4 begin |
4 begin |
5 |
5 |
6 |
6 |
7 section {* Sulzmann's "Ordering" of Values *} |
7 section {* Sulzmann's "Ordering" of Values *} |
8 |
8 |
9 |
9 fun |
10 inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ >_ _" [100, 100, 100] 100) |
10 size :: "val \<Rightarrow> nat" |
11 where |
11 where |
12 C2: "v1 >r1 v1' \<Longrightarrow> (Seq v1 v2) >(SEQ r1 r2) (Seq v1' v2')" |
12 "size (Void) = 0" |
13 | C1: "v2 >r2 v2' \<Longrightarrow> (Seq v1 v2) >(SEQ r1 r2) (Seq v1 v2')" |
13 | "size (Char c) = 0" |
14 | A1: "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) >(ALT r1 r2) (Left v1)" |
14 | "size (Left v) = 1 + size v" |
15 | A2: "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) >(ALT r1 r2) (Right v2)" |
15 | "size (Right v) = 1 + size v" |
16 | A3: "v2 >r2 v2' \<Longrightarrow> (Right v2) >(ALT r1 r2) (Right v2')" |
16 | "size (Seq v1 v2) = 1 + (size v1) + (size v2)" |
17 | A4: "v1 >r1 v1' \<Longrightarrow> (Left v1) >(ALT r1 r2) (Left v1')" |
17 | "size (Stars []) = 0" |
18 | K1: "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) >(STAR r) (Stars (v # vs))" |
18 | "size (Stars (v#vs)) = 1 + (size v) + (size (Stars vs))" |
19 | K2: "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) >(STAR r) (Stars [])" |
19 |
20 | K3: "v1 >r v2 \<Longrightarrow> (Stars (v1 # vs1)) >(STAR r) (Stars (v2 # vs2))" |
20 lemma Star_size [simp]: |
21 | K4: "(Stars vs1) >(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) >(STAR r) (Stars (v # vs2))" |
21 "\<lbrakk>n < length vs; 0 < length vs\<rbrakk> \<Longrightarrow> size (nth vs n) < size (Stars vs)" |
|
22 apply(induct vs arbitrary: n) |
|
23 apply(simp) |
|
24 apply(auto) |
|
25 by (metis One_nat_def Suc_pred less_Suc0 less_Suc_eq list.size(3) not_add_less1 not_less_eq nth_Cons' trans_less_add2) |
|
26 |
|
27 lemma Star_size0 [simp]: |
|
28 "0 < length vs \<Longrightarrow> 0 < size (Stars vs)" |
|
29 apply(induct vs) |
|
30 apply(auto) |
|
31 done |
|
32 |
|
33 |
|
34 fun |
|
35 at :: "val \<Rightarrow> nat list \<Rightarrow> val" |
|
36 where |
|
37 "at v [] = v" |
|
38 | "at (Left v) (0#ps)= at v ps" |
|
39 | "at (Right v) (Suc 0#ps)= at v ps" |
|
40 | "at (Seq v1 v2) (0#ps)= at v1 ps" |
|
41 | "at (Seq v1 v2) (Suc 0#ps)= at v2 ps" |
|
42 | "at (Stars vs) (n#ps)= at (nth vs n) ps" |
|
43 |
|
44 fun |
|
45 ato :: "val \<Rightarrow> nat list \<Rightarrow> val option" |
|
46 where |
|
47 "ato v [] = Some v" |
|
48 | "ato (Left v) (0#ps)= ato v ps" |
|
49 | "ato (Right v) (Suc 0#ps)= ato v ps" |
|
50 | "ato (Seq v1 v2) (0#ps)= ato v1 ps" |
|
51 | "ato (Seq v1 v2) (Suc 0#ps)= ato v2 ps" |
|
52 | "ato (Stars vs) (n#ps)= (if (n < length vs) then ato (nth vs n) ps else None)" |
|
53 | "ato v p = None" |
|
54 |
|
55 fun Pos :: "val \<Rightarrow> (nat list) set" |
|
56 where |
|
57 "Pos (Void) = {[]}" |
|
58 | "Pos (Char c) = {[]}" |
|
59 | "Pos (Left v) = {[]} \<union> {0#ps | ps. ps \<in> Pos v}" |
|
60 | "Pos (Right v) = {[]} \<union> {1#ps | ps. ps \<in> Pos v}" |
|
61 | "Pos (Seq v1 v2) = {[]} \<union> {0#ps | ps. ps \<in> Pos v1} \<union> {1#ps | ps. ps \<in> Pos v2}" |
|
62 | "Pos (Stars []) = {[]}" |
|
63 | "Pos (Stars (v#vs)) = {[]} \<union> {0#ps | ps. ps \<in> Pos v} \<union> {(Suc n)#ps | n ps. n#ps \<in> Pos (Stars vs)}" |
|
64 |
|
65 lemma Pos_empty: |
|
66 shows "[] \<in> Pos v" |
|
67 apply(induct v rule: Pos.induct) |
|
68 apply(auto) |
|
69 done |
|
70 |
|
71 lemma Pos_finite_aux: |
|
72 assumes "\<forall>v \<in> set vs. finite (Pos v)" |
|
73 shows "finite (Pos (Stars vs))" |
|
74 using assms |
|
75 apply(induct vs) |
|
76 apply(simp) |
|
77 apply(simp) |
|
78 apply(subgoal_tac "finite (Pos (Stars vs) - {[]})") |
|
79 apply(rule_tac f="\<lambda>l. Suc (hd l) # tl l" in finite_surj) |
|
80 apply(assumption) |
|
81 back |
|
82 apply(auto simp add: image_def) |
|
83 apply(rule_tac x="n#ps" in bexI) |
|
84 apply(simp) |
|
85 apply(simp) |
|
86 done |
|
87 |
|
88 lemma Pos_finite: |
|
89 shows "finite (Pos v)" |
|
90 apply(induct v rule: val.induct) |
|
91 apply(auto) |
|
92 apply(simp add: Pos_finite_aux) |
|
93 done |
|
94 |
|
95 |
|
96 lemma ato_test: |
|
97 assumes "p \<in> Pos v" |
|
98 shows "\<exists>v'. ato v p = Some v'" |
|
99 using assms |
|
100 apply(induct v arbitrary: p rule: Pos.induct) |
|
101 apply(auto) |
|
102 apply force |
|
103 by (metis ato.simps(6) option.distinct(1)) |
|
104 |
|
105 definition pflat :: "val \<Rightarrow> nat list => string option" |
|
106 where |
|
107 "pflat v p \<equiv> (if p \<in> Pos v then Some (flat (at v p)) else None)" |
|
108 |
|
109 fun intlen :: "'a list \<Rightarrow> int" |
|
110 where |
|
111 "intlen [] = 0" |
|
112 | "intlen (x#xs) = 1 + intlen xs" |
|
113 |
|
114 lemma inlen_bigger: |
|
115 shows "0 \<le> intlen xs" |
|
116 apply(induct xs) |
|
117 apply(auto) |
|
118 done |
|
119 |
|
120 lemma intlen_append: |
|
121 shows "intlen (xs @ ys) = intlen xs + intlen ys" |
|
122 apply(induct xs arbitrary: ys) |
|
123 apply(auto) |
|
124 done |
|
125 |
|
126 lemma intlen_length: |
|
127 assumes "length xs < length ys" |
|
128 shows "intlen xs < intlen ys" |
|
129 using assms |
|
130 apply(induct xs arbitrary: ys) |
|
131 apply(auto) |
|
132 apply(case_tac ys) |
|
133 apply(simp_all) |
|
134 apply (smt inlen_bigger) |
|
135 by (smt Suc_lessE intlen.simps(2) length_Suc_conv) |
|
136 |
|
137 |
|
138 definition pflat_len :: "val \<Rightarrow> nat list => int" |
|
139 where |
|
140 "pflat_len v p \<equiv> (if p \<in> Pos v then intlen (flat (at v p)) else -1)" |
|
141 |
|
142 lemma pflat_len_simps: |
|
143 shows "pflat_len (Seq v1 v2) (0#p) = pflat_len v1 p" |
|
144 and "pflat_len (Seq v1 v2) (Suc 0#p) = pflat_len v2 p" |
|
145 and "pflat_len (Left v) (0#p) = pflat_len v p" |
|
146 and "pflat_len (Left v) (Suc 0#p) = -1" |
|
147 and "pflat_len (Right v) (Suc 0#p) = pflat_len v p" |
|
148 and "pflat_len (Right v) (0#p) = -1" |
|
149 and "pflat_len v [] = intlen (flat v)" |
|
150 apply(auto simp add: pflat_len_def Pos_empty) |
|
151 done |
|
152 |
|
153 lemma pflat_len_Stars_simps: |
|
154 assumes "n < length vs" |
|
155 shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p" |
|
156 using assms |
|
157 apply(induct vs arbitrary: n p) |
|
158 apply(simp) |
|
159 apply(simp) |
|
160 apply(simp add: pflat_len_def) |
|
161 apply(auto)[1] |
|
162 apply (metis at.simps(6)) |
|
163 apply (metis Suc_less_eq Suc_pred) |
|
164 by (metis diff_Suc_1 less_Suc_eq_0_disj nth_Cons') |
|
165 |
|
166 |
|
167 lemma Two_to_Three_aux: |
|
168 assumes "p \<in> Pos v1 \<union> Pos v2" "pflat_len v1 p = pflat_len v2 p" |
|
169 shows "p \<in> Pos v1 \<inter> Pos v2" |
|
170 using assms |
|
171 apply(simp add: pflat_len_def) |
|
172 apply(auto split: if_splits) |
|
173 apply (smt inlen_bigger)+ |
|
174 done |
|
175 |
|
176 lemma Two_to_Three: |
|
177 assumes "\<forall>p \<in> Pos v1 \<union> Pos v2. pflat v1 p = pflat v2 p" |
|
178 shows "Pos v1 = Pos v2" |
|
179 using assms |
|
180 by (metis Un_iff option.distinct(1) pflat_def subsetI subset_antisym) |
|
181 |
|
182 lemma Two_to_Three_orig: |
|
183 assumes "\<forall>p \<in> Pos v1 \<union> Pos v2. pflat_len v1 p = pflat_len v2 p" |
|
184 shows "Pos v1 = Pos v2" |
|
185 using assms |
|
186 by (metis Un_iff inlen_bigger neg_0_le_iff_le not_one_le_zero pflat_len_def subsetI subset_antisym) |
|
187 |
|
188 lemma set_eq1: |
|
189 assumes "insert [] A = insert [] B" "[] \<notin> A" "[] \<notin> B" |
|
190 shows "A = B" |
|
191 using assms |
|
192 by (simp add: insert_ident) |
|
193 |
|
194 lemma set_eq2: |
|
195 assumes "A \<union> B = A \<union> C" |
|
196 and "A \<inter> B = {}" "A \<inter> C = {}" |
|
197 shows "B = C" |
|
198 using assms |
|
199 using Un_Int_distrib sup_bot.left_neutral sup_commute by blast |
|
200 |
|
201 |
|
202 |
|
203 lemma Three_to_One: |
|
204 assumes "\<turnstile> v1 : r" "\<turnstile> v2 : r" |
|
205 and "Pos v1 = Pos v2" |
|
206 shows "v1 = v2" |
|
207 using assms |
|
208 apply(induct v1 arbitrary: r v2 rule: Pos.induct) |
|
209 apply(erule Prf.cases) |
|
210 apply(simp_all) |
|
211 apply(erule Prf.cases) |
|
212 apply(simp_all) |
|
213 apply(erule Prf.cases) |
|
214 apply(simp_all) |
|
215 apply(erule Prf.cases) |
|
216 apply(simp_all) |
|
217 apply(erule Prf.cases) |
|
218 apply(simp_all) |
|
219 apply(erule Prf.cases) |
|
220 apply(simp_all) |
|
221 apply(clarify) |
|
222 apply(simp add: insert_ident) |
|
223 apply(drule_tac x="r1a" in meta_spec) |
|
224 apply(drule_tac x="v1a" in meta_spec) |
|
225 apply(simp) |
|
226 apply(drule_tac meta_mp) |
|
227 thm subset_antisym |
|
228 apply(rule subset_antisym) |
|
229 apply(auto)[3] |
|
230 apply(clarify) |
|
231 apply(simp add: insert_ident) |
|
232 using Pos_empty apply blast |
|
233 apply(erule Prf.cases) |
|
234 apply(simp_all) |
|
235 apply(erule Prf.cases) |
|
236 apply(simp_all) |
|
237 apply(clarify) |
|
238 apply(simp add: insert_ident) |
|
239 using Pos_empty apply blast |
|
240 apply(simp add: insert_ident) |
|
241 apply(drule_tac x="r2a" in meta_spec) |
|
242 apply(drule_tac x="v2b" in meta_spec) |
|
243 apply(simp) |
|
244 apply(drule_tac meta_mp) |
|
245 apply(rule subset_antisym) |
|
246 apply(auto)[3] |
|
247 apply(erule Prf.cases) |
|
248 apply(simp_all) |
|
249 apply(erule Prf.cases) |
|
250 apply(simp_all) |
|
251 apply(simp add: insert_ident) |
|
252 apply(clarify) |
|
253 apply(drule_tac x="r1a" in meta_spec) |
|
254 apply(drule_tac x="r2a" in meta_spec) |
|
255 apply(drule_tac x="v1b" in meta_spec) |
|
256 apply(drule_tac x="v2c" in meta_spec) |
|
257 apply(simp) |
|
258 apply(drule_tac meta_mp) |
|
259 apply(rule subset_antisym) |
|
260 apply(rule subsetI) |
|
261 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1a}") |
|
262 prefer 2 |
|
263 apply(auto)[1] |
|
264 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2c}") |
|
265 prefer 2 |
|
266 apply (metis (no_types, lifting) Un_iff) |
|
267 apply(simp) |
|
268 apply(rule subsetI) |
|
269 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b}") |
|
270 prefer 2 |
|
271 apply(auto)[1] |
|
272 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos v1a} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2b}") |
|
273 prefer 2 |
|
274 apply (metis (no_types, lifting) Un_iff) |
|
275 apply(simp (no_asm_use)) |
|
276 apply(simp) |
|
277 apply(drule_tac meta_mp) |
|
278 apply(rule subset_antisym) |
|
279 apply(rule subsetI) |
|
280 apply(subgoal_tac "Suc 0 # x \<in> {Suc 0 # ps |ps. ps \<in> Pos v2b}") |
|
281 prefer 2 |
|
282 apply(auto)[1] |
|
283 apply(subgoal_tac "Suc 0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2c}") |
|
284 prefer 2 |
|
285 apply (metis (no_types, lifting) Un_iff) |
|
286 apply(simp) |
|
287 apply(rule subsetI) |
|
288 apply(subgoal_tac "Suc 0 # x \<in> {Suc 0 # ps |ps. ps \<in> Pos v2c}") |
|
289 prefer 2 |
|
290 apply(auto)[1] |
|
291 apply(subgoal_tac "Suc 0 # x \<in> {0 # ps |ps. ps \<in> Pos v1b} \<union> {Suc 0 # ps |ps. ps \<in> Pos v2b}") |
|
292 prefer 2 |
|
293 apply (metis (no_types, lifting) Un_iff) |
|
294 apply(simp (no_asm_use)) |
|
295 apply(simp) |
|
296 apply(erule Prf.cases) |
|
297 apply(simp_all) |
|
298 apply(erule Prf.cases) |
|
299 apply(simp_all) |
|
300 apply(auto)[1] |
|
301 using Pos_empty apply fastforce |
|
302 apply(erule Prf.cases) |
|
303 apply(simp_all) |
|
304 apply(erule Prf.cases) |
|
305 apply(simp_all) |
|
306 apply(auto)[1] |
|
307 using Pos_empty apply fastforce |
|
308 apply(clarify) |
|
309 apply(simp add: insert_ident) |
|
310 apply(drule_tac x="rb" in meta_spec) |
|
311 apply(drule_tac x="STAR rb" in meta_spec) |
|
312 apply(drule_tac x="vb" in meta_spec) |
|
313 apply(drule_tac x="Stars vsb" in meta_spec) |
|
314 apply(simp) |
|
315 apply(drule_tac meta_mp) |
|
316 apply(rule subset_antisym) |
|
317 apply(rule subsetI) |
|
318 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos va}") |
|
319 prefer 2 |
|
320 apply(auto)[1] |
|
321 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsb)}") |
|
322 prefer 2 |
|
323 apply (metis (no_types, lifting) Un_iff) |
|
324 apply(simp) |
|
325 apply(rule subsetI) |
|
326 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos vb}") |
|
327 prefer 2 |
|
328 apply(auto)[1] |
|
329 apply(subgoal_tac "0 # x \<in> {0 # ps |ps. ps \<in> Pos va} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsa)}") |
|
330 prefer 2 |
|
331 apply (metis (no_types, lifting) Un_iff) |
|
332 apply(simp (no_asm_use)) |
|
333 apply(simp) |
|
334 apply(drule_tac meta_mp) |
|
335 apply(rule subset_antisym) |
|
336 apply(rule subsetI) |
|
337 apply(case_tac vsa) |
|
338 apply(simp) |
|
339 apply (simp add: Pos_empty) |
|
340 apply(simp) |
|
341 apply(clarify) |
|
342 apply(erule disjE) |
|
343 apply (simp add: Pos_empty) |
|
344 apply(erule disjE) |
|
345 apply(clarify) |
|
346 apply(subgoal_tac |
|
347 "Suc 0 # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}") |
|
348 prefer 2 |
|
349 apply blast |
|
350 apply(subgoal_tac "Suc 0 # ps \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsb)}") |
|
351 prefer 2 |
|
352 apply (metis (no_types, lifting) Un_iff) |
|
353 apply(simp) |
|
354 apply(clarify) |
|
355 apply(subgoal_tac |
|
356 "Suc (Suc n) # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}") |
|
357 prefer 2 |
|
358 apply blast |
|
359 apply(subgoal_tac "Suc (Suc n) # ps \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsb)}") |
|
360 prefer 2 |
|
361 apply (metis (no_types, lifting) Un_iff) |
|
362 apply(simp) |
|
363 apply(rule subsetI) |
|
364 apply(case_tac vsb) |
|
365 apply(simp) |
|
366 apply (simp add: Pos_empty) |
|
367 apply(simp) |
|
368 apply(clarify) |
|
369 apply(erule disjE) |
|
370 apply (simp add: Pos_empty) |
|
371 apply(erule disjE) |
|
372 apply(clarify) |
|
373 apply(subgoal_tac |
|
374 "Suc 0 # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}") |
|
375 prefer 2 |
|
376 apply(simp) |
|
377 apply(subgoal_tac "Suc 0 # ps \<in> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsa)}") |
|
378 apply blast |
|
379 using list.inject apply blast |
|
380 apply(clarify) |
|
381 apply(subgoal_tac |
|
382 "Suc (Suc n) # ps \<in> {Suc n # ps |n ps. n = 0 \<and> ps \<in> Pos a \<or> (\<exists>na. n = Suc na \<and> na # ps \<in> Pos (Stars list))}") |
|
383 prefer 2 |
|
384 apply(simp) |
|
385 apply(subgoal_tac "Suc (Suc n) # ps \<in> {0 # ps |ps. ps \<in> Pos vb} \<union> {Suc n # ps |n ps. n # ps \<in> Pos (Stars vsa)}") |
|
386 prefer 2 |
|
387 apply (metis (no_types, lifting) Un_iff) |
|
388 apply(simp (no_asm_use)) |
|
389 apply(simp) |
|
390 done |
|
391 |
|
392 definition prefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubseteq>pre _") |
|
393 where |
|
394 "ps1 \<sqsubseteq>pre ps2 \<equiv> (\<exists>ps'. ps1 @ps' = ps2)" |
|
395 |
|
396 definition sprefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubset>spre _") |
|
397 where |
|
398 "ps1 \<sqsubset>spre ps2 \<equiv> (ps1 \<sqsubseteq>pre ps2 \<and> ps1 \<noteq> ps2)" |
|
399 |
|
400 inductive lex_lists :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" ("_ \<sqsubset>lex _") |
|
401 where |
|
402 "[] \<sqsubset>lex p#ps" |
|
403 | "ps1 \<sqsubset>lex ps2 \<Longrightarrow> (p#ps1) \<sqsubset>lex (p#ps2)" |
|
404 | "p1 < p2 \<Longrightarrow> (p1#ps1) \<sqsubset>lex (p2#ps2)" |
|
405 |
|
406 lemma lex_irrfl: |
|
407 fixes ps1 ps2 :: "nat list" |
|
408 assumes "ps1 \<sqsubset>lex ps2" |
|
409 shows "ps1 \<noteq> ps2" |
|
410 using assms |
|
411 apply(induct rule: lex_lists.induct) |
|
412 apply(auto) |
|
413 done |
|
414 |
|
415 lemma lex_append: |
|
416 assumes "ps2 \<noteq> []" |
|
417 shows "ps \<sqsubset>lex ps @ ps2" |
|
418 using assms |
|
419 apply(induct ps) |
|
420 apply(auto intro: lex_lists.intros) |
|
421 apply(case_tac ps2) |
|
422 apply(simp) |
|
423 apply(simp) |
|
424 apply(auto intro: lex_lists.intros) |
|
425 done |
|
426 |
|
427 lemma lexordp_simps [simp]: |
|
428 fixes xs ys :: "nat list" |
|
429 shows "[] \<sqsubset>lex ys = (ys \<noteq> [])" |
|
430 and "xs \<sqsubset>lex [] = False" |
|
431 and "(x # xs) \<sqsubset>lex (y # ys) \<longleftrightarrow> (x < y \<or> (\<not> y < x \<and> xs \<sqsubset>lex ys))" |
|
432 apply - |
|
433 apply (metis lex_append lex_lists.simps list.simps(3)) |
|
434 using lex_lists.cases apply blast |
|
435 using lex_lists.cases lex_lists.intros(2) lex_lists.intros(3) not_less_iff_gr_or_eq by fastforce |
|
436 |
|
437 lemma lex_append_cancel [simp]: |
|
438 fixes ps ps1 ps2 :: "nat list" |
|
439 shows "ps @ ps1 \<sqsubset>lex ps @ ps2 \<longleftrightarrow> ps1 \<sqsubset>lex ps2" |
|
440 apply(induct ps) |
|
441 apply(auto) |
|
442 done |
|
443 |
|
444 lemma lex_trans: |
|
445 fixes ps1 ps2 ps3 :: "nat list" |
|
446 assumes "ps1 \<sqsubset>lex ps2" "ps2 \<sqsubset>lex ps3" |
|
447 shows "ps1 \<sqsubset>lex ps3" |
|
448 using assms |
|
449 apply(induct arbitrary: ps3 rule: lex_lists.induct) |
|
450 apply(erule lex_lists.cases) |
|
451 apply(simp_all) |
|
452 apply(rotate_tac 2) |
|
453 apply(erule lex_lists.cases) |
|
454 apply(simp_all) |
|
455 apply(erule lex_lists.cases) |
|
456 apply(simp_all) |
|
457 done |
|
458 |
|
459 lemma trichotomous_aux: |
|
460 fixes p q :: "nat list" |
|
461 assumes "p \<sqsubset>lex q" "p \<noteq> q" |
|
462 shows "\<not>(q \<sqsubset>lex p)" |
|
463 using assms |
|
464 apply(induct rule: lex_lists.induct) |
|
465 apply(auto) |
|
466 done |
|
467 |
|
468 lemma trichotomous_aux2: |
|
469 fixes p q :: "nat list" |
|
470 assumes "p \<sqsubset>lex q" "q \<sqsubset>lex p" |
|
471 shows "False" |
|
472 using assms |
|
473 apply(induct rule: lex_lists.induct) |
|
474 apply(auto) |
|
475 done |
|
476 |
|
477 lemma trichotomous: |
|
478 fixes p q :: "nat list" |
|
479 shows "p = q \<or> p \<sqsubset>lex q \<or> q \<sqsubset>lex p" |
|
480 apply(induct p arbitrary: q) |
|
481 apply(auto) |
|
482 apply(case_tac q) |
|
483 apply(auto) |
|
484 done |
|
485 |
|
486 definition dpos :: "val \<Rightarrow> val \<Rightarrow> nat list \<Rightarrow> bool" |
|
487 where |
|
488 "dpos v1 v2 p \<equiv> (p \<in> Pos v1 \<union> Pos v2) \<and> (p \<notin> Pos v1 \<inter> Pos v2)" |
|
489 |
|
490 definition |
|
491 "DPos v1 v2 \<equiv> {p. dpos v1 v2 p}" |
|
492 |
|
493 lemma outside_lemma: |
|
494 assumes "p \<notin> Pos v1 \<union> Pos v2" |
|
495 shows "pflat_len v1 p = pflat_len v2 p" |
|
496 using assms |
|
497 apply(auto simp add: pflat_len_def) |
|
498 done |
|
499 |
|
500 lemma dpos_lemma_aux: |
|
501 assumes "p \<in> Pos v1 \<union> Pos v2" |
|
502 and "pflat_len v1 p = pflat_len v2 p" |
|
503 shows "p \<in> Pos v1 \<inter> Pos v2" |
|
504 using assms |
|
505 apply(auto simp add: pflat_len_def) |
|
506 apply (smt inlen_bigger) |
|
507 apply (smt inlen_bigger) |
|
508 done |
|
509 |
|
510 lemma dpos_lemma: |
|
511 assumes "p \<in> Pos v1 \<union> Pos v2" |
|
512 and "pflat_len v1 p = pflat_len v2 p" |
|
513 shows "\<not>dpos v1 v2 p" |
|
514 using assms |
|
515 apply(auto simp add: dpos_def dpos_lemma_aux) |
|
516 using dpos_lemma_aux apply auto[1] |
|
517 using dpos_lemma_aux apply auto[1] |
|
518 done |
|
519 |
|
520 lemma dpos_lemma2: |
|
521 assumes "p \<in> Pos v1 \<union> Pos v2" |
|
522 and "dpos v1 v2 p" |
|
523 shows "pflat_len v1 p \<noteq> pflat_len v2 p" |
|
524 using assms |
|
525 using dpos_lemma by blast |
|
526 |
|
527 lemma DPos_lemma: |
|
528 assumes "p \<in> DPos v1 v2" |
|
529 shows "pflat_len v1 p \<noteq> pflat_len v2 p" |
|
530 using assms |
|
531 unfolding DPos_def |
|
532 apply(auto simp add: pflat_len_def dpos_def) |
|
533 apply (smt inlen_bigger) |
|
534 by (smt inlen_bigger) |
|
535 |
|
536 |
|
537 definition val_ord:: "val \<Rightarrow> nat list \<Rightarrow> val \<Rightarrow> bool" ("_ \<sqsubset>val _ _") |
|
538 where |
|
539 "v1 \<sqsubset>val p v2 \<equiv> (p \<in> Pos v1 \<and> pflat_len v1 p > pflat_len v2 p \<and> |
|
540 (\<forall>q \<in> Pos v1 \<union> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q))" |
|
541 |
|
542 |
|
543 definition val_ord_ex:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubset>val _") |
|
544 where |
|
545 "v1 :\<sqsubset>val v2 \<equiv> (\<exists>p. v1 \<sqsubset>val p v2)" |
|
546 |
|
547 definition val_ord_ex1:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubseteq>val _") |
|
548 where |
|
549 "v1 :\<sqsubseteq>val v2 \<equiv> v1 :\<sqsubset>val v2 \<or> v1 = v2" |
|
550 |
|
551 lemma val_ord_shorterI: |
|
552 assumes "length (flat v') < length (flat v)" |
|
553 shows "v :\<sqsubset>val v'" |
|
554 using assms(1) |
|
555 apply(subst val_ord_ex_def) |
|
556 apply(rule_tac x="[]" in exI) |
|
557 apply(subst val_ord_def) |
|
558 apply(rule conjI) |
|
559 apply (simp add: Pos_empty) |
|
560 apply(rule conjI) |
|
561 apply(simp add: pflat_len_simps) |
|
562 apply (simp add: intlen_length) |
|
563 apply(simp) |
|
564 done |
|
565 |
|
566 |
|
567 |
|
568 lemma val_ord_ALTI: |
|
569 assumes "v \<sqsubset>val p v'" "flat v = flat v'" |
|
570 shows "(Left v) \<sqsubset>val (0#p) (Left v')" |
|
571 using assms(1) |
|
572 apply(subst (asm) val_ord_def) |
|
573 apply(erule conjE) |
|
574 apply(subst val_ord_def) |
|
575 apply(rule conjI) |
|
576 apply(simp) |
|
577 apply(rule conjI) |
|
578 apply(simp add: pflat_len_simps) |
|
579 apply(rule ballI) |
|
580 apply(rule impI) |
|
581 apply(simp only: Pos.simps) |
|
582 apply(auto)[1] |
|
583 using assms(2) |
|
584 apply(simp add: pflat_len_simps) |
|
585 apply(auto simp add: pflat_len_simps)[2] |
|
586 done |
|
587 |
|
588 lemma val_ord_ALTI2: |
|
589 assumes "v \<sqsubset>val p v'" "flat v = flat v'" |
|
590 shows "(Right v) \<sqsubset>val (1#p) (Right v')" |
|
591 using assms(1) |
|
592 apply(subst (asm) val_ord_def) |
|
593 apply(erule conjE) |
|
594 apply(subst val_ord_def) |
|
595 apply(rule conjI) |
|
596 apply(simp) |
|
597 apply(rule conjI) |
|
598 apply(simp add: pflat_len_simps) |
|
599 apply(rule ballI) |
|
600 apply(rule impI) |
|
601 apply(simp only: Pos.simps) |
|
602 apply(auto)[1] |
|
603 using assms(2) |
|
604 apply(simp add: pflat_len_simps) |
|
605 apply(auto simp add: pflat_len_simps)[2] |
|
606 done |
|
607 |
|
608 lemma val_ord_STARI: |
|
609 assumes "v1 \<sqsubset>val p v2" "flat (Stars (v1#vs1)) = flat (Stars (v2#vs2))" |
|
610 shows "(Stars (v1#vs1)) \<sqsubset>val (0#p) (Stars (v2#vs2))" |
|
611 using assms(1) |
|
612 apply(subst (asm) val_ord_def) |
|
613 apply(erule conjE) |
|
614 apply(subst val_ord_def) |
|
615 apply(rule conjI) |
|
616 apply(simp) |
|
617 apply(rule conjI) |
|
618 apply(subst pflat_len_Stars_simps) |
|
619 apply(simp) |
|
620 apply(subst pflat_len_Stars_simps) |
|
621 apply(simp) |
|
622 apply(simp) |
|
623 apply(rule ballI) |
|
624 apply(rule impI) |
|
625 apply(simp) |
|
626 apply(auto) |
|
627 using assms(2) |
|
628 apply(simp add: pflat_len_simps) |
|
629 apply(auto simp add: pflat_len_Stars_simps) |
|
630 done |
|
631 |
|
632 lemma val_ord_STARI2: |
|
633 assumes "(Stars vs1) \<sqsubset>val n#p (Stars vs2)" "flat (Stars vs1) = flat (Stars vs2)" |
|
634 shows "(Stars (v#vs1)) \<sqsubset>val (Suc n#p) (Stars (v#vs2))" |
|
635 using assms(1) |
|
636 apply(subst (asm) val_ord_def) |
|
637 apply(erule conjE)+ |
|
638 apply(subst val_ord_def) |
|
639 apply(rule conjI) |
|
640 apply(simp) |
|
641 apply(rule conjI) |
|
642 apply(case_tac vs1) |
|
643 apply(simp) |
|
644 apply(simp) |
|
645 apply(auto)[1] |
|
646 apply(case_tac vs2) |
|
647 apply(simp) |
|
648 apply (simp add: pflat_len_def) |
|
649 apply(simp) |
|
650 apply(auto)[1] |
|
651 apply (simp add: pflat_len_Stars_simps) |
|
652 using pflat_len_def apply auto[1] |
|
653 apply(rule ballI) |
|
654 apply(rule impI) |
|
655 apply(simp) |
|
656 using assms(2) |
|
657 apply(auto) |
|
658 apply (simp add: pflat_len_simps(7)) |
|
659 apply (simp add: pflat_len_Stars_simps) |
|
660 using assms(2) |
|
661 apply(auto simp add: pflat_len_def)[1] |
|
662 apply force |
|
663 apply force |
|
664 apply(auto simp add: pflat_len_def)[1] |
|
665 apply force |
|
666 apply force |
|
667 apply(auto simp add: pflat_len_def)[1] |
|
668 apply(auto simp add: pflat_len_def)[1] |
|
669 apply force |
|
670 apply force |
|
671 apply(auto simp add: pflat_len_def)[1] |
|
672 apply force |
|
673 apply force |
|
674 done |
|
675 |
|
676 |
|
677 lemma val_ord_SEQI: |
|
678 assumes "v1 \<sqsubset>val p v1'" "flat (Seq v1 v2) = flat (Seq v1' v2')" |
|
679 shows "(Seq v1 v2) \<sqsubset>val (0#p) (Seq v1' v2')" |
|
680 using assms(1) |
|
681 apply(subst (asm) val_ord_def) |
|
682 apply(erule conjE) |
|
683 apply(subst val_ord_def) |
|
684 apply(rule conjI) |
|
685 apply(simp) |
|
686 apply(rule conjI) |
|
687 apply(simp add: pflat_len_simps) |
|
688 apply(rule ballI) |
|
689 apply(rule impI) |
|
690 apply(simp only: Pos.simps) |
|
691 apply(auto)[1] |
|
692 apply(simp add: pflat_len_simps) |
|
693 using assms(2) |
|
694 apply(simp) |
|
695 apply(auto simp add: pflat_len_simps)[2] |
|
696 done |
|
697 |
|
698 |
|
699 lemma val_ord_SEQI2: |
|
700 assumes "v2 \<sqsubset>val p v2'" "flat v2 = flat v2'" |
|
701 shows "(Seq v v2) \<sqsubset>val (1#p) (Seq v v2')" |
|
702 using assms(1) |
|
703 apply(subst (asm) val_ord_def) |
|
704 apply(erule conjE)+ |
|
705 apply(subst val_ord_def) |
|
706 apply(rule conjI) |
|
707 apply(simp) |
|
708 apply(rule conjI) |
|
709 apply(simp add: pflat_len_simps) |
|
710 apply(rule ballI) |
|
711 apply(rule impI) |
|
712 apply(simp only: Pos.simps) |
|
713 apply(auto) |
|
714 apply(auto simp add: pflat_len_def intlen_append) |
|
715 apply(auto simp add: assms(2)) |
|
716 done |
|
717 |
|
718 lemma val_ord_SEQE_0: |
|
719 assumes "(Seq v1 v2) \<sqsubset>val 0#p (Seq v1' v2')" |
|
720 shows "v1 \<sqsubset>val p v1'" |
|
721 using assms(1) |
|
722 apply(simp add: val_ord_def val_ord_ex_def) |
|
723 apply(auto)[1] |
|
724 apply(simp add: pflat_len_simps) |
|
725 apply(simp add: val_ord_def pflat_len_def) |
|
726 apply(auto)[1] |
|
727 apply(drule_tac x="0#q" in bspec) |
|
728 apply(simp) |
|
729 apply(simp) |
|
730 apply(drule_tac x="0#q" in bspec) |
|
731 apply(simp) |
|
732 apply(simp) |
|
733 apply(drule_tac x="0#q" in bspec) |
|
734 apply(simp) |
|
735 apply(simp) |
|
736 apply(simp add: val_ord_def pflat_len_def) |
|
737 apply(auto)[1] |
|
738 done |
|
739 |
|
740 lemma val_ord_SEQE_1: |
|
741 assumes "(Seq v1 v2) \<sqsubset>val (Suc 0)#p (Seq v1' v2')" |
|
742 shows "v2 \<sqsubset>val p v2'" |
|
743 using assms(1) |
|
744 apply(simp add: val_ord_def pflat_len_def) |
|
745 apply(auto)[1] |
|
746 apply(drule_tac x="1#q" in bspec) |
|
747 apply(simp) |
|
748 apply(simp) |
|
749 apply(drule_tac x="1#q" in bspec) |
|
750 apply(simp) |
|
751 apply(simp) |
|
752 apply(drule_tac x="1#q" in bspec) |
|
753 apply(simp) |
|
754 apply(auto)[1] |
|
755 apply(drule_tac x="1#q" in bspec) |
|
756 apply(simp) |
|
757 apply(auto) |
|
758 apply(simp add: intlen_append) |
|
759 apply force |
|
760 apply(simp add: intlen_append) |
|
761 apply force |
|
762 apply(simp add: intlen_append) |
|
763 apply force |
|
764 apply(simp add: intlen_append) |
|
765 apply force |
|
766 done |
|
767 |
|
768 lemma val_ord_SEQE_2: |
|
769 assumes "(Seq v1 v2) \<sqsubset>val (Suc 0)#p (Seq v1' v2')" |
|
770 and "\<turnstile> v1 : r" "\<turnstile> v1' : r" |
|
771 shows "v1 = v1'" |
|
772 proof - |
|
773 have "\<forall>q \<in> Pos v1 \<union> Pos v1'. 0 # q \<sqsubset>lex 1#p \<longrightarrow> pflat_len v1 q = pflat_len v1' q" |
|
774 using assms(1) |
|
775 apply(simp add: val_ord_def) |
|
776 apply(rule ballI) |
|
777 apply(clarify) |
|
778 apply(drule_tac x="0#q" in bspec) |
|
779 apply(auto)[1] |
|
780 apply(simp add: pflat_len_simps) |
|
781 done |
|
782 then have "Pos v1 = Pos v1'" |
|
783 apply(rule_tac Two_to_Three_orig) |
|
784 apply(rule ballI) |
|
785 apply(drule_tac x="pa" in bspec) |
|
786 apply(simp) |
|
787 apply(simp) |
|
788 done |
|
789 then show "v1 = v1'" |
|
790 apply(rule_tac Three_to_One) |
|
791 apply(rule assms) |
|
792 apply(rule assms) |
|
793 apply(simp) |
|
794 done |
|
795 qed |
|
796 |
|
797 lemma val_ord_SEQ: |
|
798 assumes "(Seq v1 v2) :\<sqsubset>val (Seq v1' v2')" |
|
799 and "flat (Seq v1 v2) = flat (Seq v1' v2')" |
|
800 and "\<turnstile> v1 : r" "\<turnstile> v1' : r" |
|
801 shows "(v1 :\<sqsubset>val v1') \<or> (v1 = v1' \<and> (v2 :\<sqsubset>val v2'))" |
|
802 using assms(1) |
|
803 apply(subst (asm) val_ord_ex_def) |
|
804 apply(erule exE) |
|
805 apply(simp only: val_ord_def) |
|
806 apply(simp) |
|
807 apply(erule conjE)+ |
|
808 apply(erule disjE) |
|
809 prefer 2 |
|
810 apply(erule disjE) |
|
811 apply(erule exE) |
|
812 apply(rule disjI1) |
|
813 apply(simp) |
|
814 apply(subst val_ord_ex_def) |
|
815 apply(rule_tac x="ps" in exI) |
|
816 apply(rule val_ord_SEQE_0) |
|
817 apply(simp add: val_ord_def) |
|
818 apply(erule exE) |
|
819 apply(rule disjI2) |
|
820 apply(rule conjI) |
|
821 thm val_ord_SEQE_1 |
|
822 apply(rule_tac val_ord_SEQE_2) |
|
823 apply(auto simp add: val_ord_def)[3] |
|
824 apply(rule assms(3)) |
|
825 apply(rule assms(4)) |
|
826 apply(subst val_ord_ex_def) |
|
827 apply(rule_tac x="ps" in exI) |
|
828 apply(rule_tac val_ord_SEQE_1) |
|
829 apply(auto simp add: val_ord_def)[1] |
|
830 apply(simp) |
|
831 using assms(2) |
|
832 apply(simp add: pflat_len_simps) |
|
833 done |
|
834 |
|
835 lemma val_ord_ex_trans: |
|
836 assumes "v1 :\<sqsubset>val v2" "v2 :\<sqsubset>val v3" |
|
837 shows "v1 :\<sqsubset>val v3" |
|
838 using assms |
|
839 unfolding val_ord_ex_def |
|
840 apply(clarify) |
|
841 apply(subgoal_tac "p = pa \<or> p \<sqsubset>lex pa \<or> pa \<sqsubset>lex p") |
|
842 prefer 2 |
|
843 apply(rule trichotomous) |
|
844 apply(erule disjE) |
|
845 apply(simp) |
|
846 apply(rule_tac x="pa" in exI) |
|
847 apply(subst val_ord_def) |
|
848 apply(rule conjI) |
|
849 apply(simp add: val_ord_def) |
|
850 apply(auto)[1] |
|
851 apply(simp add: val_ord_def) |
|
852 apply(simp add: val_ord_def) |
|
853 apply(auto)[1] |
|
854 using outside_lemma apply blast |
|
855 apply(simp add: val_ord_def) |
|
856 apply(auto)[1] |
|
857 using outside_lemma apply force |
|
858 apply auto[1] |
|
859 apply(simp add: val_ord_def) |
|
860 apply(auto)[1] |
|
861 apply (metis (no_types, hide_lams) lex_trans outside_lemma) |
|
862 apply(simp add: val_ord_def) |
|
863 apply(auto)[1] |
|
864 by (metis IntE Two_to_Three_aux UnCI lex_trans outside_lemma) |
|
865 |
|
866 |
|
867 definition fdpos :: "val \<Rightarrow> val \<Rightarrow> nat list \<Rightarrow> bool" |
|
868 where |
|
869 "fdpos v1 v2 p \<equiv> ({q. q \<sqsubset>lex p} \<inter> DPos v1 v2 = {})" |
|
870 |
|
871 |
|
872 lemma pos_append: |
|
873 assumes "p @ q \<in> Pos v" |
|
874 shows "q \<in> Pos (at v p)" |
|
875 using assms |
|
876 apply(induct arbitrary: p q rule: Pos.induct) |
|
877 apply(simp_all) |
|
878 apply(auto)[1] |
|
879 apply(simp add: append_eq_Cons_conv) |
|
880 apply(auto)[1] |
|
881 apply(auto)[1] |
|
882 apply(simp add: append_eq_Cons_conv) |
|
883 apply(auto)[1] |
|
884 apply(auto)[1] |
|
885 apply(simp add: append_eq_Cons_conv) |
|
886 apply(auto)[1] |
|
887 apply(simp add: append_eq_Cons_conv) |
|
888 apply(auto)[1] |
|
889 apply(auto)[1] |
|
890 apply(simp add: append_eq_Cons_conv) |
|
891 apply(auto)[1] |
|
892 apply(simp add: append_eq_Cons_conv) |
|
893 apply(auto)[1] |
|
894 by (metis append_Cons at.simps(6)) |
|
895 |
|
896 |
|
897 lemma Pos_pre: |
|
898 assumes "p \<in> Pos v" "q \<sqsubseteq>pre p" |
|
899 shows "q \<in> Pos v" |
|
900 using assms |
|
901 apply(induct v arbitrary: p q rule: Pos.induct) |
|
902 apply(simp_all add: prefix_list_def) |
|
903 apply (meson append_eq_Cons_conv append_is_Nil_conv) |
|
904 apply (meson append_eq_Cons_conv append_is_Nil_conv) |
|
905 apply (metis (no_types, lifting) Cons_eq_append_conv append_is_Nil_conv) |
|
906 apply(auto) |
|
907 apply (meson append_eq_Cons_conv) |
|
908 apply(simp add: append_eq_Cons_conv) |
|
909 apply(auto) |
|
910 done |
|
911 |
|
912 lemma lex_lists_order: |
|
913 assumes "q' \<sqsubset>lex q" "\<not>(q' \<sqsubseteq>pre q)" |
|
914 shows "\<not>(q \<sqsubset>lex q')" |
|
915 using assms |
|
916 apply(induct rule: lex_lists.induct) |
|
917 apply(simp add: prefix_list_def) |
|
918 apply(auto) |
|
919 using trichotomous_aux2 by auto |
|
920 |
|
921 lemma lex_appendL: |
|
922 assumes "q \<sqsubset>lex p" |
|
923 shows "q \<sqsubset>lex p @ q'" |
|
924 using assms |
|
925 apply(induct arbitrary: q' rule: lex_lists.induct) |
|
926 apply(auto) |
|
927 done |
|
928 |
|
929 |
|
930 inductive |
|
931 CPrf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100) |
|
932 where |
|
933 "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2" |
|
934 | "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2" |
|
935 | "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2" |
|
936 | "\<Turnstile> Void : ONE" |
|
937 | "\<Turnstile> Char c : CHAR c" |
|
938 | "\<Turnstile> Stars [] : STAR r" |
|
939 | "\<lbrakk>\<Turnstile> v : r; flat v \<noteq> []; \<Turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (v # vs) : STAR r" |
|
940 |
|
941 lemma Prf_CPrf: |
|
942 assumes "\<Turnstile> v : r" |
|
943 shows "\<turnstile> v : r" |
|
944 using assms |
|
945 apply(induct) |
|
946 apply(auto intro: Prf.intros) |
|
947 done |
|
948 |
|
949 definition |
|
950 "CPT r s = {v. flat v = s \<and> \<Turnstile> v : r}" |
|
951 |
|
952 definition |
|
953 "CPTpre r s = {v. \<exists>s'. flat v @ s' = s \<and> \<Turnstile> v : r}" |
|
954 |
|
955 lemma CPT_CPTpre_subset: |
|
956 shows "CPT r s \<subseteq> CPTpre r s" |
|
957 apply(auto simp add: CPT_def CPTpre_def) |
|
958 done |
|
959 |
|
960 |
|
961 lemma CPTpre_subsets: |
|
962 "CPTpre ZERO s = {}" |
|
963 "CPTpre ONE s \<subseteq> {Void}" |
|
964 "CPTpre (CHAR c) s \<subseteq> {Char c}" |
|
965 "CPTpre (ALT r1 r2) s \<subseteq> Left ` CPTpre r1 s \<union> Right ` CPTpre r2 s" |
|
966 "CPTpre (SEQ r1 r2) s \<subseteq> {Seq v1 v2 | v1 v2. v1 \<in> CPTpre r1 s \<and> v2 \<in> CPTpre r2 (drop (length (flat v1)) s)}" |
|
967 "CPTpre (STAR r) s \<subseteq> {Stars []} \<union> |
|
968 {Stars (v#vs) | v vs. v \<in> CPTpre r s \<and> flat v \<noteq> [] \<and> Stars vs \<in> CPTpre (STAR r) (drop (length (flat v)) s)}" |
|
969 "CPTpre (STAR r) [] = {Stars []}" |
|
970 apply(auto simp add: CPTpre_def) |
|
971 apply(erule CPrf.cases) |
|
972 apply(simp_all) |
|
973 apply(erule CPrf.cases) |
|
974 apply(simp_all) |
|
975 apply(erule CPrf.cases) |
|
976 apply(simp_all) |
|
977 apply(erule CPrf.cases) |
|
978 apply(simp_all) |
|
979 apply(erule CPrf.cases) |
|
980 apply(simp_all) |
|
981 apply(erule CPrf.cases) |
|
982 apply(simp_all) |
|
983 apply(erule CPrf.cases) |
|
984 apply(simp_all) |
|
985 apply(rule CPrf.intros) |
|
986 done |
|
987 |
|
988 |
|
989 lemma CPTpre_simps: |
|
990 shows "CPTpre ONE s = {Void}" |
|
991 and "CPTpre (CHAR c) (d#s) = (if c = d then {Char c} else {})" |
|
992 and "CPTpre (ALT r1 r2) s = Left ` CPTpre r1 s \<union> Right ` CPTpre r2 s" |
|
993 and "CPTpre (SEQ r1 r2) s = |
|
994 {Seq v1 v2 | v1 v2. v1 \<in> CPTpre r1 s \<and> v2 \<in> CPTpre r2 (drop (length (flat v1)) s)}" |
|
995 apply - |
|
996 apply(rule subset_antisym) |
|
997 apply(rule CPTpre_subsets) |
|
998 apply(auto simp add: CPTpre_def intro: "CPrf.intros")[1] |
|
999 apply(case_tac "c = d") |
|
1000 apply(simp) |
|
1001 apply(rule subset_antisym) |
|
1002 apply(rule CPTpre_subsets) |
|
1003 apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] |
|
1004 apply(simp) |
|
1005 apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] |
|
1006 apply(erule CPrf.cases) |
|
1007 apply(simp_all) |
|
1008 apply(rule subset_antisym) |
|
1009 apply(rule CPTpre_subsets) |
|
1010 apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] |
|
1011 apply(rule subset_antisym) |
|
1012 apply(rule CPTpre_subsets) |
|
1013 apply(auto simp add: CPTpre_def intro: CPrf.intros)[1] |
|
1014 done |
|
1015 |
|
1016 lemma CPT_simps: |
|
1017 shows "CPT ONE s = (if s = [] then {Void} else {})" |
|
1018 and "CPT (CHAR c) [d] = (if c = d then {Char c} else {})" |
|
1019 and "CPT (ALT r1 r2) s = Left ` CPT r1 s \<union> Right ` CPT r2 s" |
|
1020 and "CPT (SEQ r1 r2) s = |
|
1021 {Seq v1 v2 | v1 v2 s1 s2. s1 @ s2 = s \<and> v1 \<in> CPT r1 s1 \<and> v2 \<in> CPT r2 s2}" |
|
1022 apply - |
|
1023 apply(rule subset_antisym) |
|
1024 apply(auto simp add: CPT_def)[1] |
|
1025 apply(erule CPrf.cases) |
|
1026 apply(simp_all)[7] |
|
1027 apply(erule CPrf.cases) |
|
1028 apply(simp_all)[7] |
|
1029 apply(auto simp add: CPT_def intro: CPrf.intros)[1] |
|
1030 apply(auto simp add: CPT_def intro: CPrf.intros)[1] |
|
1031 apply(erule CPrf.cases) |
|
1032 apply(simp_all)[7] |
|
1033 apply(erule CPrf.cases) |
|
1034 apply(simp_all)[7] |
|
1035 apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1] |
|
1036 apply(erule CPrf.cases) |
|
1037 apply(simp_all)[7] |
|
1038 apply(clarify) |
|
1039 apply blast |
|
1040 apply(auto simp add: CPT_def image_def intro: CPrf.intros)[1] |
|
1041 apply(erule CPrf.cases) |
|
1042 apply(simp_all)[7] |
|
1043 done |
|
1044 |
|
1045 lemma CPTpre_SEQ: |
|
1046 assumes "v \<in> CPTpre (SEQ r1 r2) s" |
|
1047 shows "\<exists>s'. flat v = s' \<and> (s' \<sqsubseteq>pre s) \<and> s' \<in> L (SEQ r1 r2)" |
|
1048 using assms |
|
1049 apply(simp add: CPTpre_simps) |
|
1050 apply(auto simp add: CPTpre_def) |
|
1051 apply (simp add: prefix_list_def) |
|
1052 by (metis L.simps(4) L_flat_Prf1 Prf.intros(1) Prf_CPrf flat.simps(5)) |
|
1053 |
|
1054 lemma Cond_prefix: |
|
1055 assumes "\<forall>s\<^sub>3. s1 @ s\<^sub>3 \<in> L r1 \<longrightarrow> s\<^sub>3 = [] \<or> (\<forall>s\<^sub>4. s1 @ s\<^sub>3 @ s\<^sub>4 \<sqsubseteq>pre s1 @ s2 \<longrightarrow> s\<^sub>4 \<notin> L r2)" |
|
1056 and "t1 \<in> L r1" "t2 \<in> L r2" "t1 @ t2 \<sqsubseteq>pre s1 @ s2" |
|
1057 shows "t1 \<sqsubseteq>pre s1" |
|
1058 using assms |
|
1059 apply(auto simp add: Sequ_def prefix_list_def append_eq_append_conv2) |
|
1060 done |
|
1061 |
|
1062 |
|
1063 |
|
1064 lemma CPTpre_test: |
|
1065 assumes "s \<in> r \<rightarrow> v" |
|
1066 shows "\<not>(\<exists>v' \<in> CPT r s. v :\<sqsubset>val v')" |
|
1067 using assms |
|
1068 apply(induct r arbitrary: s v rule: rexp.induct) |
|
1069 apply(erule Posix.cases) |
|
1070 apply(simp_all) |
|
1071 apply(erule Posix.cases) |
|
1072 apply(simp_all) |
|
1073 apply(simp add: CPT_simps) |
|
1074 apply(simp add: val_ord_def val_ord_ex_def) |
|
1075 apply(erule Posix.cases) |
|
1076 apply(simp_all) |
|
1077 apply(simp add: CPT_simps) |
|
1078 apply (simp add: val_ord_def val_ord_ex_def) |
|
1079 (* SEQ *) |
|
1080 apply(rule ballI) |
|
1081 apply(erule Posix.cases) |
|
1082 apply(simp_all) |
|
1083 apply(clarify) |
|
1084 apply(subst (asm) CPT_simps) |
|
1085 apply(simp) |
|
1086 apply(clarify) |
|
1087 thm val_ord_SEQ |
|
1088 apply(drule_tac ?r="r1" in val_ord_SEQ) |
|
1089 apply(simp) |
|
1090 apply (simp add: CPT_def Posix1(2)) |
|
1091 apply (simp add: Posix1a) |
|
1092 apply (simp add: CPT_def Posix1a) |
|
1093 using Prf_CPrf apply auto[1] |
|
1094 apply(erule disjE) |
|
1095 apply(drule_tac x="s1" in meta_spec) |
|
1096 apply(drule_tac x="v1" in meta_spec) |
|
1097 apply(simp) |
|
1098 apply(drule_tac x="v1a" in bspec) |
|
1099 apply(subgoal_tac "s1 = s1a") |
|
1100 apply(simp) |
|
1101 apply(auto simp add: append_eq_append_conv2)[1] |
|
1102 apply (metis (mono_tags, lifting) CPT_def L_flat_Prf1 Prf_CPrf append_Nil append_Nil2 mem_Collect_eq) |
|
1103 apply(simp add: CPT_def) |
|
1104 apply(auto)[1] |
|
1105 oops |
|
1106 |
|
1107 |
|
1108 lemma test: |
|
1109 assumes "finite A" |
|
1110 shows "finite {vs. Stars vs \<in> A}" |
|
1111 using assms |
|
1112 apply(induct A) |
|
1113 apply(simp) |
|
1114 apply(auto) |
|
1115 apply(case_tac x) |
|
1116 apply(simp_all) |
|
1117 done |
|
1118 |
|
1119 lemma CPTpre_STAR_finite: |
|
1120 assumes "\<And>s. finite (CPTpre r s)" |
|
1121 shows "finite (CPTpre (STAR r) s)" |
|
1122 apply(induct s rule: length_induct) |
|
1123 apply(case_tac xs) |
|
1124 apply(simp) |
|
1125 apply(simp add: CPTpre_subsets) |
|
1126 apply(rule finite_subset) |
|
1127 apply(rule CPTpre_subsets) |
|
1128 apply(simp) |
|
1129 apply(rule_tac B="(\<lambda>(v, vs). Stars (v#vs)) ` {(v, vs). v \<in> CPTpre r (a#list) \<and> flat v \<noteq> [] \<and> Stars vs \<in> CPTpre (STAR r) (drop (length (flat v)) (a#list))}" in finite_subset) |
|
1130 apply(auto)[1] |
|
1131 apply(rule finite_imageI) |
|
1132 apply(simp add: Collect_case_prod_Sigma) |
|
1133 apply(rule finite_SigmaI) |
|
1134 apply(rule assms) |
|
1135 apply(case_tac "flat v = []") |
|
1136 apply(simp) |
|
1137 apply(drule_tac x="drop (length (flat v)) (a # list)" in spec) |
|
1138 apply(simp) |
|
1139 apply(auto)[1] |
|
1140 apply(rule test) |
|
1141 apply(simp) |
|
1142 done |
|
1143 |
|
1144 lemma CPTpre_finite: |
|
1145 shows "finite (CPTpre r s)" |
|
1146 apply(induct r arbitrary: s) |
|
1147 apply(simp add: CPTpre_subsets) |
|
1148 apply(rule finite_subset) |
|
1149 apply(rule CPTpre_subsets) |
|
1150 apply(simp) |
|
1151 apply(rule finite_subset) |
|
1152 apply(rule CPTpre_subsets) |
|
1153 apply(simp) |
|
1154 sorry |
|
1155 |
|
1156 |
|
1157 lemma CPT_finite: |
|
1158 shows "finite (CPT r s)" |
|
1159 apply(rule finite_subset) |
|
1160 apply(rule CPT_CPTpre_subset) |
|
1161 apply(rule CPTpre_finite) |
|
1162 done |
|
1163 |
|
1164 lemma Posix_CPT: |
|
1165 assumes "s \<in> r \<rightarrow> v" |
|
1166 shows "v \<in> CPT r s" |
|
1167 using assms |
|
1168 apply(induct rule: Posix.induct) |
|
1169 apply(simp add: CPT_def) |
|
1170 apply(rule CPrf.intros) |
|
1171 apply(simp add: CPT_def) |
|
1172 apply(rule CPrf.intros) |
|
1173 apply(simp add: CPT_def) |
|
1174 apply(rule CPrf.intros) |
|
1175 apply(simp) |
|
1176 apply(simp add: CPT_def) |
|
1177 apply(rule CPrf.intros) |
|
1178 apply(simp) |
|
1179 apply(simp add: CPT_def) |
|
1180 apply(rule CPrf.intros) |
|
1181 apply(simp) |
|
1182 apply(simp) |
|
1183 apply(simp add: CPT_def) |
|
1184 apply(rule CPrf.intros) |
|
1185 apply(simp) |
|
1186 apply(simp) |
|
1187 apply(simp) |
|
1188 apply(simp add: CPT_def) |
|
1189 apply(rule CPrf.intros) |
|
1190 done |
|
1191 |
|
1192 lemma Posix_val_ord: |
|
1193 assumes "s \<in> r \<rightarrow> v1" "v2 \<in> CPTpre r s" |
|
1194 shows "v1 :\<sqsubseteq>val v2" |
|
1195 using assms |
|
1196 apply(induct arbitrary: v2 rule: Posix.induct) |
|
1197 apply(simp add: CPTpre_def) |
|
1198 apply(clarify) |
|
1199 apply(erule CPrf.cases) |
|
1200 apply(simp_all) |
|
1201 apply(simp add: val_ord_ex1_def) |
|
1202 apply(simp add: CPTpre_def) |
|
1203 apply(clarify) |
|
1204 apply(erule CPrf.cases) |
|
1205 apply(simp_all) |
|
1206 apply(simp add: val_ord_ex1_def) |
|
1207 (* ALT1 *) |
|
1208 prefer 3 |
|
1209 (* SEQ case *) |
|
1210 apply(subst (asm) (3) CPTpre_def) |
|
1211 apply(clarify) |
|
1212 apply(erule CPrf.cases) |
|
1213 apply(simp_all) |
|
1214 apply(case_tac "s' = []") |
|
1215 apply(simp) |
|
1216 prefer 2 |
|
1217 apply(simp add: val_ord_ex1_def) |
|
1218 apply(clarify) |
|
1219 apply(simp) |
|
1220 apply(simp add: val_ord_ex_def) |
|
1221 apply(simp (no_asm) add: val_ord_def) |
|
1222 apply(rule_tac x="[]" in exI) |
|
1223 apply(simp add: pflat_len_simps) |
|
1224 apply(rule intlen_length) |
|
1225 apply (metis Posix1(2) append_assoc append_eq_conv_conj drop_eq_Nil not_le) |
|
1226 apply(subgoal_tac "length (flat v1a) \<le> length s1") |
|
1227 prefer 2 |
|
1228 apply (metis L_flat_Prf1 Prf_CPrf append_eq_append_conv_if append_take_drop_id drop_eq_Nil) |
|
1229 apply(subst (asm) append_eq_append_conv_if) |
|
1230 apply(simp) |
|
1231 apply(clarify) |
|
1232 apply(drule_tac x="v1a" in meta_spec) |
|
1233 apply(drule meta_mp) |
|
1234 apply(auto simp add: CPTpre_def)[1] |
|
1235 using append_eq_conv_conj apply blast |
|
1236 apply(subst (asm) (2)val_ord_ex1_def) |
|
1237 apply(erule disjE) |
|
1238 apply(subst (asm) val_ord_ex_def) |
|
1239 apply(erule exE) |
|
1240 apply(subst val_ord_ex1_def) |
|
1241 apply(rule disjI1) |
|
1242 apply(subst val_ord_ex_def) |
|
1243 apply(rule_tac x="0#p" in exI) |
|
1244 apply(rule val_ord_SEQI) |
|
1245 apply(simp) |
|
1246 apply(simp) |
|
1247 apply (metis Posix1(2) append_assoc append_take_drop_id) |
|
1248 apply(simp) |
|
1249 apply(drule_tac x="v2b" in meta_spec) |
|
1250 apply(drule meta_mp) |
|
1251 apply(auto simp add: CPTpre_def)[1] |
|
1252 apply (simp add: Posix1(2)) |
|
1253 apply(subst (asm) val_ord_ex1_def) |
|
1254 apply(erule disjE) |
|
1255 apply(subst (asm) val_ord_ex_def) |
|
1256 apply(erule exE) |
|
1257 apply(subst val_ord_ex1_def) |
|
1258 apply(rule disjI1) |
|
1259 apply(subst val_ord_ex_def) |
|
1260 apply(rule_tac x="1#p" in exI) |
|
1261 apply(rule val_ord_SEQI2) |
|
1262 apply(simp) |
|
1263 apply (simp add: Posix1(2)) |
|
1264 apply(subst val_ord_ex1_def) |
|
1265 apply(simp) |
|
1266 (* ALT *) |
|
1267 apply(subst (asm) (2) CPTpre_def) |
|
1268 apply(clarify) |
|
1269 apply(erule CPrf.cases) |
|
1270 apply(simp_all) |
|
1271 apply(clarify) |
|
1272 apply(case_tac "s' = []") |
|
1273 apply(simp) |
|
1274 apply(drule_tac x="v1" in meta_spec) |
|
1275 apply(drule meta_mp) |
|
1276 apply(auto simp add: CPTpre_def)[1] |
|
1277 apply(subst (asm) val_ord_ex1_def) |
|
1278 apply(erule disjE) |
|
1279 apply(subst (asm) val_ord_ex_def) |
|
1280 apply(erule exE) |
|
1281 apply(subst val_ord_ex1_def) |
|
1282 apply(rule disjI1) |
|
1283 apply(subst val_ord_ex_def) |
|
1284 apply(rule_tac x="0#p" in exI) |
|
1285 apply(rule val_ord_ALTI) |
|
1286 apply(simp) |
|
1287 using Posix1(2) apply blast |
|
1288 using val_ord_ex1_def apply blast |
|
1289 apply(subst val_ord_ex1_def) |
|
1290 apply(rule disjI1) |
|
1291 apply (simp add: Posix1(2) val_ord_shorterI) |
|
1292 apply(subst val_ord_ex1_def) |
|
1293 apply(rule disjI1) |
|
1294 apply(case_tac "s' = []") |
|
1295 apply(simp) |
|
1296 apply(subst val_ord_ex_def) |
|
1297 apply(rule_tac x="[0]" in exI) |
|
1298 apply(subst val_ord_def) |
|
1299 apply(rule conjI) |
|
1300 apply(simp add: Pos_empty) |
|
1301 apply(rule conjI) |
|
1302 apply(simp add: pflat_len_simps) |
|
1303 apply (smt inlen_bigger) |
|
1304 apply(simp) |
|
1305 apply(rule conjI) |
|
1306 apply(simp add: pflat_len_simps) |
|
1307 using Posix1(2) apply auto[1] |
|
1308 apply(rule ballI) |
|
1309 apply(rule impI) |
|
1310 apply(case_tac "q = []") |
|
1311 using Posix1(2) apply auto[1] |
|
1312 apply(auto)[1] |
|
1313 apply(rule val_ord_shorterI) |
|
1314 apply(simp) |
|
1315 apply (simp add: Posix1(2)) |
|
1316 (* ALT RIGHT *) |
|
1317 apply(subst (asm) (2) CPTpre_def) |
|
1318 apply(clarify) |
|
1319 apply(erule CPrf.cases) |
|
1320 apply(simp_all) |
|
1321 apply(clarify) |
|
1322 apply(case_tac "s' = []") |
|
1323 apply(simp) |
|
1324 apply (simp add: L_flat_Prf1 Prf_CPrf) |
|
1325 apply(subst val_ord_ex1_def) |
|
1326 apply(rule disjI1) |
|
1327 apply(rule val_ord_shorterI) |
|
1328 apply(simp) |
|
1329 apply (simp add: Posix1(2)) |
|
1330 apply(case_tac "s' = []") |
|
1331 apply(simp) |
|
1332 apply(drule_tac x="v2a" in meta_spec) |
|
1333 apply(drule meta_mp) |
|
1334 apply(auto simp add: CPTpre_def)[1] |
|
1335 apply(subst (asm) val_ord_ex1_def) |
|
1336 apply(erule disjE) |
|
1337 apply(subst (asm) val_ord_ex_def) |
|
1338 apply(erule exE) |
|
1339 apply(subst val_ord_ex1_def) |
|
1340 apply(rule disjI1) |
|
1341 apply(subst val_ord_ex_def) |
|
1342 apply(rule_tac x="1#p" in exI) |
|
1343 apply(rule val_ord_ALTI2) |
|
1344 apply(simp) |
|
1345 using Posix1(2) apply blast |
|
1346 apply (simp add: val_ord_ex1_def) |
|
1347 apply(subst val_ord_ex1_def) |
|
1348 apply(rule disjI1) |
|
1349 apply(rule val_ord_shorterI) |
|
1350 apply(simp) |
|
1351 apply (simp add: Posix1(2)) |
|
1352 (* STAR empty case *) |
|
1353 prefer 2 |
|
1354 apply(subst (asm) CPTpre_def) |
|
1355 apply(clarify) |
|
1356 apply(erule CPrf.cases) |
|
1357 apply(simp_all) |
|
1358 apply(clarify) |
|
1359 apply (simp add: val_ord_ex1_def) |
|
1360 (* STAR non-empty case *) |
|
1361 apply(subst (asm) (3) CPTpre_def) |
|
1362 apply(clarify) |
|
1363 apply(erule CPrf.cases) |
|
1364 apply(simp_all) |
|
1365 apply(clarify) |
|
1366 apply (simp add: val_ord_ex1_def) |
|
1367 apply(rule val_ord_shorterI) |
|
1368 apply(simp) |
|
1369 apply(case_tac "s' = []") |
|
1370 apply(simp) |
|
1371 prefer 2 |
|
1372 apply (simp add: val_ord_ex1_def) |
|
1373 apply(rule disjI1) |
|
1374 apply(rule val_ord_shorterI) |
|
1375 apply(simp) |
|
1376 apply (metis Posix1(2) append_assoc append_eq_conv_conj drop_all flat.simps(7) flat_Stars length_append not_less) |
|
1377 apply(drule_tac x="va" in meta_spec) |
|
1378 apply(drule meta_mp) |
|
1379 apply(auto simp add: CPTpre_def)[1] |
|
1380 apply (smt L.simps(6) L_flat_Prf1 Prf_CPrf append_eq_append_conv2 flat_Stars self_append_conv) |
|
1381 apply (subst (asm) (2) val_ord_ex1_def) |
|
1382 apply(erule disjE) |
|
1383 prefer 2 |
|
1384 apply(simp) |
|
1385 apply(drule_tac x="Stars vsa" in meta_spec) |
|
1386 apply(drule meta_mp) |
|
1387 apply(auto simp add: CPTpre_def)[1] |
|
1388 apply (simp add: Posix1(2)) |
|
1389 apply (subst (asm) val_ord_ex1_def) |
|
1390 apply(erule disjE) |
|
1391 apply (subst (asm) val_ord_ex_def) |
|
1392 apply(erule exE) |
|
1393 apply (subst val_ord_ex1_def) |
|
1394 apply(rule disjI1) |
|
1395 apply (subst val_ord_ex_def) |
|
1396 apply(case_tac p) |
|
1397 apply(simp) |
|
1398 apply (metis Posix1(2) flat_Stars not_less_iff_gr_or_eq pflat_len_simps(7) same_append_eq val_ord_def) |
|
1399 using Posix1(2) val_ord_STARI2 apply fastforce |
|
1400 apply(simp add: val_ord_ex1_def) |
|
1401 apply (subst (asm) val_ord_ex_def) |
|
1402 apply(erule exE) |
|
1403 apply (subst val_ord_ex1_def) |
|
1404 apply(rule disjI1) |
|
1405 apply (subst val_ord_ex_def) |
|
1406 by (metis Posix1(2) flat.simps(7) flat_Stars val_ord_STARI) |
|
1407 |
|
1408 lemma Posix_val_ord_stronger: |
|
1409 assumes "s \<in> r \<rightarrow> v1" "v2 \<in> CPT r s" |
|
1410 shows "v1 :\<sqsubseteq>val v2" |
|
1411 using assms |
|
1412 apply(rule_tac Posix_val_ord) |
|
1413 apply(assumption) |
|
1414 apply(simp add: CPTpre_def CPT_def) |
|
1415 done |
|
1416 |
|
1417 definition Minval :: "rexp \<Rightarrow> string \<Rightarrow> val \<Rightarrow> bool" |
|
1418 where |
|
1419 "Minval r s v \<equiv> \<Turnstile> v : r \<and> flat v = s \<and> (\<forall>v' \<in> CPT r s. v :\<sqsubset>val v' \<or> v = v')" |
|
1420 |
|
1421 lemma |
|
1422 assumes "s \<in> L(r)" |
|
1423 shows "\<exists>v. Minval r s v" |
|
1424 using assms |
|
1425 apply(induct r arbitrary: s) |
|
1426 apply(simp) |
|
1427 apply(simp) |
|
1428 apply(rule_tac x="Void" in exI) |
|
1429 apply(simp add: Minval_def) |
|
1430 apply(rule conjI) |
|
1431 apply (simp add: CPrf.intros(4)) |
|
1432 apply(clarify) |
|
1433 apply(simp add: CPT_def) |
|
1434 apply(auto)[1] |
|
1435 apply(erule CPrf.cases) |
|
1436 apply(simp_all) |
|
1437 apply(rule_tac x="Char x" in exI) |
|
1438 apply(simp add: Minval_def) |
|
1439 apply(rule conjI) |
|
1440 apply (simp add: CPrf.intros) |
|
1441 apply(clarify) |
|
1442 apply(simp add: CPT_def) |
|
1443 apply(auto)[1] |
|
1444 apply(erule CPrf.cases) |
|
1445 apply(simp_all) |
|
1446 prefer 2 |
|
1447 apply(auto)[1] |
|
1448 apply(drule_tac x="s" in meta_spec) |
|
1449 apply(simp) |
|
1450 apply(clarify) |
|
1451 apply(rule_tac x="Left x" in exI) |
|
1452 apply(simp (no_asm) add: Minval_def) |
|
1453 apply(rule conjI) |
|
1454 apply (simp add: CPrf.intros(2) Minval_def) |
|
1455 apply(rule conjI) |
|
1456 apply(simp add: Minval_def) |
|
1457 apply(clarify) |
|
1458 apply(simp add: CPT_def) |
|
1459 apply(auto)[1] |
|
1460 apply(erule CPrf.cases) |
|
1461 apply(simp_all) |
|
1462 apply(simp add: val_ord_ex_def) |
|
1463 apply(simp only: val_ord_def) |
|
1464 oops |
|
1465 |
|
1466 lemma |
|
1467 "wf {(v1, v2). v1 \<in> CPT r s \<and> v2 \<in> CPT r s \<and> (v1 :\<sqsubset>val v2)}" |
|
1468 apply(rule wfI) |
|
1469 oops |
|
1470 |
|
1471 inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<preceq>_ _" [100, 100, 100] 100) |
|
1472 where |
|
1473 C2: "v1 \<preceq>r1 v1' \<Longrightarrow> (Seq v1 v2) \<preceq>(SEQ r1 r2) (Seq v1' v2')" |
|
1474 | C1: "v2 \<preceq>r2 v2' \<Longrightarrow> (Seq v1 v2) \<preceq>(SEQ r1 r2) (Seq v1 v2')" |
|
1475 | A1: "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<preceq>(ALT r1 r2) (Left v1)" |
|
1476 | A2: "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<preceq>(ALT r1 r2) (Right v2)" |
|
1477 | A3: "v2 \<preceq>r2 v2' \<Longrightarrow> (Right v2) \<preceq>(ALT r1 r2) (Right v2')" |
|
1478 | A4: "v1 \<preceq>r1 v1' \<Longrightarrow> (Left v1) \<preceq>(ALT r1 r2) (Left v1')" |
|
1479 | K1: "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) \<preceq>(STAR r) (Stars (v # vs))" |
|
1480 | K2: "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) \<preceq>(STAR r) (Stars [])" |
|
1481 | K3: "v1 \<preceq>r v2 \<Longrightarrow> (Stars (v1 # vs1)) \<preceq>(STAR r) (Stars (v2 # vs2))" |
|
1482 | K4: "(Stars vs1) \<preceq>(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) \<preceq>(STAR r) (Stars (v # vs2))" |
|
1483 | MY1: "Void \<preceq>ONE Void" |
|
1484 | MY2: "(Char c) \<preceq>(CHAR c) (Char c)" |
|
1485 | MY3: "(Stars []) \<preceq>(STAR r) (Stars [])" |
|
1486 |
|
1487 lemma ValOrd_refl: |
|
1488 assumes "\<turnstile> v : r" |
|
1489 shows "v \<preceq>r v" |
|
1490 using assms |
|
1491 apply(induct r rule: Prf.induct) |
|
1492 apply(rule ValOrd.intros) |
|
1493 apply(simp) |
|
1494 apply(rule ValOrd.intros) |
|
1495 apply(simp) |
|
1496 apply(rule ValOrd.intros) |
|
1497 apply(simp) |
|
1498 apply(rule ValOrd.intros) |
|
1499 apply(rule ValOrd.intros) |
|
1500 apply(rule ValOrd.intros) |
|
1501 apply(rule ValOrd.intros) |
|
1502 apply(simp) |
|
1503 done |
|
1504 |
|
1505 lemma Posix_CPT2: |
|
1506 assumes "v1 \<preceq>r v2" "flat v1 = flat v2" |
|
1507 shows "v2 :\<sqsubset>val v1 \<or> v1 = v2" |
|
1508 using assms |
|
1509 apply(induct r arbitrary: v1 v2 rule: rexp.induct) |
|
1510 apply(erule ValOrd.cases) |
|
1511 apply(simp_all) |
|
1512 apply(erule ValOrd.cases) |
|
1513 apply(simp_all) |
|
1514 apply(erule ValOrd.cases) |
|
1515 apply(simp_all) |
|
1516 apply(erule ValOrd.cases) |
|
1517 apply(simp_all) |
|
1518 apply(clarify) |
|
1519 (* HERE *) |
|
1520 apply(simp) |
|
1521 apply(subst val_ord_ex_def) |
|
1522 apply(simp) |
|
1523 apply(drule_tac x="v2a" in meta_spec) |
|
1524 apply(rotate_tac 5) |
|
1525 apply(drule_tac x="v2'" in meta_spec) |
|
1526 apply(rule_tac x="0#p" in exI) |
|
1527 apply(rule val_ord_SEQI) |
|
1528 |
|
1529 apply(drule_tac r="r1a" in val_ord_SEQ) |
|
1530 apply(simp) |
|
1531 apply(auto)[1] |
|
1532 |
|
1533 |
|
1534 lemma Posix_CPT: |
|
1535 assumes "v1 :\<sqsubset>val v2" "v1 \<in> CPT r s" "v2 \<in> CPT r s" |
|
1536 shows "v1 \<preceq>r v2" |
|
1537 using assms |
|
1538 apply(induct r arbitrary: v1 v2 s rule: rexp.induct) |
|
1539 apply(simp add: CPT_def) |
|
1540 apply(clarify) |
|
1541 apply(erule CPrf.cases) |
|
1542 apply(simp_all) |
|
1543 apply(simp add: CPT_def) |
|
1544 apply(clarify) |
|
1545 apply(erule CPrf.cases) |
|
1546 apply(simp_all) |
|
1547 apply(erule CPrf.cases) |
|
1548 apply(simp_all) |
|
1549 apply(rule ValOrd.intros) |
|
1550 apply(simp add: CPT_def) |
|
1551 apply(clarify) |
|
1552 apply(erule CPrf.cases) |
|
1553 apply(simp_all) |
|
1554 apply(erule CPrf.cases) |
|
1555 apply(simp_all) |
|
1556 apply(rule ValOrd.intros) |
|
1557 (*SEQ case *) |
|
1558 apply(simp add: CPT_def) |
|
1559 apply(clarify) |
|
1560 apply(erule CPrf.cases) |
|
1561 apply(simp_all) |
|
1562 apply(clarify) |
|
1563 apply(erule CPrf.cases) |
|
1564 apply(simp_all) |
|
1565 apply(clarify) |
|
1566 thm val_ord_SEQ |
|
1567 apply(drule_tac r="r1a" in val_ord_SEQ) |
|
1568 apply(simp) |
|
1569 using Prf_CPrf apply blast |
|
1570 using Prf_CPrf apply blast |
|
1571 apply(erule disjE) |
|
1572 apply(rule C2) |
|
1573 prefer 2 |
|
1574 apply(simp) |
|
1575 apply(rule C1) |
|
1576 apply blast |
|
1577 |
|
1578 apply(simp add: append_eq_append_conv2) |
|
1579 apply(clarify) |
|
1580 apply(auto)[1] |
|
1581 apply(drule_tac x="v1a" in meta_spec) |
|
1582 apply(rotate_tac 8) |
|
1583 apply(drule_tac x="v1b" in meta_spec) |
|
1584 apply(rotate_tac 8) |
|
1585 apply(simp) |
|
1586 |
|
1587 (* HERE *) |
|
1588 apply(subst (asm) (3) val_ord_ex_def) |
|
1589 apply(clarify) |
|
1590 apply(subst (asm) val_ord_def) |
|
1591 apply(clarify) |
|
1592 apply(rule ValOrd.intros) |
|
1593 |
|
1594 |
|
1595 apply(simp add: val_ord_ex_def) |
|
1596 oops |
|
1597 |
|
1598 |
|
1599 lemma ValOrd_trans: |
|
1600 assumes "x \<preceq>r y" "y \<preceq>r z" |
|
1601 and "x \<in> CPT r s" "y \<in> CPT r s" "z \<in> CPT r s" |
|
1602 shows "x \<preceq>r z" |
|
1603 using assms |
|
1604 apply(induct x r y arbitrary: s z rule: ValOrd.induct) |
|
1605 apply(rotate_tac 2) |
|
1606 apply(erule ValOrd.cases) |
|
1607 apply(simp_all)[13] |
|
1608 apply(rule ValOrd.intros) |
|
1609 apply(drule_tac x="s" in meta_spec) |
|
1610 apply(drule_tac x="v1'a" in meta_spec) |
|
1611 apply(drule_tac meta_mp) |
|
1612 apply(simp) |
|
1613 apply(drule_tac meta_mp) |
|
1614 apply(simp add: CPT_def) |
|
1615 oops |
|
1616 |
|
1617 lemma ValOrd_preorder: |
|
1618 "preorder_on (CPT r s) {(v1, v2). v1 \<preceq>r v2 \<and> v1 \<in> (CPT r s) \<and> v2 \<in> (CPT r s)}" |
|
1619 apply(simp add: preorder_on_def) |
|
1620 apply(rule conjI) |
|
1621 apply(simp add: refl_on_def) |
|
1622 apply(auto) |
|
1623 apply(rule ValOrd_refl) |
|
1624 apply(simp add: CPT_def) |
|
1625 apply(rule Prf_CPrf) |
|
1626 apply(auto)[1] |
|
1627 apply(simp add: trans_def) |
|
1628 apply(auto) |
22 |
1629 |
23 definition ValOrdEq :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<ge>_ _" [100, 100, 100] 100) |
1630 definition ValOrdEq :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<ge>_ _" [100, 100, 100] 100) |
24 where |
1631 where |
25 "v\<^sub>1 \<ge>r v\<^sub>2 \<equiv> v\<^sub>1 = v\<^sub>2 \<or> (v\<^sub>1 >r v\<^sub>2 \<and> flat v\<^sub>1 = flat v\<^sub>2)" |
1632 "v\<^sub>1 \<ge>r v\<^sub>2 \<equiv> v\<^sub>1 = v\<^sub>2 \<or> (v\<^sub>1 >r v\<^sub>2 \<and> flat v\<^sub>1 = flat v\<^sub>2)" |
26 |
1633 |