POSIX_ALT_I2) |
|
2801 apply(case_tac "nullable r1a") |
|
2802 apply(rule_tac x="Seq (mkeps r1a) va" in exI) |
|
2803 apply(auto simp add: POSIX_def)[1] |
|
2804 apply (metis Prf.intros(1) mkeps_nullable) |
|
2805 apply(simp add: mkeps_flat) |
|
2806 apply(rotate_tac 7) |
|
2807 apply(erule Prf.cases) |
|
2808 apply(simp_all)[5] |
|
2809 apply(case_tac "mkeps r1 = v1a") |
|
2810 apply(simp) |
|
2811 apply (rule ValOrd.intros(1)) |
|
2812 apply (metis append_Nil mkeps_flat) |
|
2813 apply (rule ValOrd.intros(2)) |
|
2814 apply(drule mkeps_POSIX) |
|
2815 apply(simp add: POSIX_def) |
|
2816 |
|
2817 apply metis |
|
2818 apply(simp) |
|
2819 apply(simp) |
|
2820 apply(erule disjE) |
|
2821 apply(simp) |
|
2822 |
|
2823 apply(drule_tac x="v2" in spec) |
|
2824 |
|
2825 lemma POSIX_ex2: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r \<and> \<turnstile> v : r" |
|
2826 apply(induct r arbitrary: v) |
|
2827 apply(erule Prf.cases) |
|
2828 apply(simp_all)[5] |
|
2829 apply(erule Prf.cases) |
|
2830 apply(simp_all)[5] |
|
2831 apply(rule_tac x="Void" in exI) |
|
2832 apply(simp add: POSIX_def) |
|
2833 apply(auto)[1] |
|
2834 apply(erule Prf.cases) |
|
2835 apply(simp_all)[5] |
|
2836 apply (metis ValOrd.intros(7)) |
|
2837 apply (metis Prf.intros(4)) |
|
2838 apply(erule Prf.cases) |
|
2839 apply(simp_all)[5] |
|
2840 apply(rule_tac x="Char c" in exI) |
|
2841 apply(simp add: POSIX_def) |
|
2842 apply(auto)[1] |
|
2843 apply(erule Prf.cases) |
|
2844 apply(simp_all)[5] |
|
2845 apply (metis ValOrd.intros(8)) |
|
2846 apply (metis Prf.intros(5)) |
|
2847 apply(erule Prf.cases) |
|
2848 apply(simp_all)[5] |
|
2849 apply(auto)[1] |
|
2850 apply(drule_tac x="v1" in meta_spec) |
|
2851 apply(drule_tac x="v2" in meta_spec) |
|
2852 apply(auto)[1] |
|
2853 apply(simp add: POSIX_def) |
|
2854 apply(auto)[1] |
|
2855 apply(rule ccontr) |
|
2856 apply(simp) |
|
2857 apply(drule_tac x="Seq v va" in spec) |
|
2858 apply(drule mp) |
|
2859 defer |
|
2860 apply (metis Prf.intros(1)) |
|
2861 oops |
|
2862 |
|
2863 lemma POSIX_ALT_cases: |
|
2864 assumes "\<turnstile> v : (ALT r1 r2)" "POSIX v (ALT r1 r2)" |
|
2865 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
2866 using assms |
|
2867 apply(erule_tac Prf.cases) |
|
2868 apply(simp_all) |
|
2869 unfolding POSIX_def |
|
2870 apply(auto) |
|
2871 apply (metis POSIX_ALT2 POSIX_def assms(2)) |
|
2872 by (metis POSIX_ALT1b assms(2)) |
|
2873 |
|
2874 lemma POSIX_ALT_cases2: |
|
2875 assumes "POSIX v (ALT r1 r2)" "\<turnstile> v : (ALT r1 r2)" |
|
2876 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
2877 using assms POSIX_ALT_cases by auto |
|
2878 |
|
2879 lemma Prf_flat_empty: |
|
2880 assumes "\<turnstile> v : r" "flat v = []" |
|
2881 shows "nullable r" |
|
2882 using assms |
|
2883 apply(induct) |
|
2884 apply(auto) |
|
2885 done |
|
2886 |
|
2887 lemma POSIX_proj: |
|
2888 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
2889 shows "POSIX (projval r c v) (der c r)" |
|
2890 using assms |
|
2891 apply(induct r c v arbitrary: rule: projval.induct) |
|
2892 defer |
|
2893 defer |
|
2894 defer |
|
2895 defer |
|
2896 apply(erule Prf.cases) |
|
2897 apply(simp_all)[5] |
|
2898 apply(erule Prf.cases) |
|
2899 apply(simp_all)[5] |
|
2900 apply(erule Prf.cases) |
|
2901 apply(simp_all)[5] |
|
2902 apply(erule Prf.cases) |
|
2903 apply(simp_all)[5] |
|
2904 apply(erule Prf.cases) |
|
2905 apply(simp_all)[5] |
|
2906 apply(erule Prf.cases) |
|
2907 apply(simp_all)[5] |
|
2908 apply(erule Prf.cases) |
|
2909 apply(simp_all)[5] |
|
2910 apply(erule Prf.cases) |
|
2911 apply(simp_all)[5] |
|
2912 apply(erule Prf.cases) |
|
2913 apply(simp_all)[5] |
|
2914 apply(erule Prf.cases) |
|
2915 apply(simp_all)[5] |
|
2916 apply(simp add: POSIX_def) |
|
2917 apply(auto)[1] |
|
2918 apply(erule Prf.cases) |
|
2919 apply(simp_all)[5] |
|
2920 apply (metis ValOrd.intros(7)) |
|
2921 apply(erule_tac [!] exE) |
|
2922 prefer 3 |
|
2923 apply(frule POSIX_SEQ1) |
|
2924 apply(erule Prf.cases) |
|
2925 apply(simp_all)[5] |
|
2926 apply(erule Prf.cases) |
|
2927 apply(simp_all)[5] |
|
2928 apply(case_tac "flat v1 = []") |
|
2929 apply(subgoal_tac "nullable r1") |
|
2930 apply(simp) |
|
2931 prefer 2 |
|
2932 apply(rule_tac v="v1" in Prf_flat_empty) |
|
2933 apply(erule Prf.cases) |
|
2934 apply(simp_all)[5] |
|
2935 apply(simp) |
|
2936 apply(frule POSIX_SEQ2) |
|
2937 apply(erule Prf.cases) |
|
2938 apply(simp_all)[5] |
|
2939 apply(erule Prf.cases) |
|
2940 apply(simp_all)[5] |
|
2941 apply(simp) |
|
2942 apply(drule meta_mp) |
|
2943 apply(erule Prf.cases) |
|
2944 apply(simp_all)[5] |
|
2945 apply(rule ccontr) |
|
2946 apply(subgoal_tac "\<turnstile> val.Right (projval r2 c v2) : (ALT (SEQ (der c r1) r2) (der c r2))") |
|
2947 apply(rotate_tac 11) |
|
2948 apply(frule POSIX_ex) |
|
2949 apply(erule exE) |
|
2950 apply(drule POSIX_ALT_cases2) |
|
2951 apply(erule Prf.cases) |
|
2952 apply(simp_all)[5] |
|
2953 apply(drule v3_proj) |
|
2954 apply(simp) |
|
2955 apply(simp) |
|
2956 apply(drule POSIX_ex) |
|
2957 apply(erule exE) |
|
2958 apply(frule POSIX_ALT_cases2) |
|
2959 apply(simp) |
|
2960 apply(simp) |
|
2961 apply(erule |
|
2962 prefer 2 |
|
2963 apply(case_tac "nullable r1") |
|
2964 prefer 2 |
|
2965 apply(simp) |
|
2966 apply(rotate_tac 1) |
|
2967 apply(drule meta_mp) |
|
2968 apply(rule POSIX_SEQ1) |
|
2969 apply(assumption) |
|
2970 apply(erule Prf.cases) |
|
2971 apply(simp_all)[5] |
|
2972 apply(erule Prf.cases) |
|
2973 apply(simp_all)[5] |
|
2974 apply(rotate_tac 7) |
|
2975 apply(drule meta_mp) |
|
2976 apply(erule Prf.cases) |
|
2977 apply(simp_all)[5] |
|
2978 apply(rotate_tac 7) |
|
2979 apply(drule meta_mp) |
|
2980 apply (metis Cons_eq_append_conv) |
|
2981 |
|
2982 |
|
2983 apply(erule Prf.cases) |
|
2984 apply(simp_all)[5] |
|
2985 apply(simp add: POSIX_def) |
|
2986 apply(simp) |
|
2987 apply(simp) |
|
2988 apply(simp_all)[5] |
|
2989 apply(simp add: POSIX_def) |
|
2990 |
|
2991 |
|
2992 lemma POSIX_proj: |
|
2993 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
2994 shows "POSIX (projval r c v) (der c r)" |
|
2995 using assms |
|
2996 apply(induct r arbitrary: c v rule: rexp.induct) |
|
2997 apply(erule Prf.cases) |
|
2998 apply(simp_all)[5] |
|
2999 apply(erule Prf.cases) |
|
3000 apply(simp_all)[5] |
|
3001 apply(erule Prf.cases) |
|
3002 apply(simp_all)[5] |
|
3003 apply(simp add: POSIX_def) |
|
3004 apply(auto)[1] |
|
3005 apply(erule Prf.cases) |
|
3006 apply(simp_all)[5] |
|
3007 apply (metis ValOrd.intros(7)) |
|
3008 |
|
3009 apply(erule Prf.cases) |
|
3010 apply(simp_all)[5] |
|
3011 apply(erule Prf.cases) |
|
3012 apply(simp_all)[5] |
|
3013 apply(erule Prf.cases) |
|
3014 apply(simp_all)[5] |
|
3015 apply(erule Prf.cases) |
|
3016 apply(simp_all)[5] |
|
3017 apply(erule Prf.cases) |
|
3018 apply(simp_all)[5] |
|
3019 apply(erule Prf.cases) |
|
3020 apply(simp_all)[5] |
|
3021 apply(simp add: POSIX_def) |
|
3022 apply(auto)[1] |
|
3023 apply(erule Prf.cases) |
|
3024 apply(simp_all)[5] |
|
3025 apply (metis ValOrd.intros(7)) |
|
3026 apply(erule_tac [!] exE) |
|
3027 prefer 3 |
|
3028 apply(frule POSIX_SEQ1) |
|
3029 apply(erule Prf.cases) |
|
3030 apply(simp_all)[5] |
|
3031 apply(erule Prf.cases) |
|
3032 apply(simp_all)[5] |
|
3033 apply(case_tac "flat v1 = []") |
|
3034 apply(subgoal_tac "nullable r1") |
|
3035 apply(simp) |
|
3036 prefer 2 |
|
3037 apply(rule_tac v="v1" in Prf_flat_empty) |
|
3038 apply(erule Prf.cases) |
|
3039 apply(simp_all)[5] |
|
3040 |
|
3041 |
|
3042 lemma POSIX_proj: |
|
3043 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
3044 shows "POSIX (projval r c v) (der c r)" |
|
3045 using assms |
|
3046 apply(induct r c v arbitrary: rule: projval.induct) |
|
3047 defer |
|
3048 defer |
|
3049 defer |
|
3050 defer |
|
3051 apply(erule Prf.cases) |
|
3052 apply(simp_all)[5] |
|
3053 apply(erule Prf.cases) |
|
3054 apply(simp_all)[5] |
|
3055 apply(erule Prf.cases) |
|
3056 apply(simp_all)[5] |
|
3057 apply(erule Prf.cases) |
|
3058 apply(simp_all)[5] |
|
3059 apply(erule Prf.cases) |
|
3060 apply(simp_all)[5] |
|
3061 apply(erule Prf.cases) |
|
3062 apply(simp_all)[5] |
|
3063 apply(erule Prf.cases) |
|
3064 apply(simp_all)[5] |
|
3065 apply(erule Prf.cases) |
|
3066 apply(simp_all)[5] |
|
3067 apply(erule Prf.cases) |
|
3068 apply(simp_all)[5] |
|
3069 apply(erule Prf.cases) |
|
3070 apply(simp_all)[5] |
|
3071 apply(simp add: POSIX_def) |
|
3072 apply(auto)[1] |
|
3073 apply(erule Prf.cases) |
|
3074 apply(simp_all)[5] |
|
3075 apply (metis ValOrd.intros(7)) |
|
3076 apply(erule_tac [!] exE) |
|
3077 prefer 3 |
|
3078 apply(frule POSIX_SEQ1) |
|
3079 apply(erule Prf.cases) |
|
3080 apply(simp_all)[5] |
|
3081 apply(erule Prf.cases) |
|
3082 apply(simp_all)[5] |
|
3083 apply(case_tac "flat v1 = []") |
|
3084 apply(subgoal_tac "nullable r1") |
|
3085 apply(simp) |
|
3086 prefer 2 |
|
3087 apply(rule_tac v="v1" in Prf_flat_empty) |
|
3088 apply(erule Prf.cases) |
|
3089 apply(simp_all)[5] |
|
3090 apply(simp) |
|
3091 apply(rule ccontr) |
|
3092 apply(drule v3_proj) |
|
3093 apply(simp) |
|
3094 apply(simp) |
|
3095 apply(drule POSIX_ex) |
|
3096 apply(erule exE) |
|
3097 apply(frule POSIX_ALT_cases2) |
|
3098 apply(simp) |
|
3099 apply(simp) |
|
3100 apply(erule |
|
3101 prefer 2 |
|
3102 apply(case_tac "nullable r1") |
|
3103 prefer 2 |
|
3104 apply(simp) |
|
3105 apply(rotate_tac 1) |
|
3106 apply(drule meta_mp) |
|
3107 apply(rule POSIX_SEQ1) |
|
3108 apply(assumption) |
|
3109 apply(erule Prf.cases) |
|
3110 apply(simp_all)[5] |
|
3111 apply(erule Prf.cases) |
|
3112 apply(simp_all)[5] |
|
3113 apply(rotate_tac 7) |
|
3114 apply(drule meta_mp) |
|
3115 apply(erule Prf.cases) |
|
3116 apply(simp_all)[5] |
|
3117 apply(rotate_tac 7) |
|
3118 apply(drule meta_mp) |
|
3119 apply (metis Cons_eq_append_conv) |
|
3120 |
|
3121 |
|
3122 apply(erule Prf.cases) |
|
3123 apply(simp_all)[5] |
|
3124 apply(simp add: POSIX_def) |
|
3125 apply(simp) |
|
3126 apply(simp) |
|
3127 apply(simp_all)[5] |
|
3128 apply(simp add: POSIX_def) |
|
3129 |
|
3130 done |
|
3131 (* NULL case *) |
|
3132 apply(simp add: POSIX_def) |
|
3133 apply(auto)[1] |
|
3134 apply(erule Prf.cases) |
|
3135 apply(simp_all)[5] |
|
3136 apply(erule Prf.cases) |
|
3137 apply(simp_all)[5] |
|
3138 apply (metis ValOrd.intros(7)) |
|
3139 apply(rotate_tac 4) |
|
3140 apply(erule Prf.cases) |
|
3141 apply(simp_all)[5] |
|
3142 apply(simp) |
|
3143 prefer 2 |
|
3144 apply(simp) |
|
3145 apply(frule POSIX_ALT1a) |
|
3146 apply(drule meta_mp) |
|
3147 apply(simp) |
|
3148 apply(drule meta_mp) |
|
3149 apply(erule Prf.cases) |
|
3150 apply(simp_all)[5] |
|
3151 apply(rule POSIX_ALT_I2) |
|
3152 apply(assumption) |
|
3153 apply(auto)[1] |
|
3154 |
|
3155 thm v4_proj2 |
|
3156 prefer 2 |
|
3157 apply(subst (asm) (13) POSIX_def) |
|
3158 |
|
3159 apply(drule_tac x="projval v2" in spec) |
|
3160 apply(auto)[1] |
|
3161 apply(drule mp) |
|
3162 apply(rule conjI) |
|
3163 apply(simp) |
|
3164 apply(simp) |
|
3165 |
|
3166 apply(erule Prf.cases) |
|
3167 apply(simp_all)[5] |
|
3168 apply(erule Prf.cases) |
|
3169 apply(simp_all)[5] |
|
3170 prefer 2 |
|
3171 apply(clarify) |
|
3172 apply(subst (asm) (2) POSIX_def) |
|
3173 |
|
3174 apply (metis ValOrd.intros(5)) |
|
3175 apply(clarify) |
|
3176 apply(simp) |
|
3177 apply(rotate_tac 3) |
|
3178 apply(drule_tac c="c" in t2) |
|
3179 apply(subst (asm) v4_proj) |
|
3180 apply(simp) |
|
3181 apply(simp) |
|
3182 thm contrapos_np contrapos_nn |
|
3183 apply(erule contrapos_np) |
|
3184 apply(rule ValOrd.intros) |
|
3185 apply(subst v4_proj2) |
|
3186 apply(simp) |
|
3187 apply(simp) |
|
3188 apply(subgoal_tac "\<not>(length (flat v1) < length (flat (projval r2a c v2a)))") |
|
3189 prefer 2 |
|
3190 apply(erule contrapos_nn) |
|
3191 apply (metis nat_less_le v4_proj2) |
|
3192 apply(simp) |
|
3193 |
|
3194 apply(blast) |
|
3195 thm contrapos_nn |
|
3196 |
|
3197 apply(simp add: POSIX_def) |
|
3198 apply(auto)[1] |
|
3199 apply(erule Prf.cases) |
|
3200 apply(simp_all)[5] |
|
3201 apply(erule Prf.cases) |
|
3202 apply(simp_all)[5] |
|
3203 apply(clarify) |
|
3204 apply(rule ValOrd.intros) |
|
3205 apply(drule meta_mp) |
|
3206 apply(auto)[1] |
|
3207 apply (metis POSIX_ALT2 POSIX_def flat.simps(3)) |
|
3208 apply metis |
|
3209 apply(clarify) |
|
3210 apply(rule ValOrd.intros) |
|
3211 apply(simp) |
|
3212 apply(simp add: POSIX_def) |
|
3213 apply(auto)[1] |
|
3214 apply(erule Prf.cases) |
|
3215 apply(simp_all)[5] |
|
3216 apply(erule Prf.cases) |
|
3217 apply(simp_all)[5] |
|
3218 apply(clarify) |
|
3219 apply(rule ValOrd.intros) |
|
3220 apply(simp) |
|
3221 |
|
3222 apply(drule meta_mp) |
|
3223 apply(auto)[1] |
|
3224 apply (metis POSIX_ALT2 POSIX_def flat.simps(3)) |
|
3225 apply metis |
|
3226 apply(clarify) |
|
3227 apply(rule ValOrd.intros) |
|
3228 apply(simp) |
|
3229 |
|
3230 |
|
3231 done |
|
3232 (* EMPTY case *) |
|
3233 apply(simp add: POSIX_def) |
|
3234 apply(auto)[1] |
|
3235 apply(rotate_tac 3) |
|
3236 apply(erule Prf.cases) |
|
3237 apply(simp_all)[5] |
|
3238 apply(drule_tac c="c" in t2) |
|
3239 apply(subst (asm) v4_proj) |
|
3240 apply(auto)[2] |
|
3241 |
|
3242 apply(erule ValOrd.cases) |
|
3243 apply(simp_all)[8] |
|
3244 (* CHAR case *) |
|
3245 apply(case_tac "c = c'") |
|
3246 apply(simp) |
|
3247 apply(erule ValOrd.cases) |
|
3248 apply(simp_all)[8] |
|
3249 apply(rule ValOrd.intros) |
|
3250 apply(simp) |
|
3251 apply(erule ValOrd.cases) |
|
3252 apply(simp_all)[8] |
|
3253 (* ALT case *) |
|
3254 |
|
3255 |
|
3256 unfolding POSIX_def |
|
3257 apply(auto) |
|
3258 thm v4 |
|
3259 |
|
3260 lemma Prf_inj: |
|
3261 assumes "v1 \<succ>(der c r) v2" "\<turnstile> v1 : der c r" "\<turnstile> v2 : der c r" "flat v1 = flat v2" |
|
3262 shows "(injval r c v1) \<succ>r (injval r c v2)" |
|
3263 using assms |
|
3264 apply(induct arbitrary: v1 v2 rule: der.induct) |
|
3265 (* NULL case *) |
|
3266 apply(simp) |
|
3267 apply(erule ValOrd.cases) |
|
3268 apply(simp_all)[8] |
|
3269 (* EMPTY case *) |
|
3270 apply(erule ValOrd.cases) |
|
3271 apply(simp_all)[8] |
|
3272 (* CHAR case *) |
|
3273 apply(case_tac "c = c'") |
|
3274 apply(simp) |
|
3275 apply(erule ValOrd.cases) |
|
3276 apply(simp_all)[8] |
|
3277 apply(rule ValOrd.intros) |
|
3278 apply(simp) |
|
3279 apply(erule ValOrd.cases) |
|
3280 apply(simp_all)[8] |
|
3281 (* ALT case *) |
|
3282 apply(simp) |
|
3283 apply(erule ValOrd.cases) |
|
3284 apply(simp_all)[8] |
|
3285 apply(rule ValOrd.intros) |
|
3286 apply(subst v4) |
|
3287 apply(clarify) |
|
3288 apply(rotate_tac 3) |
|
3289 apply(erule Prf.cases) |
|
3290 apply(simp_all)[5] |
|
3291 apply(subst v4) |
|
3292 apply(clarify) |
|
3293 apply(rotate_tac 2) |
|
3294 apply(erule Prf.cases) |
|
3295 apply(simp_all)[5] |
|
3296 apply(simp) |
|
3297 apply(rule ValOrd.intros) |
|
3298 apply(clarify) |
|
3299 apply(rotate_tac 3) |
|
3300 apply(erule Prf.cases) |
|
3301 apply(simp_all)[5] |
|
3302 apply(clarify) |
|
3303 apply(erule Prf.cases) |
|
3304 apply(simp_all)[5] |
|
3305 apply(rule ValOrd.intros) |
|
3306 apply(clarify) |
|
3307 apply(erule Prf.cases) |
|
3308 apply(simp_all)[5] |
|
3309 apply(erule Prf.cases) |
|
3310 apply(simp_all)[5] |
|
3311 (* SEQ case*) |
|
3312 apply(simp) |
|
3313 apply(case_tac "nullable r1") |
|
3314 defer |
|
3315 apply(simp) |
|
3316 apply(erule ValOrd.cases) |
|
3317 apply(simp_all)[8] |
|
3318 apply(clarify) |
|
3319 apply(erule Prf.cases) |
|
3320 apply(simp_all)[5] |
|
3321 apply(erule Prf.cases) |
|
3322 apply(simp_all)[5] |
|
3323 apply(clarify) |
|
3324 apply(rule ValOrd.intros) |
|
3325 apply(simp) |
|
3326 apply(simp) |
|
3327 apply(rule ValOrd.intros(2)) |
|
3328 apply(erule Prf.cases) |
|
3329 apply(simp_all)[5] |
|
3330 apply(erule Prf.cases) |
|
3331 apply(simp_all)[5] |
|
3332 apply(clarify) |
|
3333 defer |
|
3334 apply(simp) |
|
3335 apply(erule ValOrd.cases) |
|
3336 apply(simp_all del: injval.simps)[8] |
|
3337 apply(simp) |
|
3338 apply(clarify) |
|
3339 apply(simp) |
|
3340 apply(erule Prf.cases) |
|
3341 apply(simp_all)[5] |
|
3342 apply(erule Prf.cases) |
|
3343 apply(simp_all)[5] |
|
3344 apply(clarify) |
|
3345 apply(erule Prf.cases) |
|
3346 apply(simp_all)[5] |
|
3347 apply(clarify) |
|
3348 apply(rule ValOrd.intros(2)) |
|
3349 |
|
3350 |
|
3351 |
|
3352 |
|
3353 done |
|
3354 |
|
3355 |
|
3356 txt {* |
|
3357 done |
|
3358 (* nullable case - unfinished *) |
|
3359 apply(simp) |
|
3360 apply(erule ValOrd.cases) |
|
3361 apply(simp_all del: injval.simps)[8] |
|
3362 apply(simp) |
|
3363 apply(clarify) |
|
3364 apply(simp) |
|
3365 apply(erule Prf.cases) |
|
3366 apply(simp_all)[5] |
|
3367 apply(erule Prf.cases) |
|
3368 apply(simp_all)[5] |
|
3369 apply(clarify) |
|
3370 apply(erule Prf.cases) |
|
3371 apply(simp_all)[5] |
|
3372 apply(clarify) |
|
3373 apply(simp) |
|
3374 apply(rule ValOrd.intros(2)) |
|
3375 oops |
|
3376 *} |
|
3377 oops |
|
3378 |
|
3379 |
|
3380 |
|
3381 text {* |
|
3382 Injection followed by projection is the identity. |
|
3383 *} |
|
3384 |
|
3385 lemma proj_inj_id: |
|
3386 assumes "\<turnstile> v : der c r" |
|
3387 shows "projval r c (injval r c v) = v" |
|
3388 using assms |
|
3389 apply(induct r arbitrary: c v rule: rexp.induct) |
|
3390 apply(simp) |
|
3391 apply(erule Prf.cases) |
|
3392 apply(simp_all)[5] |
|
3393 apply(simp) |
|
3394 apply(erule Prf.cases) |
|
3395 apply(simp_all)[5] |
|
3396 apply(simp) |
|
3397 apply(case_tac "c = char") |
|
3398 apply(simp) |
|
3399 apply(erule Prf.cases) |
|
3400 apply(simp_all)[5] |
|
3401 apply(simp) |
|
3402 apply(erule Prf.cases) |
|
3403 apply(simp_all)[5] |
|
3404 defer |
|
3405 apply(simp) |
|
3406 apply(erule Prf.cases) |
|
3407 apply(simp_all)[5] |
|
3408 apply(simp) |
|
3409 apply(case_tac "nullable rexp1") |
|
3410 apply(simp) |
|
3411 apply(erule Prf.cases) |
|
3412 apply(simp_all)[5] |
|
3413 apply(auto)[1] |
|
3414 apply(erule Prf.cases) |
|
3415 apply(simp_all)[5] |
|
3416 apply(auto)[1] |
|
3417 apply (metis list.distinct(1) v4) |
|
3418 apply(auto)[1] |
|
3419 apply (metis mkeps_flat) |
|
3420 apply(auto) |
|
3421 apply(erule Prf.cases) |
|
3422 apply(simp_all)[5] |
|
3423 apply(auto)[1] |
|
3424 apply(simp add: v4) |
|
3425 done |
|
3426 |
|
3427 lemma "L r \<noteq> {} \<Longrightarrow> \<exists>v. POSIX3 v r" |
|
3428 apply(induct r) |
|
3429 apply(simp) |
|
3430 apply(simp add: POSIX3_def) |
|
3431 apply(rule_tac x="Void" in exI) |
|
3432 apply(auto)[1] |
|
3433 apply (metis Prf.intros(4)) |
|
3434 apply (metis POSIX3_def flat.simps(1) mkeps.simps(1) mkeps_POSIX3 nullable.simps(2) order_refl) |
|
3435 apply(simp add: POSIX3_def) |
|
3436 apply(rule_tac x="Char char" in exI) |
|
3437 apply(auto)[1] |
|
3438 apply (metis Prf.intros(5)) |
|
3439 apply(erule Prf.cases) |
|
3440 apply(simp_all)[5] |
|
3441 apply (metis ValOrd.intros(8)) |
|
3442 apply(simp add: Sequ_def) |
|
3443 apply(auto)[1] |
|
3444 apply(drule meta_mp) |
|
3445 apply(auto)[2] |
|
3446 apply(drule meta_mp) |
|
3447 apply(auto)[2] |
|
3448 apply(rule_tac x="Seq v va" in exI) |
|
3449 apply(simp (no_asm) add: POSIX3_def) |
|
3450 apply(auto)[1] |
|
3451 apply (metis POSIX3_def Prf.intros(1)) |
|
3452 apply(erule Prf.cases) |
|
3453 apply(simp_all)[5] |
|
3454 apply(clarify) |
|
3455 apply(case_tac "v \<succ>r1a v1") |
|
3456 apply(rule ValOrd.intros(2)) |
|
3457 apply(simp) |
|
3458 apply(case_tac "v = v1") |
|
3459 apply(rule ValOrd.intros(1)) |
|
3460 apply(simp) |
|
3461 apply(simp) |
|
3462 apply (metis ValOrd_refl) |
|
3463 apply(simp add: POSIX3_def) |
|
3464 oops |
|
3465 |
|
3466 lemma "\<exists>v. POSIX v r" |
|
3467 apply(induct r) |
|
3468 apply(rule exI) |
|
3469 apply(simp add: POSIX_def) |
|
3470 apply (metis (full_types) Prf_flat_L der.simps(1) der.simps(2) der.simps(3) flat.simps(1) nullable.simps(1) nullable_correctness proj_inj_id projval.simps(1) v3 v4) |
|
3471 apply(rule_tac x = "Void" in exI) |
|
3472 apply(simp add: POSIX_def) |
|
3473 apply (metis POSIX_def flat.simps(1) mkeps.simps(1) mkeps_POSIX nullable.simps(2)) |
|
3474 apply(rule_tac x = "Char char" in exI) |
|
3475 apply(simp add: POSIX_def) |
|
3476 apply(auto) [1] |
|
3477 apply(erule Prf.cases) |
|
3478 apply(simp_all) [5] |
|
3479 apply (metis ValOrd.intros(8)) |
|
3480 defer |
|
3481 apply(auto) |
|
3482 apply (metis POSIX_ALT_I1) |
|
3483 (* maybe it is too early to instantiate this existential quantifier *) |
|
3484 (* potentially this is the wrong POSIX value *) |
|
3485 apply(case_tac "r1 = NULL") |
|
3486 apply(simp add: POSIX_def) |
|
3487 apply(auto)[1] |
|
3488 apply (metis L.simps(1) L.simps(4) Prf_flat_L mkeps_flat nullable.simps(1) nullable.simps(2) nullable_correctness seq_null(2)) |
|
3489 apply(case_tac "r1 = EMPTY") |
|
3490 apply(rule_tac x = "Seq Void va" in exI ) |
|
3491 apply(simp (no_asm) add: POSIX_def) |
|
3492 apply(auto) |
|
3493 apply(erule Prf.cases) |
|
3494 apply(simp_all) |
|
3495 apply(auto)[1] |
|
3496 apply(erule Prf.cases) |
|
3497 apply(simp_all) |
|
3498 apply(rule ValOrd.intros(2)) |
|
3499 apply(rule ValOrd.intros) |
|
3500 apply(case_tac "\<exists>c. r1 = CHAR c") |
|
3501 apply(auto) |
|
3502 apply(rule_tac x = "Seq (Char c) va" in exI ) |
|
3503 apply(simp (no_asm) add: POSIX_def) |
|
3504 apply(auto) |
|
3505 apply(erule Prf.cases) |
|
3506 apply(simp_all) |
|
3507 apply(auto)[1] |
|
3508 apply(erule Prf.cases) |
|
3509 apply(simp_all) |
|
3510 apply(auto)[1] |
|
3511 apply(rule ValOrd.intros(2)) |
|
3512 apply(rule ValOrd.intros) |
|
3513 apply(case_tac "\<exists>r1a r1b. r1 = ALT r1a r1b") |
|
3514 apply(auto) |
|
3515 oops (* not sure if this can be proved by induction *) |
|
3516 |
|
3517 text {* |
|
3518 |
|
3519 HERE: Crucial lemma that does not go through in the sequence case. |
|
3520 |
|
3521 *} |
|
3522 lemma v5: |
|
3523 assumes "\<turnstile> v : der c r" "POSIX v (der c r)" |
|
3524 shows "POSIX (injval r c v) r" |
|
3525 using assms |
|
3526 apply(induct arbitrary: v rule: der.induct) |
|
3527 (* NULL case *) |
|
3528 apply(simp) |
|
3529 apply(erule Prf.cases) |
|
3530 apply(simp_all)[5] |
|
3531 (* EMPTY case *) |
|
3532 apply(simp) |
|
3533 apply(erule Prf.cases) |
|
3534 apply(simp_all)[5] |
|
3535 (* CHAR case *) |
|
3536 apply(simp) |
|
3537 apply(case_tac "c = c'") |
|
3538 apply(auto simp add: POSIX_def)[1] |
|
3539 apply(erule Prf.cases) |
|
3540 apply(simp_all)[5] |
|
3541 apply(erule Prf.cases) |
|
3542 apply(simp_all)[5] |
|
3543 apply(rule ValOrd.intros) |
|
3544 apply(auto)[1] |
|
3545 apply(erule Prf.cases) |
|
3546 apply(simp_all)[5] |
|
3547 (* base cases done *) |
|
3548 (* ALT case *) |
|
3549 apply(erule Prf.cases) |
|
3550 apply(simp_all)[5] |
|
3551 using POSIX_ALT POSIX_ALT_I1 apply blast |
|
3552 apply(clarify) |
|
3553 apply(simp) |
|
3554 apply(rule POSIX_ALT_I2) |
|
3555 apply(drule POSIX_ALT1a) |
|
3556 apply metis |
|
3557 apply(auto)[1] |
|
3558 apply(subst v4) |
|
3559 apply(assumption) |
|
3560 apply(simp) |
|
3561 apply(drule POSIX_ALT1a) |
|
3562 apply(rotate_tac 1) |
|
3563 apply(drule_tac x="v2" in meta_spec) |
|
3564 apply(simp) |
|
3565 |
|
3566 apply(rotate_tac 4) |
|
3567 apply(erule Prf.cases) |
|
3568 apply(simp_all)[5] |
|
3569 apply(rule ValOrd.intros) |
|
3570 apply(simp) |
|
3571 apply(subst (asm) v4) |
|
3572 apply(assumption) |
|
3573 apply(clarify) |
|
3574 thm POSIX_ALT1a POSIX_ALT1b POSIX_ALT_I2 |
|
3575 apply(subst (asm) v4) |
|
3576 apply(auto simp add: POSIX_def)[1] |
|
3577 apply(subgoal_tac "POSIX v2 (der c r2)") |
|
3578 prefer 2 |
|
3579 apply(auto simp add: POSIX_def)[1] |
|
3580 apply (metis POSIX_ALT1a POSIX_def flat.simps(4)) |
|
3581 apply(frule POSIX_ALT1a) |
|
3582 apply(drule POSIX_ALT1b) |
|
3583 apply(rule POSIX_ALT_I2) |
|
3584 apply(rotate_tac 1) |
|
3585 apply(drule_tac x="v2" in meta_spec) |
|
3586 apply(simp) |
|
3587 apply(subgoal_tac "\<turnstile> Right (injval r2 c v2) : (ALT r1 r2)") |
|
3588 prefer 2 |
|
3589 apply (metis Prf.intros(3) v3) |
|
3590 apply auto[1] |
|
3591 apply(subst v4) |
|
3592 apply(auto)[2] |
|
3593 apply(subst (asm) (4) POSIX_def) |
|
3594 apply(subst (asm) v4) |
|
3595 apply(drule_tac x="v2" in meta_spec) |
|
3596 apply(simp) |
|
3597 |
|
3598 apply(auto)[2] |
|
3599 |
|
3600 thm POSIX_ALT_I2 |
|
3601 apply(rule POSIX_ALT_I2) |
|
3602 |
|
3603 apply(rule ccontr) |
|
3604 apply(auto simp add: POSIX_def)[1] |
|
3605 |
|
3606 apply(rule allI) |
|
3607 apply(rule impI) |
|
3608 apply(erule conjE) |
|
3609 thm POSIX_ALT_I2 |
|
3610 apply(frule POSIX_ALT1a) |
|
3611 apply(drule POSIX_ALT1b) |
|
3612 apply(rule POSIX_ALT_I2) |
|
3613 apply auto[1] |
|
3614 apply(subst v4) |
|
3615 apply(auto)[2] |
|
3616 apply(rotate_tac 1) |
|
3617 apply(drule_tac x="v2" in meta_spec) |
|
3618 apply(simp) |
|
3619 apply(subst (asm) (4) POSIX_def) |
|
3620 apply(subst (asm) v4) |
|
3621 apply(auto)[2] |
|
3622 (* stuck in the ALT case *) |