thys2/Journal/Paper.tex
changeset 382 aef235b965bb
parent 381 0c666a0c57d7
child 383 aa0a2a3f90a0
equal deleted inserted replaced
381:0c666a0c57d7 382:aef235b965bb
     1 %
       
     2 \begin{isabellebody}%
       
     3 \setisabellecontext{Paper}%
       
     4 %
       
     5 \isadelimtheory
       
     6 %
       
     7 \endisadelimtheory
       
     8 %
       
     9 \isatagtheory
       
    10 %
       
    11 \endisatagtheory
       
    12 {\isafoldtheory}%
       
    13 %
       
    14 \isadelimtheory
       
    15 %
       
    16 \endisadelimtheory
       
    17 %
       
    18 \isadelimproof
       
    19 %
       
    20 \endisadelimproof
       
    21 %
       
    22 \isatagproof
       
    23 %
       
    24 \endisatagproof
       
    25 {\isafoldproof}%
       
    26 %
       
    27 \isadelimproof
       
    28 %
       
    29 \endisadelimproof
       
    30 %
       
    31 \isadelimproof
       
    32 %
       
    33 \endisadelimproof
       
    34 %
       
    35 \isatagproof
       
    36 %
       
    37 \endisatagproof
       
    38 {\isafoldproof}%
       
    39 %
       
    40 \isadelimproof
       
    41 %
       
    42 \endisadelimproof
       
    43 %
       
    44 \isadelimdocument
       
    45 %
       
    46 \endisadelimdocument
       
    47 %
       
    48 \isatagdocument
       
    49 %
       
    50 \isamarkupsection{Core of the proof%
       
    51 }
       
    52 \isamarkuptrue%
       
    53 %
       
    54 \endisatagdocument
       
    55 {\isafolddocument}%
       
    56 %
       
    57 \isadelimdocument
       
    58 %
       
    59 \endisadelimdocument
       
    60 %
       
    61 \begin{isamarkuptext}%
       
    62 This paper builds on previous work by Ausaf and Urban using 
       
    63 regular expression'd bit-coded derivatives to do lexing that 
       
    64 is both fast and satisfies the POSIX specification.
       
    65 In their work, a bit-coded algorithm introduced by Sulzmann and Lu
       
    66 was formally verified in Isabelle, by a very clever use of
       
    67 flex function and retrieve to carefully mimic the way a value is 
       
    68 built up by the injection funciton.
       
    69 
       
    70 In the previous work, Ausaf and Urban established the below equality:
       
    71 \begin{lemma}
       
    72 \isa{{\normalsize{}If\,}\ v\ {\isacharcolon}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}s\ {\normalsize \,then\,}\ Some\ {\isacharparenleft}{\kern0pt}flex\ r\ id\ s\ v{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ decode\ {\isacharparenleft}{\kern0pt}retrieve\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}\ r{\isachardot}{\kern0pt}}
       
    73 \end{lemma}
       
    74 
       
    75 This lemma establishes a link with the lexer without bit-codes.
       
    76 
       
    77 With it we get the correctness of bit-coded algorithm.
       
    78 \begin{lemma}
       
    79 \isa{lexer\mbox{$_b$}\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s}
       
    80 \end{lemma}
       
    81 
       
    82 However what is not certain is whether we can add simplification
       
    83 to the bit-coded algorithm, without breaking the correct lexing output.
       
    84 
       
    85 
       
    86 The reason that we do need to add a simplification phase
       
    87 after each derivative step of  $\textit{blexer}$ is
       
    88 because it produces intermediate
       
    89 regular expressions that can grow exponentially.
       
    90 For example, the regular expression $(a+aa)^*$ after taking
       
    91 derivative against just 10 $a$s will have size 8192.
       
    92 
       
    93 %TODO: add figure for this?
       
    94 
       
    95 
       
    96 Therefore, we insert a simplification phase
       
    97 after each derivation step, as defined below:
       
    98 \begin{lemma}
       
    99 \isa{blexer{\isacharunderscore}{\kern0pt}simp\ r\ s\ {\isasymequiv}\ \textrm{if}\ nullable\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}\ \textrm{then}\ decode\ {\isacharparenleft}{\kern0pt}mkeps\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ r\ \textrm{else}\ None}
       
   100 \end{lemma}
       
   101 
       
   102 The simplification function is given as follows:
       
   103 
       
   104 \begin{center}
       
   105   \begin{tabular}{lcl}
       
   106   \isa{bsimp\ {\isacharparenleft}{\kern0pt}ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}ASEQ\ bs\ {\isacharparenleft}{\kern0pt}bsimp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}bsimp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
   107   \isa{bsimp\ {\isacharparenleft}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ rs{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharparenleft}{\kern0pt}distinctBy\ {\isacharparenleft}{\kern0pt}flts\ {\isacharparenleft}{\kern0pt}map\ bsimp\ rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ erase\ {\isasymemptyset}{\isacharparenright}{\kern0pt}}\\
       
   108   \isa{bsimp\ AZERO} & $\dn$ & \isa{AZERO}\\
       
   109 
       
   110 \end{tabular}
       
   111 \end{center}
       
   112 
       
   113 And the two helper functions are:
       
   114 \begin{center}
       
   115   \begin{tabular}{lcl}
       
   116   \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs\isactrlsub {\isadigit{1}}\ {\isacharbrackleft}{\kern0pt}r{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}ASEQ\ bs\isactrlsub {\isadigit{1}}\ {\isacharparenleft}{\kern0pt}bsimp\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}bsimp\ r{\isadigit{2}}{\isachardot}{\kern0pt}{\isadigit{0}}{\isacharparenright}{\kern0pt}}\\
       
   117   \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharbrackleft}{\kern0pt}r{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharparenleft}{\kern0pt}distinctBy\ {\isacharparenleft}{\kern0pt}flts\ {\isacharparenleft}{\kern0pt}map\ bsimp\ rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ erase\ {\isasymemptyset}{\isacharparenright}{\kern0pt}}\\
       
   118   \isa{bsimp{\isacharunderscore}{\kern0pt}AALTs\ bs{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharparenleft}{\kern0pt}v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vb\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vc{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{AZERO}\\
       
   119 
       
   120 \end{tabular}
       
   121 \end{center}
       
   122 
       
   123 
       
   124 This might sound trivial in the case of producing a YES/NO answer,
       
   125 but once we require a lexing output to be produced (which is required
       
   126 in applications like compiler front-end, malicious attack domain extraction, 
       
   127 etc.), it is not straightforward if we still extract what is needed according
       
   128 to the POSIX standard.
       
   129 
       
   130 
       
   131 
       
   132 
       
   133 
       
   134 By simplification, we mean specifically the following rules:
       
   135 
       
   136 \begin{center}
       
   137   \begin{tabular}{lcl}
       
   138   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{ASEQ\ bs\ AZERO\ r\isactrlsub {\isadigit{2}}\ {\isasymleadsto}\ AZERO}}}\\
       
   139   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ AZERO\ {\isasymleadsto}\ AZERO}}}\\
       
   140   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{ASEQ\ bs\ {\isacharparenleft}{\kern0pt}AONE\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymleadsto}\ fuse\ {\isacharparenleft}{\kern0pt}bs\ {\isacharat}{\kern0pt}\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}}\\
       
   141   \isa{\mbox{}\inferrule{\mbox{r\isactrlsub {\isadigit{1}}\ {\isasymleadsto}\ r\isactrlsub {\isadigit{2}}}}{\mbox{ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{3}}\ {\isasymleadsto}\ ASEQ\ bs\ r\isactrlsub {\isadigit{2}}\ r\isactrlsub {\isadigit{3}}}}}\\
       
   142   \isa{\mbox{}\inferrule{\mbox{r\isactrlsub {\isadigit{3}}\ {\isasymleadsto}\ r\isactrlsub {\isadigit{4}}}}{\mbox{ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{3}}\ {\isasymleadsto}\ ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{4}}}}}\\
       
   143   \isa{\mbox{}\inferrule{\mbox{r\ {\isasymleadsto}\ r{\isacharprime}{\kern0pt}}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}r{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}r{\isacharprime}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}}}\\
       
   144   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}AZERO{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}}}}\\
       
   145   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}AALTs\ bs\isactrlsub {\isadigit{1}}\ rs\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ map\ {\isacharparenleft}{\kern0pt}fuse\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ rs\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b{\isacharparenright}{\kern0pt}}}}\\
       
   146   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ {\isacharparenleft}{\kern0pt}bs\ {\isacharat}{\kern0pt}\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ rs\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}map\ {\isacharparenleft}{\kern0pt}fuse\ bs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ rs{\isacharparenright}{\kern0pt}}}}\\
       
   147   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymleadsto}\ AZERO}}}\\
       
   148   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{AALTs\ bs\ {\isacharbrackleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isasymleadsto}\ fuse\ bs\ r\isactrlsub {\isadigit{1}}}}}\\
       
   149   \isa{\mbox{}\inferrule{\mbox{a\isactrlsub {\isadigit{1}}\mbox{$^\downarrow$}\ {\isacharequal}{\kern0pt}\ a\isactrlsub {\isadigit{2}}\mbox{$^\downarrow$}}}{\mbox{AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}a\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}a\isactrlsub {\isadigit{2}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub c{\isacharparenright}{\kern0pt}\ {\isasymleadsto}\ AALTs\ bs\ {\isacharparenleft}{\kern0pt}rs\isactrlsub a\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}a\isactrlsub {\isadigit{1}}{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ rs\isactrlsub b\ {\isacharat}{\kern0pt}\ rs\isactrlsub c{\isacharparenright}{\kern0pt}}}}\\
       
   150 
       
   151   \end{tabular}
       
   152 \end{center}
       
   153 
       
   154 
       
   155 And these can be made compact by the following simplification function:
       
   156 
       
   157 where the function $\mathit{bsimp_AALTs}$
       
   158 
       
   159 The core idea of the proof is that two regular expressions,
       
   160 if "isomorphic" up to a finite number of rewrite steps, will
       
   161 remain "isomorphic" when we take the same sequence of
       
   162 derivatives on both of them.
       
   163 This can be expressed by the following rewrite relation lemma:
       
   164 \begin{lemma}
       
   165 \isa{{\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}\ {\isasymleadsto}{\isacharasterisk}{\kern0pt}\ bders{\isacharunderscore}{\kern0pt}simp\ r\ s}
       
   166 \end{lemma}
       
   167 
       
   168 This isomorphic relation implies a property that leads to the 
       
   169 correctness result: 
       
   170 if two (nullable) regular expressions are "rewritable" in many steps
       
   171 from one another, 
       
   172 then a call to function $\textit{bmkeps}$ gives the same
       
   173 bit-sequence :
       
   174 \begin{lemma}
       
   175 \isa{{\normalsize{}If\,}\ \mbox{r{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isasymleadsto}{\isacharasterisk}{\kern0pt}\ r{\isadigit{2}}{\isachardot}{\kern0pt}{\isadigit{0}}}\ {\normalsize \,and\,}\ \mbox{nullable\mbox{$_b$}\ r{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}}\ {\normalsize \,then\,}\ mkeps\mbox{$_b$}\ r{\isadigit{1}}{\isachardot}{\kern0pt}{\isadigit{0}}\ {\isacharequal}{\kern0pt}\ mkeps\mbox{$_b$}\ r{\isadigit{2}}{\isachardot}{\kern0pt}{\isadigit{0}}{\isachardot}{\kern0pt}}
       
   176 \end{lemma}
       
   177 
       
   178 Given the same bit-sequence, the decode function
       
   179 will give out the same value, which is the output
       
   180 of both lexers:
       
   181 \begin{lemma}
       
   182 \isa{lexer\mbox{$_b$}\ r\ s\ {\isasymequiv}\ \textrm{if}\ nullable\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}\ \textrm{then}\ decode\ {\isacharparenleft}{\kern0pt}mkeps\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}\mbox{$\bbslash$}s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ r\ \textrm{else}\ None}
       
   183 \end{lemma}
       
   184 
       
   185 \begin{lemma}
       
   186 \isa{blexer{\isacharunderscore}{\kern0pt}simp\ r\ s\ {\isasymequiv}\ \textrm{if}\ nullable\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}\ \textrm{then}\ decode\ {\isacharparenleft}{\kern0pt}mkeps\mbox{$_b$}\ {\isacharparenleft}{\kern0pt}bders{\isacharunderscore}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\mbox{$^\uparrow$}{\isacharparenright}{\kern0pt}\ s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ r\ \textrm{else}\ None}
       
   187 \end{lemma}
       
   188 
       
   189 And that yields the correctness result:
       
   190 \begin{lemma}
       
   191 \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ blexer{\isacharunderscore}{\kern0pt}simp\ r\ s}
       
   192 \end{lemma}
       
   193 
       
   194 The nice thing about the above%
       
   195 \end{isamarkuptext}\isamarkuptrue%
       
   196 %
       
   197 \isadelimdocument
       
   198 %
       
   199 \endisadelimdocument
       
   200 %
       
   201 \isatagdocument
       
   202 %
       
   203 \isamarkupsection{Additional Simp Rules?%
       
   204 }
       
   205 \isamarkuptrue%
       
   206 %
       
   207 \endisatagdocument
       
   208 {\isafolddocument}%
       
   209 %
       
   210 \isadelimdocument
       
   211 %
       
   212 \endisadelimdocument
       
   213 %
       
   214 \begin{isamarkuptext}%
       
   215 One question someone would ask is:
       
   216 can we add more "atomic" simplification/rewriting rules,
       
   217 so the simplification is even more aggressive, making
       
   218 the intermediate results smaller, and therefore more space-efficient? 
       
   219 For example, one might want to do open up alternatives who is a child
       
   220 of a sequence:
       
   221 
       
   222 \begin{center}
       
   223   \begin{tabular}{lcl}
       
   224     \isa{ASEQ\ bs\ {\isacharparenleft}{\kern0pt}AALTs\ bs{\isadigit{1}}\ rs{\isacharparenright}{\kern0pt}\ r\ {\isasymleadsto}{\isacharquery}{\kern0pt}\ AALTs\ {\isacharparenleft}{\kern0pt}bs\ {\isacharat}{\kern0pt}\ bs{\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}map\ {\isacharparenleft}{\kern0pt}{\isasymlambda}r{\isacharprime}{\kern0pt}{\isachardot}{\kern0pt}\ ASEQ\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharprime}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ rs{\isacharparenright}{\kern0pt}}\\
       
   225   \end{tabular}
       
   226 \end{center}
       
   227 
       
   228 This rule allows us to simplify \mbox{\isa{a\ {\isacharplus}{\kern0pt}\ b\ {\isasymcdot}\ c\ {\isacharplus}{\kern0pt}\ a\ {\isasymcdot}\ c}}%
       
   229 \end{isamarkuptext}\isamarkuptrue%
       
   230 %
       
   231 \isadelimdocument
       
   232 %
       
   233 \endisadelimdocument
       
   234 %
       
   235 \isatagdocument
       
   236 %
       
   237 \isamarkupsection{Introduction%
       
   238 }
       
   239 \isamarkuptrue%
       
   240 %
       
   241 \endisatagdocument
       
   242 {\isafolddocument}%
       
   243 %
       
   244 \isadelimdocument
       
   245 %
       
   246 \endisadelimdocument
       
   247 %
       
   248 \begin{isamarkuptext}%
       
   249 Brzozowski \cite{Brzozowski1964} introduced the notion of the {\em
       
   250 derivative} \isa{r{\isacharbackslash}{\kern0pt}c} of a regular expression \isa{r} w.r.t.\
       
   251 a character~\isa{c}, and showed that it gave a simple solution to the
       
   252 problem of matching a string \isa{s} with a regular expression \isa{r}: if the derivative of \isa{r} w.r.t.\ (in succession) all the
       
   253 characters of the string matches the empty string, then \isa{r}
       
   254 matches \isa{s} (and {\em vice versa}). The derivative has the
       
   255 property (which may almost be regarded as its specification) that, for
       
   256 every string \isa{s} and regular expression \isa{r} and character
       
   257 \isa{c}, one has \isa{cs\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} if and only if \mbox{\isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}}. 
       
   258 The beauty of Brzozowski's derivatives is that
       
   259 they are neatly expressible in any functional language, and easily
       
   260 definable and reasoned about in theorem provers---the definitions just
       
   261 consist of inductive datatypes and simple recursive functions. A
       
   262 mechanised correctness proof of Brzozowski's matcher in for example HOL4
       
   263 has been mentioned by Owens and Slind~\cite{Owens2008}. Another one in
       
   264 Isabelle/HOL is part of the work by Krauss and Nipkow \cite{Krauss2011}.
       
   265 And another one in Coq is given by Coquand and Siles \cite{Coquand2012}.
       
   266 
       
   267 If a regular expression matches a string, then in general there is more
       
   268 than one way of how the string is matched. There are two commonly used
       
   269 disambiguation strategies to generate a unique answer: one is called
       
   270 GREEDY matching \cite{Frisch2004} and the other is POSIX
       
   271 matching~\cite{POSIX,Kuklewicz,OkuiSuzuki2010,Sulzmann2014,Vansummeren2006}.
       
   272 For example consider the string \isa{xy} and the regular expression
       
   273 \mbox{\isa{{\isacharparenleft}{\kern0pt}x\ {\isacharplus}{\kern0pt}\ y\ {\isacharplus}{\kern0pt}\ xy{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}}. Either the string can be
       
   274 matched in two `iterations' by the single letter-regular expressions
       
   275 \isa{x} and \isa{y}, or directly in one iteration by \isa{xy}. The
       
   276 first case corresponds to GREEDY matching, which first matches with the
       
   277 left-most symbol and only matches the next symbol in case of a mismatch
       
   278 (this is greedy in the sense of preferring instant gratification to
       
   279 delayed repletion). The second case is POSIX matching, which prefers the
       
   280 longest match.
       
   281 
       
   282 In the context of lexing, where an input string needs to be split up
       
   283 into a sequence of tokens, POSIX is the more natural disambiguation
       
   284 strategy for what programmers consider basic syntactic building blocks
       
   285 in their programs.  These building blocks are often specified by some
       
   286 regular expressions, say \isa{r\isactrlbsub key\isactrlesub } and \isa{r\isactrlbsub id\isactrlesub } for recognising keywords and identifiers,
       
   287 respectively. There are a few underlying (informal) rules behind
       
   288 tokenising a string in a POSIX \cite{POSIX} fashion:
       
   289 
       
   290 \begin{itemize} 
       
   291 \item[$\bullet$] \emph{The Longest Match Rule} (or \emph{``{M}aximal {M}unch {R}ule''}):
       
   292 The longest initial substring matched by any regular expression is taken as
       
   293 next token.\smallskip
       
   294 
       
   295 \item[$\bullet$] \emph{Priority Rule:}
       
   296 For a particular longest initial substring, the first (leftmost) regular expression
       
   297 that can match determines the token.\smallskip
       
   298 
       
   299 \item[$\bullet$] \emph{Star Rule:} A subexpression repeated by ${}^\star$ shall 
       
   300 not match an empty string unless this is the only match for the repetition.\smallskip
       
   301 
       
   302 \item[$\bullet$] \emph{Empty String Rule:} An empty string shall be considered to 
       
   303 be longer than no match at all.
       
   304 \end{itemize}
       
   305 
       
   306 \noindent Consider for example a regular expression \isa{r\isactrlbsub key\isactrlesub } for recognising keywords such as \isa{if},
       
   307 \isa{then} and so on; and \isa{r\isactrlbsub id\isactrlesub }
       
   308 recognising identifiers (say, a single character followed by
       
   309 characters or numbers).  Then we can form the regular expression
       
   310 \isa{{\isacharparenleft}{\kern0pt}r\isactrlbsub key\isactrlesub \ {\isacharplus}{\kern0pt}\ r\isactrlbsub id\isactrlesub {\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}
       
   311 and use POSIX matching to tokenise strings, say \isa{iffoo} and
       
   312 \isa{if}.  For \isa{iffoo} we obtain by the Longest Match Rule
       
   313 a single identifier token, not a keyword followed by an
       
   314 identifier. For \isa{if} we obtain by the Priority Rule a keyword
       
   315 token, not an identifier token---even if \isa{r\isactrlbsub id\isactrlesub }
       
   316 matches also. By the Star Rule we know \isa{{\isacharparenleft}{\kern0pt}r\isactrlbsub key\isactrlesub \ {\isacharplus}{\kern0pt}\ r\isactrlbsub id\isactrlesub {\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}} matches \isa{iffoo},
       
   317 respectively \isa{if}, in exactly one `iteration' of the star. The
       
   318 Empty String Rule is for cases where, for example, the regular expression 
       
   319 \isa{{\isacharparenleft}{\kern0pt}a\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}} matches against the
       
   320 string \isa{bc}. Then the longest initial matched substring is the
       
   321 empty string, which is matched by both the whole regular expression
       
   322 and the parenthesised subexpression.
       
   323 
       
   324 
       
   325 One limitation of Brzozowski's matcher is that it only generates a
       
   326 YES/NO answer for whether a string is being matched by a regular
       
   327 expression.  Sulzmann and Lu~\cite{Sulzmann2014} extended this matcher
       
   328 to allow generation not just of a YES/NO answer but of an actual
       
   329 matching, called a [lexical] {\em value}. Assuming a regular
       
   330 expression matches a string, values encode the information of
       
   331 \emph{how} the string is matched by the regular expression---that is,
       
   332 which part of the string is matched by which part of the regular
       
   333 expression. For this consider again the string \isa{xy} and
       
   334 the regular expression \mbox{\isa{{\isacharparenleft}{\kern0pt}x\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}y\ {\isacharplus}{\kern0pt}\ xy{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}}
       
   335 (this time fully parenthesised). We can view this regular expression
       
   336 as tree and if the string \isa{xy} is matched by two Star
       
   337 `iterations', then the \isa{x} is matched by the left-most
       
   338 alternative in this tree and the \isa{y} by the right-left alternative. This
       
   339 suggests to record this matching as
       
   340 
       
   341 \begin{center}
       
   342 \isa{Stars\ {\isacharbrackleft}{\kern0pt}Left\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}{\isacharcomma}{\kern0pt}\ Right\ {\isacharparenleft}{\kern0pt}Left\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharbrackright}{\kern0pt}}
       
   343 \end{center}
       
   344 
       
   345 \noindent where \isa{Stars}, \isa{Left}, \isa{Right} and \isa{Char} are constructors for values. \isa{Stars} records how many
       
   346 iterations were used; \isa{Left}, respectively \isa{Right}, which
       
   347 alternative is used. This `tree view' leads naturally to the idea that
       
   348 regular expressions act as types and values as inhabiting those types
       
   349 (see, for example, \cite{HosoyaVouillonPierce2005}).  The value for
       
   350 matching \isa{xy} in a single `iteration', i.e.~the POSIX value,
       
   351 would look as follows
       
   352 
       
   353 \begin{center}
       
   354 \isa{Stars\ {\isacharbrackleft}{\kern0pt}Seq\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharbrackright}{\kern0pt}}
       
   355 \end{center}
       
   356 
       
   357 \noindent where \isa{Stars} has only a single-element list for the
       
   358 single iteration and \isa{Seq} indicates that \isa{xy} is matched 
       
   359 by a sequence regular expression.
       
   360 
       
   361 %, which we will in what follows 
       
   362 %write more formally as \isa{x\ {\isasymcdot}\ y}.
       
   363 
       
   364 
       
   365 Sulzmann and Lu give a simple algorithm to calculate a value that
       
   366 appears to be the value associated with POSIX matching.  The challenge
       
   367 then is to specify that value, in an algorithm-independent fashion,
       
   368 and to show that Sulzmann and Lu's derivative-based algorithm does
       
   369 indeed calculate a value that is correct according to the
       
   370 specification.  The answer given by Sulzmann and Lu
       
   371 \cite{Sulzmann2014} is to define a relation (called an ``order
       
   372 relation'') on the set of values of \isa{r}, and to show that (once
       
   373 a string to be matched is chosen) there is a maximum element and that
       
   374 it is computed by their derivative-based algorithm. This proof idea is
       
   375 inspired by work of Frisch and Cardelli \cite{Frisch2004} on a GREEDY
       
   376 regular expression matching algorithm. However, we were not able to
       
   377 establish transitivity and totality for the ``order relation'' by
       
   378 Sulzmann and Lu.  There are some inherent problems with their approach
       
   379 (of which some of the proofs are not published in
       
   380 \cite{Sulzmann2014}); perhaps more importantly, we give in this paper
       
   381 a simple inductive (and algorithm-independent) definition of what we
       
   382 call being a {\em POSIX value} for a regular expression \isa{r} and
       
   383 a string \isa{s}; we show that the algorithm by Sulzmann and Lu
       
   384 computes such a value and that such a value is unique. Our proofs are
       
   385 both done by hand and checked in Isabelle/HOL.  The experience of
       
   386 doing our proofs has been that this mechanical checking was absolutely
       
   387 essential: this subject area has hidden snares. This was also noted by
       
   388 Kuklewicz \cite{Kuklewicz} who found that nearly all POSIX matching
       
   389 implementations are ``buggy'' \cite[Page 203]{Sulzmann2014} and by
       
   390 Grathwohl et al \cite[Page 36]{CrashCourse2014} who wrote:
       
   391 
       
   392 \begin{quote}
       
   393 \it{}``The POSIX strategy is more complicated than the greedy because of 
       
   394 the dependence on information about the length of matched strings in the 
       
   395 various subexpressions.''
       
   396 \end{quote}
       
   397 
       
   398 
       
   399 
       
   400 \noindent {\bf Contributions:} We have implemented in Isabelle/HOL the
       
   401 derivative-based regular expression matching algorithm of
       
   402 Sulzmann and Lu \cite{Sulzmann2014}. We have proved the correctness of this
       
   403 algorithm according to our specification of what a POSIX value is (inspired
       
   404 by work of Vansummeren \cite{Vansummeren2006}). Sulzmann
       
   405 and Lu sketch in \cite{Sulzmann2014} an informal correctness proof: but to
       
   406 us it contains unfillable gaps.\footnote{An extended version of
       
   407 \cite{Sulzmann2014} is available at the website of its first author; this
       
   408 extended version already includes remarks in the appendix that their
       
   409 informal proof contains gaps, and possible fixes are not fully worked out.}
       
   410 Our specification of a POSIX value consists of a simple inductive definition
       
   411 that given a string and a regular expression uniquely determines this value.
       
   412 We also show that our definition is equivalent to an ordering 
       
   413 of values based on positions by Okui and Suzuki \cite{OkuiSuzuki2010}.
       
   414 
       
   415 %Derivatives as calculated by Brzozowski's method are usually more complex
       
   416 %regular expressions than the initial one; various optimisations are
       
   417 %possible. We prove the correctness when simplifications of \isa{\isactrlbold {\isadigit{0}}\ {\isacharplus}{\kern0pt}\ r}, 
       
   418 %\isa{r\ {\isacharplus}{\kern0pt}\ \isactrlbold {\isadigit{0}}}, \isa{\isactrlbold {\isadigit{1}}\ {\isasymcdot}\ r} and \isa{r\ {\isasymcdot}\ \isactrlbold {\isadigit{1}}} to
       
   419 %\isa{r} are applied. 
       
   420 
       
   421 We extend our results to ??? Bitcoded version??%
       
   422 \end{isamarkuptext}\isamarkuptrue%
       
   423 %
       
   424 \isadelimdocument
       
   425 %
       
   426 \endisadelimdocument
       
   427 %
       
   428 \isatagdocument
       
   429 %
       
   430 \isamarkupsection{Preliminaries%
       
   431 }
       
   432 \isamarkuptrue%
       
   433 %
       
   434 \endisatagdocument
       
   435 {\isafolddocument}%
       
   436 %
       
   437 \isadelimdocument
       
   438 %
       
   439 \endisadelimdocument
       
   440 %
       
   441 \begin{isamarkuptext}%
       
   442 \noindent Strings in Isabelle/HOL are lists of characters with
       
   443 the empty string being represented by the empty list, written \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}, and list-cons being written as \isa{\underline{\hspace{2mm}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}\underline{\hspace{2mm}}}. Often
       
   444 we use the usual bracket notation for lists also for strings; for
       
   445 example a string consisting of just a single character \isa{c} is
       
   446 written \isa{{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}}. We use the usual definitions for 
       
   447 \emph{prefixes} and \emph{strict prefixes} of strings.  By using the
       
   448 type \isa{char} for characters we have a supply of finitely many
       
   449 characters roughly corresponding to the ASCII character set. Regular
       
   450 expressions are defined as usual as the elements of the following
       
   451 inductive datatype:
       
   452 
       
   453   \begin{center}
       
   454   \isa{r\ {\isacharcolon}{\kern0pt}{\isacharequal}{\kern0pt}}
       
   455   \isa{\isactrlbold {\isadigit{0}}} $\mid$
       
   456   \isa{\isactrlbold {\isadigit{1}}} $\mid$
       
   457   \isa{c} $\mid$
       
   458   \isa{r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}} $\mid$
       
   459   \isa{r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}} $\mid$
       
   460   \isa{r\isactrlsup {\isasymstar}} 
       
   461   \end{center}
       
   462 
       
   463   \noindent where \isa{\isactrlbold {\isadigit{0}}} stands for the regular expression that does
       
   464   not match any string, \isa{\isactrlbold {\isadigit{1}}} for the regular expression that matches
       
   465   only the empty string and \isa{c} for matching a character literal. The
       
   466   language of a regular expression is also defined as usual by the
       
   467   recursive function \isa{L} with the six clauses:
       
   468 
       
   469   \begin{center}
       
   470   \begin{tabular}{l@ {\hspace{4mm}}rcl}
       
   471   \textit{(1)} & \isa{L{\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isasymemptyset}}\\
       
   472   \textit{(2)} & \isa{L{\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
       
   473   \textit{(3)} & \isa{L{\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
       
   474   \textit{(4)} & \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & 
       
   475         \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
   476   \textit{(5)} & \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & 
       
   477         \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymunion}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
   478   \textit{(6)} & \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isasymstar}}\\
       
   479   \end{tabular}
       
   480   \end{center}
       
   481   
       
   482   \noindent In clause \textit{(4)} we use the operation \isa{\underline{\hspace{2mm}}\ {\isacharat}{\kern0pt}\ \underline{\hspace{2mm}}} for the concatenation of two languages (it is also list-append for
       
   483   strings). We use the star-notation for regular expressions and for
       
   484   languages (in the last clause above). The star for languages is defined
       
   485   inductively by two clauses: \isa{{\isacharparenleft}{\kern0pt}i{\isacharparenright}{\kern0pt}} the empty string being in
       
   486   the star of a language and \isa{{\isacharparenleft}{\kern0pt}ii{\isacharparenright}{\kern0pt}} if \isa{s\isactrlsub {\isadigit{1}}} is in a
       
   487   language and \isa{s\isactrlsub {\isadigit{2}}} in the star of this language, then also \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}} is in the star of this language. It will also be convenient
       
   488   to use the following notion of a \emph{semantic derivative} (or \emph{left
       
   489   quotient}) of a language defined as
       
   490   %
       
   491   \begin{center}
       
   492   \isa{Der\ c\ A\ {\isasymequiv}\ {\isacharbraceleft}{\kern0pt}s\ \mbox{\boldmath$\mid$}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\ {\isasymin}\ A{\isacharbraceright}{\kern0pt}}\;.
       
   493   \end{center}
       
   494  
       
   495   \noindent
       
   496   For semantic derivatives we have the following equations (for example
       
   497   mechanically proved in \cite{Krauss2011}):
       
   498   %
       
   499   \begin{equation}\label{SemDer}
       
   500   \begin{array}{lcl}
       
   501   \isa{Der\ c\ {\isasymemptyset}}  & \dn & \isa{{\isasymemptyset}}\\
       
   502   \isa{Der\ c\ {\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}  & \dn & \isa{{\isasymemptyset}}\\
       
   503   \isa{Der\ c\ {\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}d{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}  & \dn & \isa{\textrm{if}\ c\ {\isacharequal}{\kern0pt}\ d\ \textrm{then}\ {\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \textrm{else}\ {\isasymemptyset}}\\
       
   504   \isa{Der\ c\ {\isacharparenleft}{\kern0pt}A\ {\isasymunion}\ B{\isacharparenright}{\kern0pt}}  & \dn & \isa{Der\ c\ A\ {\isasymunion}\ Der\ c\ B}\\
       
   505   \isa{Der\ c\ {\isacharparenleft}{\kern0pt}A\ {\isacharat}{\kern0pt}\ B{\isacharparenright}{\kern0pt}}  & \dn & \isa{{\isacharparenleft}{\kern0pt}Der\ c\ A\ {\isacharat}{\kern0pt}\ B{\isacharparenright}{\kern0pt}\ {\isasymunion}\ {\isacharparenleft}{\kern0pt}\textrm{if}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymin}\ A\ \textrm{then}\ Der\ c\ B\ \textrm{else}\ {\isasymemptyset}{\isacharparenright}{\kern0pt}}\\
       
   506   \isa{Der\ c\ {\isacharparenleft}{\kern0pt}A{\isasymstar}{\isacharparenright}{\kern0pt}}  & \dn & \isa{Der\ c\ A\ {\isacharat}{\kern0pt}\ A{\isasymstar}}
       
   507   \end{array}
       
   508   \end{equation}
       
   509 
       
   510 
       
   511   \noindent \emph{\Brz's derivatives} of regular expressions
       
   512   \cite{Brzozowski1964} can be easily defined by two recursive functions:
       
   513   the first is from regular expressions to booleans (implementing a test
       
   514   when a regular expression can match the empty string), and the second
       
   515   takes a regular expression and a character to a (derivative) regular
       
   516   expression:
       
   517 
       
   518   \begin{center}
       
   519   \begin{tabular}{lcl}
       
   520   \isa{nullable\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{False}\\
       
   521   \isa{nullable\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{True}\\
       
   522   \isa{nullable\ {\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{False}\\
       
   523   \isa{nullable\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{nullable\ r\isactrlsub {\isadigit{1}}\ {\isasymor}\ nullable\ r\isactrlsub {\isadigit{2}}}\\
       
   524   \isa{nullable\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{nullable\ r\isactrlsub {\isadigit{1}}\ {\isasymand}\ nullable\ r\isactrlsub {\isadigit{2}}}\\
       
   525   \isa{nullable\ {\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{True}\medskip\\
       
   526 
       
   527 %  \end{tabular}
       
   528 %  \end{center}
       
   529 
       
   530 %  \begin{center}
       
   531 %  \begin{tabular}{lcl}
       
   532 
       
   533   \isa{\isactrlbold {\isadigit{0}}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\isactrlbold {\isadigit{0}}}\\
       
   534   \isa{\isactrlbold {\isadigit{1}}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\isactrlbold {\isadigit{0}}}\\
       
   535   \isa{d{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\textrm{if}\ c\ {\isacharequal}{\kern0pt}\ d\ \textrm{then}\ \isactrlbold {\isadigit{1}}\ \textrm{else}\ \isactrlbold {\isadigit{0}}}\\
       
   536   \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}\\
       
   537   \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{\textrm{if}\ nullable\ r\isactrlsub {\isadigit{1}}\ \textrm{then}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ \textrm{else}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}\\
       
   538   \isa{{\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsup {\isasymstar}}
       
   539   \end{tabular}
       
   540   \end{center}
       
   541  
       
   542   \noindent
       
   543   We may extend this definition to give derivatives w.r.t.~strings:
       
   544 
       
   545   \begin{center}
       
   546   \begin{tabular}{lcl}
       
   547   \isa{r{\isacharbackslash}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{r}\\
       
   548   \isa{r{\isacharbackslash}{\kern0pt}{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}s}\\
       
   549   \end{tabular}
       
   550   \end{center}
       
   551 
       
   552   \noindent Given the equations in \eqref{SemDer}, it is a relatively easy
       
   553   exercise in mechanical reasoning to establish that
       
   554 
       
   555   \begin{proposition}\label{derprop}\mbox{}\\ 
       
   556   \begin{tabular}{ll}
       
   557   \textit{(1)} & \isa{nullable\ r} if and only if
       
   558   \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}, and \\ 
       
   559   \textit{(2)} & \isa{L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ Der\ c\ {\isacharparenleft}{\kern0pt}L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}.
       
   560   \end{tabular}
       
   561   \end{proposition}
       
   562 
       
   563   \noindent With this in place it is also very routine to prove that the
       
   564   regular expression matcher defined as
       
   565   %
       
   566   \begin{center}
       
   567   \isa{match\ r\ s\ {\isasymequiv}\ nullable\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}s{\isacharparenright}{\kern0pt}}
       
   568   \end{center}
       
   569 
       
   570   \noindent gives a positive answer if and only if \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}.
       
   571   Consequently, this regular expression matching algorithm satisfies the
       
   572   usual specification for regular expression matching. While the matcher
       
   573   above calculates a provably correct YES/NO answer for whether a regular
       
   574   expression matches a string or not, the novel idea of Sulzmann and Lu
       
   575   \cite{Sulzmann2014} is to append another phase to this algorithm in order
       
   576   to calculate a [lexical] value. We will explain the details next.%
       
   577 \end{isamarkuptext}\isamarkuptrue%
       
   578 %
       
   579 \isadelimdocument
       
   580 %
       
   581 \endisadelimdocument
       
   582 %
       
   583 \isatagdocument
       
   584 %
       
   585 \isamarkupsection{POSIX Regular Expression Matching\label{posixsec}%
       
   586 }
       
   587 \isamarkuptrue%
       
   588 %
       
   589 \endisatagdocument
       
   590 {\isafolddocument}%
       
   591 %
       
   592 \isadelimdocument
       
   593 %
       
   594 \endisadelimdocument
       
   595 %
       
   596 \begin{isamarkuptext}%
       
   597 There have been many previous works that use values for encoding 
       
   598   \emph{how} a regular expression matches a string.
       
   599   The clever idea by Sulzmann and Lu \cite{Sulzmann2014} is to 
       
   600   define a function on values that mirrors (but inverts) the
       
   601   construction of the derivative on regular expressions. \emph{Values}
       
   602   are defined as the inductive datatype
       
   603 
       
   604   \begin{center}
       
   605   \isa{v\ {\isacharcolon}{\kern0pt}{\isacharequal}{\kern0pt}}
       
   606   \isa{Empty} $\mid$
       
   607   \isa{Char\ c} $\mid$
       
   608   \isa{Left\ v} $\mid$
       
   609   \isa{Right\ v} $\mid$
       
   610   \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} $\mid$ 
       
   611   \isa{Stars\ vs} 
       
   612   \end{center}  
       
   613 
       
   614   \noindent where we use \isa{vs} to stand for a list of
       
   615   values. (This is similar to the approach taken by Frisch and
       
   616   Cardelli for GREEDY matching \cite{Frisch2004}, and Sulzmann and Lu
       
   617   for POSIX matching \cite{Sulzmann2014}). The string underlying a
       
   618   value can be calculated by the \isa{flat} function, written
       
   619   \isa{{\isacharbar}{\kern0pt}\underline{\hspace{2mm}}{\isacharbar}{\kern0pt}} and defined as:
       
   620 
       
   621   \begin{center}
       
   622   \begin{tabular}[t]{lcl}
       
   623   \isa{{\isacharbar}{\kern0pt}Empty{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\\
       
   624   \isa{{\isacharbar}{\kern0pt}Char\ c{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}}\\
       
   625   \isa{{\isacharbar}{\kern0pt}Left\ v{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}}\\
       
   626   \isa{{\isacharbar}{\kern0pt}Right\ v{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}}
       
   627   \end{tabular}\hspace{14mm}
       
   628   \begin{tabular}[t]{lcl}
       
   629   \isa{{\isacharbar}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}}\\
       
   630   \isa{{\isacharbar}{\kern0pt}Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\\
       
   631   \isa{{\isacharbar}{\kern0pt}Stars\ {\isacharparenleft}{\kern0pt}v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}{\isacharbar}{\kern0pt}} & $\dn$ & \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}Stars\ vs{\isacharbar}{\kern0pt}}\\
       
   632   \end{tabular}
       
   633   \end{center}
       
   634 
       
   635   \noindent We will sometimes refer to the underlying string of a
       
   636   value as \emph{flattened value}.  We will also overload our notation and 
       
   637   use \isa{{\isacharbar}{\kern0pt}vs{\isacharbar}{\kern0pt}} for flattening a list of values and concatenating
       
   638   the resulting strings.
       
   639   
       
   640   Sulzmann and Lu define
       
   641   inductively an \emph{inhabitation relation} that associates values to
       
   642   regular expressions. We define this relation as
       
   643   follows:\footnote{Note that the rule for \isa{Stars} differs from
       
   644   our earlier paper \cite{AusafDyckhoffUrban2016}. There we used the
       
   645   original definition by Sulzmann and Lu which does not require that
       
   646   the values \isa{v\ {\isasymin}\ vs} flatten to a non-empty
       
   647   string. The reason for introducing the more restricted version of
       
   648   lexical values is convenience later on when reasoning about an
       
   649   ordering relation for values.}
       
   650 
       
   651   \begin{center}
       
   652   \begin{tabular}{c@ {\hspace{12mm}}c}\label{prfintros}
       
   653   \\[-8mm]
       
   654   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{Empty\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{1}}}}} & 
       
   655   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{Char\ c\ {\isacharcolon}{\kern0pt}\ c}}}\\[4mm]
       
   656   \isa{\mbox{}\inferrule{\mbox{v\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}{\mbox{Left\ v\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}}} &
       
   657   \isa{\mbox{}\inferrule{\mbox{v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}{\mbox{Right\ v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}}}\\[4mm]
       
   658   \isa{\mbox{}\inferrule{\mbox{v\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}\\\ \mbox{v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}}{\mbox{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}}}  &
       
   659   \isa{\mbox{}\inferrule{\mbox{{\isasymforall}v{\isasymin}vs{\isachardot}{\kern0pt}\ v\ {\isacharcolon}{\kern0pt}\ r\ {\isasymand}\ {\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}}{\mbox{Stars\ vs\ {\isacharcolon}{\kern0pt}\ r\isactrlsup {\isasymstar}}}}
       
   660   \end{tabular}
       
   661   \end{center}
       
   662 
       
   663   \noindent where in the clause for \isa{Stars} we use the
       
   664   notation \isa{v\ {\isasymin}\ vs} for indicating that \isa{v} is a
       
   665   member in the list \isa{vs}.  We require in this rule that every
       
   666   value in \isa{vs} flattens to a non-empty string. The idea is that
       
   667   \isa{Stars}-values satisfy the informal Star Rule (see Introduction)
       
   668   where the $^\star$ does not match the empty string unless this is
       
   669   the only match for the repetition.  Note also that no values are
       
   670   associated with the regular expression \isa{\isactrlbold {\isadigit{0}}}, and that the
       
   671   only value associated with the regular expression \isa{\isactrlbold {\isadigit{1}}} is
       
   672   \isa{Empty}.  It is routine to establish how values ``inhabiting''
       
   673   a regular expression correspond to the language of a regular
       
   674   expression, namely
       
   675 
       
   676   \begin{proposition}\label{inhabs}
       
   677   \isa{L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbraceleft}{\kern0pt}{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ \mbox{\boldmath$\mid$}\ v\ {\isacharcolon}{\kern0pt}\ r{\isacharbraceright}{\kern0pt}}
       
   678   \end{proposition}
       
   679 
       
   680   \noindent
       
   681   Given a regular expression \isa{r} and a string \isa{s}, we define the 
       
   682   set of all \emph{Lexical Values} inhabited by \isa{r} with the underlying string 
       
   683   being \isa{s}:\footnote{Okui and Suzuki refer to our lexical values 
       
   684   as \emph{canonical values} in \cite{OkuiSuzuki2010}. The notion of \emph{non-problematic
       
   685   values} by Cardelli and Frisch \cite{Frisch2004} is related, but not identical
       
   686   to our lexical values.}
       
   687   
       
   688   \begin{center}
       
   689   \isa{LV\ r\ s\ {\isasymequiv}\ {\isacharbraceleft}{\kern0pt}v\ \mbox{\boldmath$\mid$}\ v\ {\isacharcolon}{\kern0pt}\ r\ {\isasymand}\ {\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ s{\isacharbraceright}{\kern0pt}}
       
   690   \end{center}
       
   691 
       
   692   \noindent The main property of \isa{LV\ r\ s} is that it is alway finite.
       
   693 
       
   694   \begin{proposition}
       
   695   \isa{finite\ {\isacharparenleft}{\kern0pt}LV\ r\ s{\isacharparenright}{\kern0pt}}
       
   696   \end{proposition}
       
   697 
       
   698   \noindent This finiteness property does not hold in general if we
       
   699   remove the side-condition about \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} in the
       
   700   \isa{Stars}-rule above. For example using Sulzmann and Lu's
       
   701   less restrictive definition, \isa{LV\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} would contain
       
   702   infinitely many values, but according to our more restricted
       
   703   definition only a single value, namely \isa{LV\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbraceleft}{\kern0pt}Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}.
       
   704 
       
   705   If a regular expression \isa{r} matches a string \isa{s}, then
       
   706   generally the set \isa{LV\ r\ s} is not just a singleton set.  In
       
   707   case of POSIX matching the problem is to calculate the unique lexical value
       
   708   that satisfies the (informal) POSIX rules from the Introduction.
       
   709   Graphically the POSIX value calculation algorithm by Sulzmann and Lu
       
   710   can be illustrated by the picture in Figure~\ref{Sulz} where the
       
   711   path from the left to the right involving \isa{derivatives}/\isa{nullable} is the first phase of the algorithm
       
   712   (calculating successive \Brz's derivatives) and \isa{mkeps}/\isa{inj}, the path from right to left, the second
       
   713   phase. This picture shows the steps required when a regular
       
   714   expression, say \isa{r\isactrlsub {\isadigit{1}}}, matches the string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}}. We first build the three derivatives (according to
       
   715   \isa{a}, \isa{b} and \isa{c}). We then use \isa{nullable}
       
   716   to find out whether the resulting derivative regular expression
       
   717   \isa{r\isactrlsub {\isadigit{4}}} can match the empty string. If yes, we call the
       
   718   function \isa{mkeps} that produces a value \isa{v\isactrlsub {\isadigit{4}}}
       
   719   for how \isa{r\isactrlsub {\isadigit{4}}} can match the empty string (taking into
       
   720   account the POSIX constraints in case there are several ways). This
       
   721   function is defined by the clauses:
       
   722 
       
   723 \begin{figure}[t]
       
   724 \begin{center}
       
   725 \begin{tikzpicture}[scale=2,node distance=1.3cm,
       
   726                     every node/.style={minimum size=6mm}]
       
   727 \node (r1)  {\isa{r\isactrlsub {\isadigit{1}}}};
       
   728 \node (r2) [right=of r1]{\isa{r\isactrlsub {\isadigit{2}}}};
       
   729 \draw[->,line width=1mm](r1)--(r2) node[above,midway] {\isa{\underline{\hspace{2mm}}{\isacharbackslash}{\kern0pt}a}};
       
   730 \node (r3) [right=of r2]{\isa{r\isactrlsub {\isadigit{3}}}};
       
   731 \draw[->,line width=1mm](r2)--(r3) node[above,midway] {\isa{\underline{\hspace{2mm}}{\isacharbackslash}{\kern0pt}b}};
       
   732 \node (r4) [right=of r3]{\isa{r\isactrlsub {\isadigit{4}}}};
       
   733 \draw[->,line width=1mm](r3)--(r4) node[above,midway] {\isa{\underline{\hspace{2mm}}{\isacharbackslash}{\kern0pt}c}};
       
   734 \draw (r4) node[anchor=west] {\;\raisebox{3mm}{\isa{nullable}}};
       
   735 \node (v4) [below=of r4]{\isa{v\isactrlsub {\isadigit{4}}}};
       
   736 \draw[->,line width=1mm](r4) -- (v4);
       
   737 \node (v3) [left=of v4] {\isa{v\isactrlsub {\isadigit{3}}}};
       
   738 \draw[->,line width=1mm](v4)--(v3) node[below,midway] {\isa{inj\ r\isactrlsub {\isadigit{3}}\ c}};
       
   739 \node (v2) [left=of v3]{\isa{v\isactrlsub {\isadigit{2}}}};
       
   740 \draw[->,line width=1mm](v3)--(v2) node[below,midway] {\isa{inj\ r\isactrlsub {\isadigit{2}}\ b}};
       
   741 \node (v1) [left=of v2] {\isa{v\isactrlsub {\isadigit{1}}}};
       
   742 \draw[->,line width=1mm](v2)--(v1) node[below,midway] {\isa{inj\ r\isactrlsub {\isadigit{1}}\ a}};
       
   743 \draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{\isa{mkeps}}};
       
   744 \end{tikzpicture}
       
   745 \end{center}
       
   746 \mbox{}\\[-13mm]
       
   747 
       
   748 \caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014},
       
   749 matching the string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}}. The first phase (the arrows from 
       
   750 left to right) is \Brz's matcher building successive derivatives. If the 
       
   751 last regular expression is \isa{nullable}, then the functions of the 
       
   752 second phase are called (the top-down and right-to-left arrows): first 
       
   753 \isa{mkeps} calculates a value \isa{v\isactrlsub {\isadigit{4}}} witnessing
       
   754 how the empty string has been recognised by \isa{r\isactrlsub {\isadigit{4}}}. After
       
   755 that the function \isa{inj} ``injects back'' the characters of the string into
       
   756 the values.
       
   757 \label{Sulz}}
       
   758 \end{figure} 
       
   759 
       
   760   \begin{center}
       
   761   \begin{tabular}{lcl}
       
   762   \isa{mkeps\ \isactrlbold {\isadigit{1}}} & $\dn$ & \isa{Empty}\\
       
   763   \isa{mkeps\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
   764   \isa{mkeps\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{\textrm{if}\ nullable\ r\isactrlsub {\isadigit{1}}\ \textrm{then}\ Left\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ \textrm{else}\ Right\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
   765   \isa{mkeps\ {\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\\
       
   766   \end{tabular}
       
   767   \end{center}
       
   768 
       
   769   \noindent Note that this function needs only to be partially defined,
       
   770   namely only for regular expressions that are nullable. In case \isa{nullable} fails, the string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}} cannot be matched by \isa{r\isactrlsub {\isadigit{1}}} and the null value \isa{None} is returned. Note also how this function
       
   771   makes some subtle choices leading to a POSIX value: for example if an
       
   772   alternative regular expression, say \isa{r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}, can
       
   773   match the empty string and furthermore \isa{r\isactrlsub {\isadigit{1}}} can match the
       
   774   empty string, then we return a \isa{Left}-value. The \isa{Right}-value will only be returned if \isa{r\isactrlsub {\isadigit{1}}} cannot match the empty
       
   775   string.
       
   776 
       
   777   The most interesting idea from Sulzmann and Lu \cite{Sulzmann2014} is
       
   778   the construction of a value for how \isa{r\isactrlsub {\isadigit{1}}} can match the
       
   779   string \isa{{\isacharbrackleft}{\kern0pt}a{\isacharcomma}{\kern0pt}\ b{\isacharcomma}{\kern0pt}\ c{\isacharbrackright}{\kern0pt}} from the value how the last derivative, \isa{r\isactrlsub {\isadigit{4}}} in Fig.~\ref{Sulz}, can match the empty string. Sulzmann and
       
   780   Lu achieve this by stepwise ``injecting back'' the characters into the
       
   781   values thus inverting the operation of building derivatives, but on the level
       
   782   of values. The corresponding function, called \isa{inj}, takes three
       
   783   arguments, a regular expression, a character and a value. For example in
       
   784   the first (or right-most) \isa{inj}-step in Fig.~\ref{Sulz} the regular
       
   785   expression \isa{r\isactrlsub {\isadigit{3}}}, the character \isa{c} from the last
       
   786   derivative step and \isa{v\isactrlsub {\isadigit{4}}}, which is the value corresponding
       
   787   to the derivative regular expression \isa{r\isactrlsub {\isadigit{4}}}. The result is
       
   788   the new value \isa{v\isactrlsub {\isadigit{3}}}. The final result of the algorithm is
       
   789   the value \isa{v\isactrlsub {\isadigit{1}}}. The \isa{inj} function is defined by recursion on regular
       
   790   expressions and by analysing the shape of values (corresponding to 
       
   791   the derivative regular expressions).
       
   792   %
       
   793   \begin{center}
       
   794   \begin{tabular}{l@ {\hspace{5mm}}lcl}
       
   795   \textit{(1)} & \isa{inj\ d\ c\ {\isacharparenleft}{\kern0pt}Empty{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Char\ d}\\
       
   796   \textit{(2)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Left\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} & $\dn$ & 
       
   797       \isa{Left\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}\\
       
   798   \textit{(3)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Right\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & 
       
   799       \isa{Right\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
   800   \textit{(4)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ 
       
   801       & \isa{Seq\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}\\
       
   802   \textit{(5)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Left\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}} & $\dn$ 
       
   803       & \isa{Seq\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}\\
       
   804   \textit{(6)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Right\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ 
       
   805       & \isa{Seq\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
   806   \textit{(7)} & \isa{inj\ {\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Seq\ v\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}} & $\dn$ 
       
   807       & \isa{Stars\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}}\\
       
   808   \end{tabular}
       
   809   \end{center}
       
   810 
       
   811   \noindent To better understand what is going on in this definition it
       
   812   might be instructive to look first at the three sequence cases (clauses
       
   813   \textit{(4)} -- \textit{(6)}). In each case we need to construct an ``injected value'' for
       
   814   \isa{r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}. This must be a value of the form \isa{Seq\ \underline{\hspace{2mm}}\ \underline{\hspace{2mm}}}\,. Recall the clause of the \isa{derivative}-function
       
   815   for sequence regular expressions:
       
   816 
       
   817   \begin{center}
       
   818   \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} $\dn$ \isa{\textrm{if}\ nullable\ r\isactrlsub {\isadigit{1}}\ \textrm{then}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ \textrm{else}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}
       
   819   \end{center}
       
   820 
       
   821   \noindent Consider first the \isa{else}-branch where the derivative is \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}. The corresponding value must therefore
       
   822   be of the form \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}}, which matches the left-hand
       
   823   side in clause~\textit{(4)} of \isa{inj}. In the \isa{if}-branch the derivative is an
       
   824   alternative, namely \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}. This means we either have to consider a \isa{Left}- or
       
   825   \isa{Right}-value. In case of the \isa{Left}-value we know further it
       
   826   must be a value for a sequence regular expression. Therefore the pattern
       
   827   we match in the clause \textit{(5)} is \isa{Left\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}},
       
   828   while in \textit{(6)} it is just \isa{Right\ v\isactrlsub {\isadigit{2}}}. One more interesting
       
   829   point is in the right-hand side of clause \textit{(6)}: since in this case the
       
   830   regular expression \isa{r\isactrlsub {\isadigit{1}}} does not ``contribute'' to
       
   831   matching the string, that means it only matches the empty string, we need to
       
   832   call \isa{mkeps} in order to construct a value for how \isa{r\isactrlsub {\isadigit{1}}}
       
   833   can match this empty string. A similar argument applies for why we can
       
   834   expect in the left-hand side of clause \textit{(7)} that the value is of the form
       
   835   \isa{Seq\ v\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}}---the derivative of a star is \isa{{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsup {\isasymstar}}. Finally, the reason for why we can ignore the second argument
       
   836   in clause \textit{(1)} of \isa{inj} is that it will only ever be called in cases
       
   837   where \isa{c\ {\isacharequal}{\kern0pt}\ d}, but the usual linearity restrictions in patterns do
       
   838   not allow us to build this constraint explicitly into our function
       
   839   definition.\footnote{Sulzmann and Lu state this clause as \isa{inj\ c\ c\ {\isacharparenleft}{\kern0pt}Empty{\isacharparenright}{\kern0pt}} $\dn$ \isa{Char\ c},
       
   840   but our deviation is harmless.}
       
   841 
       
   842   The idea of the \isa{inj}-function to ``inject'' a character, say
       
   843   \isa{c}, into a value can be made precise by the first part of the
       
   844   following lemma, which shows that the underlying string of an injected
       
   845   value has a prepended character \isa{c}; the second part shows that
       
   846   the underlying string of an \isa{mkeps}-value is always the empty
       
   847   string (given the regular expression is nullable since otherwise
       
   848   \isa{mkeps} might not be defined).
       
   849 
       
   850   \begin{lemma}\mbox{}\smallskip\\\label{Prf_injval_flat}
       
   851   \begin{tabular}{ll}
       
   852   (1) & \isa{{\normalsize{}If\,}\ v\ {\isacharcolon}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c\ {\normalsize \,then\,}\ {\isacharbar}{\kern0pt}inj\ r\ c\ v{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}{\isachardot}{\kern0pt}}\\
       
   853   (2) & \isa{{\normalsize{}If\,}\ nullable\ r\ {\normalsize \,then\,}\ {\isacharbar}{\kern0pt}mkeps\ r{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isachardot}{\kern0pt}}
       
   854   \end{tabular}
       
   855   \end{lemma}
       
   856 
       
   857   \begin{proof}
       
   858   Both properties are by routine inductions: the first one can, for example,
       
   859   be proved by induction over the definition of \isa{derivatives}; the second by
       
   860   an induction on \isa{r}. There are no interesting cases.\qed
       
   861   \end{proof}
       
   862 
       
   863   Having defined the \isa{mkeps} and \isa{inj} function we can extend
       
   864   \Brz's matcher so that a value is constructed (assuming the
       
   865   regular expression matches the string). The clauses of the Sulzmann and Lu lexer are
       
   866 
       
   867   \begin{center}
       
   868   \begin{tabular}{lcl}
       
   869   \isa{lexer\ r\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{\textrm{if}\ nullable\ r\ \textrm{then}\ Some\ {\isacharparenleft}{\kern0pt}mkeps\ r{\isacharparenright}{\kern0pt}\ \textrm{else}\ None}\\
       
   870   \isa{lexer\ r\ {\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{case} \isa{lexer\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ s} \isa{of}\\
       
   871                      & & \phantom{$|$} \isa{None}  \isa{{\isasymRightarrow}} \isa{None}\\
       
   872                      & & $|$ \isa{Some\ v} \isa{{\isasymRightarrow}} \isa{Some\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ v{\isacharparenright}{\kern0pt}}                          
       
   873   \end{tabular}
       
   874   \end{center}
       
   875 
       
   876   \noindent If the regular expression does not match the string, \isa{None} is
       
   877   returned. If the regular expression \emph{does}
       
   878   match the string, then \isa{Some} value is returned. One important
       
   879   virtue of this algorithm is that it can be implemented with ease in any
       
   880   functional programming language and also in Isabelle/HOL. In the remaining
       
   881   part of this section we prove that this algorithm is correct.
       
   882 
       
   883   The well-known idea of POSIX matching is informally defined by some
       
   884   rules such as the Longest Match and Priority Rules (see
       
   885   Introduction); as correctly argued in \cite{Sulzmann2014}, this
       
   886   needs formal specification. Sulzmann and Lu define an ``ordering
       
   887   relation'' between values and argue that there is a maximum value,
       
   888   as given by the derivative-based algorithm.  In contrast, we shall
       
   889   introduce a simple inductive definition that specifies directly what
       
   890   a \emph{POSIX value} is, incorporating the POSIX-specific choices
       
   891   into the side-conditions of our rules. Our definition is inspired by
       
   892   the matching relation given by Vansummeren~\cite{Vansummeren2006}. 
       
   893   The relation we define is ternary and
       
   894   written as \mbox{\isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}}, relating
       
   895   strings, regular expressions and values; the inductive rules are given in 
       
   896   Figure~\ref{POSIXrules}.
       
   897   We can prove that given a string \isa{s} and regular expression \isa{r}, the POSIX value \isa{v} is uniquely determined by \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}.
       
   898 
       
   899   %
       
   900   \begin{figure}[t]
       
   901   \begin{center}
       
   902   \begin{tabular}{c}
       
   903   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ \isactrlbold {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Empty}}}\isa{P}\isa{\isactrlbold {\isadigit{1}}} \qquad
       
   904   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}c{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Char\ c}}}\isa{P}\isa{c}\medskip\\
       
   905   \isa{\mbox{}\inferrule{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}}{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Left\ v}}}\isa{P{\isacharplus}{\kern0pt}L}\qquad
       
   906   \isa{\mbox{}\inferrule{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\\ \mbox{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}}{\mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Right\ v}}}\isa{P{\isacharplus}{\kern0pt}R}\medskip\\
       
   907   $\mprset{flushleft}
       
   908    \inferrule
       
   909    {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} \qquad
       
   910     \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{2}}} \\\\
       
   911     \isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}}
       
   912    {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}}}$\isa{PS}\\
       
   913   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}}}\isa{P{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}\medskip\\
       
   914   $\mprset{flushleft}
       
   915    \inferrule
       
   916    {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} \qquad
       
   917     \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Stars\ vs} \qquad
       
   918     \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} \\\\
       
   919     \isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}}}
       
   920    {\isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Stars\ {\isacharparenleft}{\kern0pt}v\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}}}$\isa{P{\isasymstar}}
       
   921   \end{tabular}
       
   922   \end{center}
       
   923   \caption{Our inductive definition of POSIX values.}\label{POSIXrules}
       
   924   \end{figure}
       
   925 
       
   926    
       
   927 
       
   928   \begin{theorem}\mbox{}\smallskip\\\label{posixdeterm}
       
   929   \begin{tabular}{ll}
       
   930   (1) & If \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} then \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} and \isa{{\isacharbar}{\kern0pt}v{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ s}.\\
       
   931   (2) & \isa{{\normalsize{}If\,}\ \mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\ {\normalsize \,and\,}\ \mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}\ {\normalsize \,then\,}\ v\ {\isacharequal}{\kern0pt}\ v{\isacharprime}{\kern0pt}{\isachardot}{\kern0pt}}
       
   932   \end{tabular}
       
   933   \end{theorem}
       
   934 
       
   935   \begin{proof} Both by induction on the definition of \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}. 
       
   936   The second parts follows by a case analysis of \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}} and
       
   937   the first part.\qed
       
   938   \end{proof}
       
   939 
       
   940   \noindent
       
   941   We claim that our \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} relation captures the idea behind the four
       
   942   informal POSIX rules shown in the Introduction: Consider for example the
       
   943   rules \isa{P{\isacharplus}{\kern0pt}L} and \isa{P{\isacharplus}{\kern0pt}R} where the POSIX value for a string
       
   944   and an alternative regular expression, that is \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}},
       
   945   is specified---it is always a \isa{Left}-value, \emph{except} when the
       
   946   string to be matched is not in the language of \isa{r\isactrlsub {\isadigit{1}}}; only then it
       
   947   is a \isa{Right}-value (see the side-condition in \isa{P{\isacharplus}{\kern0pt}R}).
       
   948   Interesting is also the rule for sequence regular expressions (\isa{PS}). The first two premises state that \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}}
       
   949   are the POSIX values for \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} and \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}
       
   950   respectively. Consider now the third premise and note that the POSIX value
       
   951   of this rule should match the string \mbox{\isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}}}. According to the
       
   952   Longest Match Rule, we want that the \isa{s\isactrlsub {\isadigit{1}}} is the longest initial
       
   953   split of \mbox{\isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}}} such that \isa{s\isactrlsub {\isadigit{2}}} is still recognised
       
   954   by \isa{r\isactrlsub {\isadigit{2}}}. Let us assume, contrary to the third premise, that there
       
   955   \emph{exist} an \isa{s\isactrlsub {\isadigit{3}}} and \isa{s\isactrlsub {\isadigit{4}}} such that \isa{s\isactrlsub {\isadigit{2}}}
       
   956   can be split up into a non-empty string \isa{s\isactrlsub {\isadigit{3}}} and a possibly empty
       
   957   string \isa{s\isactrlsub {\isadigit{4}}}. Moreover the longer string \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}} can be
       
   958   matched by \isa{r\isactrlsub {\isadigit{1}}} and the shorter \isa{s\isactrlsub {\isadigit{4}}} can still be
       
   959   matched by \isa{r\isactrlsub {\isadigit{2}}}. In this case \isa{s\isactrlsub {\isadigit{1}}} would \emph{not} be the
       
   960   longest initial split of \mbox{\isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}}} and therefore \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} cannot be a POSIX value for \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}. 
       
   961   The main point is that our side-condition ensures the Longest 
       
   962   Match Rule is satisfied.
       
   963 
       
   964   A similar condition is imposed on the POSIX value in the \isa{P{\isasymstar}}-rule. Also there we want that \isa{s\isactrlsub {\isadigit{1}}} is the longest initial
       
   965   split of \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}} and furthermore the corresponding value
       
   966   \isa{v} cannot be flattened to the empty string. In effect, we require
       
   967   that in each ``iteration'' of the star, some non-empty substring needs to
       
   968   be ``chipped'' away; only in case of the empty string we accept \isa{Stars\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} as the POSIX value. Indeed we can show that our POSIX values
       
   969   are lexical values which exclude those \isa{Stars} that contain subvalues 
       
   970   that flatten to the empty string.
       
   971 
       
   972   \begin{lemma}\label{LVposix}
       
   973   \isa{{\normalsize{}If\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\ {\normalsize \,then\,}\ v\ {\isasymin}\ LV\ r\ s{\isachardot}{\kern0pt}}
       
   974   \end{lemma}
       
   975 
       
   976   \begin{proof}
       
   977   By routine induction on \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}.\qed 
       
   978   \end{proof}
       
   979 
       
   980   \noindent
       
   981   Next is the lemma that shows the function \isa{mkeps} calculates
       
   982   the POSIX value for the empty string and a nullable regular expression.
       
   983 
       
   984   \begin{lemma}\label{lemmkeps}
       
   985   \isa{{\normalsize{}If\,}\ nullable\ r\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ mkeps\ r{\isachardot}{\kern0pt}}
       
   986   \end{lemma}
       
   987 
       
   988   \begin{proof}
       
   989   By routine induction on \isa{r}.\qed 
       
   990   \end{proof}
       
   991 
       
   992   \noindent
       
   993   The central lemma for our POSIX relation is that the \isa{inj}-function
       
   994   preserves POSIX values.
       
   995 
       
   996   \begin{lemma}\label{Posix2}
       
   997   \isa{{\normalsize{}If\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\ c\ v{\isachardot}{\kern0pt}}
       
   998   \end{lemma}
       
   999 
       
  1000   \begin{proof}
       
  1001   By induction on \isa{r}. We explain two cases.
       
  1002 
       
  1003   \begin{itemize}
       
  1004   \item[$\bullet$] Case \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}. There are
       
  1005   two subcases, namely \isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}} \mbox{\isa{v\ {\isacharequal}{\kern0pt}\ Left\ v{\isacharprime}{\kern0pt}}} and \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}; and \isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}} \isa{v\ {\isacharequal}{\kern0pt}\ Right\ v{\isacharprime}{\kern0pt}}, \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}} and \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}. In \isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}} we
       
  1006   know \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}, from which we can infer \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{1}}\ c\ v{\isacharprime}{\kern0pt}} by induction hypothesis and hence \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ c\ {\isacharparenleft}{\kern0pt}Left\ v{\isacharprime}{\kern0pt}{\isacharparenright}{\kern0pt}} as needed. Similarly
       
  1007   in subcase \isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}} where, however, in addition we have to use
       
  1008   Proposition~\ref{derprop}(2) in order to infer \isa{c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} from \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}.\smallskip
       
  1009 
       
  1010   \item[$\bullet$] Case \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}}. There are three subcases:
       
  1011   
       
  1012   \begin{quote}
       
  1013   \begin{description}
       
  1014   \item[\isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}}] \isa{v\ {\isacharequal}{\kern0pt}\ Left\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} and \isa{nullable\ r\isactrlsub {\isadigit{1}}} 
       
  1015   \item[\isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}}] \isa{v\ {\isacharequal}{\kern0pt}\ Right\ v\isactrlsub {\isadigit{1}}} and \isa{nullable\ r\isactrlsub {\isadigit{1}}} 
       
  1016   \item[\isa{{\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}}] \isa{v\ {\isacharequal}{\kern0pt}\ Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} and \isa{{\isasymnot}\ nullable\ r\isactrlsub {\isadigit{1}}} 
       
  1017   \end{description}
       
  1018   \end{quote}
       
  1019 
       
  1020   \noindent For \isa{{\isacharparenleft}{\kern0pt}a{\isacharparenright}{\kern0pt}} we know \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} and
       
  1021   \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{2}}} as well as
       
  1022   %
       
  1023   \[\isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\]
       
  1024 
       
  1025   \noindent From the latter we can infer by Proposition~\ref{derprop}(2):
       
  1026   %
       
  1027   \[\isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymand}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\]
       
  1028 
       
  1029   \noindent We can use the induction hypothesis for \isa{r\isactrlsub {\isadigit{1}}} to obtain
       
  1030   \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}}. Putting this all together allows us to infer
       
  1031   \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}. The case \isa{{\isacharparenleft}{\kern0pt}c{\isacharparenright}{\kern0pt}}
       
  1032   is similar.
       
  1033 
       
  1034   For \isa{{\isacharparenleft}{\kern0pt}b{\isacharparenright}{\kern0pt}} we know \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} and 
       
  1035   \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}. From the former
       
  1036   we have \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{1}}} by induction hypothesis
       
  1037   for \isa{r\isactrlsub {\isadigit{2}}}. From the latter we can infer
       
  1038   %
       
  1039   \[\isa{{\isasymnexists}s\isactrlsub {\isadigit{3}}\ s\isactrlsub {\isadigit{4}}{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ s\isactrlsub {\isadigit{3}}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{4}}\ {\isacharequal}{\kern0pt}\ c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\ {\isasymand}\ s\isactrlsub {\isadigit{3}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymand}\ s\isactrlsub {\isadigit{4}}\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\]
       
  1040 
       
  1041   \noindent By Lemma~\ref{lemmkeps} we know \isa{{\isacharparenleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ mkeps\ r\isactrlsub {\isadigit{1}}}
       
  1042   holds. Putting this all together, we can conclude with \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ {\isacharparenleft}{\kern0pt}mkeps\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}inj\ r\isactrlsub {\isadigit{2}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}, as required.
       
  1043 
       
  1044   Finally suppose \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\isactrlsup {\isasymstar}}. This case is very similar to the
       
  1045   sequence case, except that we need to also ensure that \isa{{\isacharbar}{\kern0pt}inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isasymnoteq}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}. This follows from \isa{{\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ inj\ r\isactrlsub {\isadigit{1}}\ c\ v\isactrlsub {\isadigit{1}}}  (which in turn follows from \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}} and the induction hypothesis).\qed
       
  1046   \end{itemize}
       
  1047   \end{proof}
       
  1048 
       
  1049   \noindent
       
  1050   With Lemma~\ref{Posix2} in place, it is completely routine to establish
       
  1051   that the Sulzmann and Lu lexer satisfies our specification (returning
       
  1052   the null value \isa{None} iff the string is not in the language of the regular expression,
       
  1053   and returning a unique POSIX value iff the string \emph{is} in the language):
       
  1054 
       
  1055   \begin{theorem}\mbox{}\smallskip\\\label{lexercorrect}
       
  1056   \begin{tabular}{ll}
       
  1057   (1) & \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} if and only if \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ None}\\
       
  1058   (2) & \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} if and only if \isa{{\isasymexists}v{\isachardot}{\kern0pt}\ lexer\ r\ s\ {\isacharequal}{\kern0pt}\ Some\ v\ {\isasymand}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\
       
  1059   \end{tabular}
       
  1060   \end{theorem}
       
  1061 
       
  1062   \begin{proof}
       
  1063   By induction on \isa{s} using Lemma~\ref{lemmkeps} and \ref{Posix2}.\qed  
       
  1064   \end{proof}
       
  1065 
       
  1066   \noindent In \textit{(2)} we further know by Theorem~\ref{posixdeterm} that the
       
  1067   value returned by the lexer must be unique.   A simple corollary 
       
  1068   of our two theorems is:
       
  1069 
       
  1070   \begin{corollary}\mbox{}\smallskip\\\label{lexercorrectcor}
       
  1071   \begin{tabular}{ll}
       
  1072   (1) & \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ None} if and only if \isa{{\isasymnexists}v{\isachardot}{\kern0pt}a{\isachardot}{\kern0pt}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\ 
       
  1073   (2) & \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ Some\ v} if and only if \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}\\
       
  1074   \end{tabular}
       
  1075   \end{corollary}
       
  1076 
       
  1077   \noindent This concludes our correctness proof. Note that we have
       
  1078   not changed the algorithm of Sulzmann and Lu,\footnote{All
       
  1079   deviations we introduced are harmless.} but introduced our own
       
  1080   specification for what a correct result---a POSIX value---should be.
       
  1081   In the next section we show that our specification coincides with
       
  1082   another one given by Okui and Suzuki using a different technique.%
       
  1083 \end{isamarkuptext}\isamarkuptrue%
       
  1084 %
       
  1085 \isadelimdocument
       
  1086 %
       
  1087 \endisadelimdocument
       
  1088 %
       
  1089 \isatagdocument
       
  1090 %
       
  1091 \isamarkupsection{Ordering of Values according to Okui and Suzuki%
       
  1092 }
       
  1093 \isamarkuptrue%
       
  1094 %
       
  1095 \endisatagdocument
       
  1096 {\isafolddocument}%
       
  1097 %
       
  1098 \isadelimdocument
       
  1099 %
       
  1100 \endisadelimdocument
       
  1101 %
       
  1102 \begin{isamarkuptext}%
       
  1103 While in the previous section we have defined POSIX values directly
       
  1104   in terms of a ternary relation (see inference rules in Figure~\ref{POSIXrules}),
       
  1105   Sulzmann and Lu took a different approach in \cite{Sulzmann2014}:
       
  1106   they introduced an ordering for values and identified POSIX values
       
  1107   as the maximal elements.  An extended version of \cite{Sulzmann2014}
       
  1108   is available at the website of its first author; this includes more
       
  1109   details of their proofs, but which are evidently not in final form
       
  1110   yet. Unfortunately, we were not able to verify claims that their
       
  1111   ordering has properties such as being transitive or having maximal
       
  1112   elements. 
       
  1113  
       
  1114   Okui and Suzuki \cite{OkuiSuzuki2010,OkuiSuzukiTech} described
       
  1115   another ordering of values, which they use to establish the
       
  1116   correctness of their automata-based algorithm for POSIX matching.
       
  1117   Their ordering resembles some aspects of the one given by Sulzmann
       
  1118   and Lu, but overall is quite different. To begin with, Okui and
       
  1119   Suzuki identify POSIX values as minimal, rather than maximal,
       
  1120   elements in their ordering. A more substantial difference is that
       
  1121   the ordering by Okui and Suzuki uses \emph{positions} in order to
       
  1122   identify and compare subvalues. Positions are lists of natural
       
  1123   numbers. This allows them to quite naturally formalise the Longest
       
  1124   Match and Priority rules of the informal POSIX standard.  Consider
       
  1125   for example the value \isa{v}
       
  1126 
       
  1127   \begin{center}
       
  1128   \isa{v\ {\isasymequiv}\ Stars\ {\isacharbrackleft}{\kern0pt}Seq\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharcomma}{\kern0pt}\ Char\ z{\isacharbrackright}{\kern0pt}}
       
  1129   \end{center}
       
  1130 
       
  1131   \noindent
       
  1132   At position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharcomma}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}} of this value is the
       
  1133   subvalue \isa{Char\ y} and at position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}} the
       
  1134   subvalue \isa{Char\ z}.  At the `root' position, or empty list
       
  1135   \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}}, is the whole value \isa{v}. Positions such as \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharcomma}{\kern0pt}{\isadigit{1}}{\isacharcomma}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}} or \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{2}}{\isacharbrackright}{\kern0pt}} are outside of \isa{v}. If it exists, the subvalue of \isa{v} at a position \isa{p}, written \isa{v\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub }, can be recursively defined by
       
  1136   
       
  1137   \begin{center}
       
  1138   \begin{tabular}{r@ {\hspace{0mm}}lcl}
       
  1139   \isa{v} &  \isa{{\isasymdownharpoonleft}\isactrlbsub {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\isactrlesub } & \isa{{\isasymequiv}}& \isa{v}\\
       
  1140   \isa{Left\ v} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{0}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}}& \isa{v\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub }\\
       
  1141   \isa{Right\ v} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{1}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}} & 
       
  1142   \isa{v\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub }\\
       
  1143   \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{0}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}} & 
       
  1144   \isa{v\isactrlsub {\isadigit{1}}\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub } \\
       
  1145   \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} & \isa{{\isasymdownharpoonleft}\isactrlbsub {\isadigit{1}}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub }
       
  1146   & \isa{{\isasymequiv}} & 
       
  1147   \isa{v\isactrlsub {\isadigit{2}}\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub } \\
       
  1148   \isa{Stars\ vs} & \isa{{\isasymdownharpoonleft}\isactrlbsub n{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}ps\isactrlesub } & \isa{{\isasymequiv}}& \isa{vs\ensuremath{_{[\mathit{n}]}}\mbox{$\downharpoonleft$}\isactrlbsub ps\isactrlesub }\\
       
  1149   \end{tabular} 
       
  1150   \end{center}
       
  1151 
       
  1152   \noindent In the last clause we use Isabelle's notation \isa{vs\ensuremath{_{[\mathit{n}]}}} for the
       
  1153   \isa{n}th element in a list.  The set of positions inside a value \isa{v},
       
  1154   written \isa{Pos\ v}, is given by 
       
  1155 
       
  1156   \begin{center}
       
  1157   \begin{tabular}{lcl}
       
  1158   \isa{Pos\ {\isacharparenleft}{\kern0pt}Empty{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
       
  1159   \isa{Pos\ {\isacharparenleft}{\kern0pt}Char\ c{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}}\\
       
  1160   \isa{Pos\ {\isacharparenleft}{\kern0pt}Left\ v{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{0}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v{\isacharbraceright}{\kern0pt}}\\
       
  1161   \isa{Pos\ {\isacharparenleft}{\kern0pt}Right\ v{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v{\isacharbraceright}{\kern0pt}}\\
       
  1162   \isa{Pos\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}
       
  1163   & \isa{{\isasymequiv}} 
       
  1164   & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{0}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharbraceleft}{\kern0pt}{\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{2}}{\isacharbraceright}{\kern0pt}}\\
       
  1165   \isa{Pos\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}} & \isa{{\isasymequiv}} & \isa{{\isacharbraceleft}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymunion}\ {\isacharparenleft}{\kern0pt}{\isasymUnion}n\ {\isacharless}{\kern0pt}\ len\ vs\ {\isacharbraceleft}{\kern0pt}n\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\ \mbox{\boldmath$\mid$}\ ps\ {\isasymin}\ Pos\ vs\ensuremath{_{[\mathit{n}]}}{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}}\\
       
  1166   \end{tabular}
       
  1167   \end{center}
       
  1168 
       
  1169   \noindent 
       
  1170   whereby \isa{len} in the last clause stands for the length of a list. Clearly
       
  1171   for every position inside a value there exists a subvalue at that position.
       
  1172  
       
  1173 
       
  1174   To help understanding the ordering of Okui and Suzuki, consider again 
       
  1175   the earlier value
       
  1176   \isa{v} and compare it with the following \isa{w}:
       
  1177 
       
  1178   \begin{center}
       
  1179   \begin{tabular}{l}
       
  1180   \isa{v\ {\isasymequiv}\ Stars\ {\isacharbrackleft}{\kern0pt}Seq\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Char\ y{\isacharparenright}{\kern0pt}{\isacharcomma}{\kern0pt}\ Char\ z{\isacharbrackright}{\kern0pt}}\\
       
  1181   \isa{w\ {\isasymequiv}\ Stars\ {\isacharbrackleft}{\kern0pt}Char\ x{\isacharcomma}{\kern0pt}\ Char\ y{\isacharcomma}{\kern0pt}\ Char\ z{\isacharbrackright}{\kern0pt}}  
       
  1182   \end{tabular}
       
  1183   \end{center}
       
  1184 
       
  1185   \noindent Both values match the string \isa{xyz}, that means if
       
  1186   we flatten these values at their respective root position, we obtain
       
  1187   \isa{xyz}. However, at position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}}, \isa{v} matches
       
  1188   \isa{xy} whereas \isa{w} matches only the shorter \isa{x}. So
       
  1189   according to the Longest Match Rule, we should prefer \isa{v},
       
  1190   rather than \isa{w} as POSIX value for string \isa{xyz} (and
       
  1191   corresponding regular expression). In order to
       
  1192   formalise this idea, Okui and Suzuki introduce a measure for
       
  1193   subvalues at position \isa{p}, called the \emph{norm} of \isa{v}
       
  1194   at position \isa{p}. We can define this measure in Isabelle as an
       
  1195   integer as follows
       
  1196   
       
  1197   \begin{center}
       
  1198   \isa{{\isasymparallel}v{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isasymequiv}\ \textrm{if}\ p\ {\isasymin}\ Pos\ v\ \textrm{then}\ len\ {\isacharbar}{\kern0pt}v\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub {\isacharbar}{\kern0pt}\ \textrm{else}\ {\isacharminus}{\kern0pt}\ {\isadigit{1}}}
       
  1199   \end{center}
       
  1200 
       
  1201   \noindent where we take the length of the flattened value at
       
  1202   position \isa{p}, provided the position is inside \isa{v}; if
       
  1203   not, then the norm is \isa{{\isacharminus}{\kern0pt}{\isadigit{1}}}. The default for outside
       
  1204   positions is crucial for the POSIX requirement of preferring a
       
  1205   \isa{Left}-value over a \isa{Right}-value (if they can match the
       
  1206   same string---see the Priority Rule from the Introduction). For this
       
  1207   consider
       
  1208 
       
  1209   \begin{center}
       
  1210   \isa{v\ {\isasymequiv}\ Left\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}} \qquad and \qquad \isa{w\ {\isasymequiv}\ Right\ {\isacharparenleft}{\kern0pt}Char\ x{\isacharparenright}{\kern0pt}}
       
  1211   \end{center}
       
  1212 
       
  1213   \noindent Both values match \isa{x}. At position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}}
       
  1214   the norm of \isa{v} is \isa{{\isadigit{1}}} (the subvalue matches \isa{x}),
       
  1215   but the norm of \isa{w} is \isa{{\isacharminus}{\kern0pt}{\isadigit{1}}} (the position is outside
       
  1216   \isa{w} according to how we defined the `inside' positions of
       
  1217   \isa{Left}- and \isa{Right}-values).  Of course at position
       
  1218   \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}}, the norms \isa{{\isasymparallel}v{\isasymparallel}\isactrlbsub {\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}\isactrlesub } and \isa{{\isasymparallel}w{\isasymparallel}\isactrlbsub {\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}\isactrlesub } are reversed, but the point is that subvalues
       
  1219   will be analysed according to lexicographically ordered
       
  1220   positions. According to this ordering, the position \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{0}}{\isacharbrackright}{\kern0pt}}
       
  1221   takes precedence over \isa{{\isacharbrackleft}{\kern0pt}{\isadigit{1}}{\isacharbrackright}{\kern0pt}} and thus also \isa{v} will be 
       
  1222   preferred over \isa{w}.  The lexicographic ordering of positions, written
       
  1223   \isa{\underline{\hspace{2mm}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ \underline{\hspace{2mm}}}, can be conveniently formalised
       
  1224   by three inference rules
       
  1225 
       
  1226   \begin{center}
       
  1227   \begin{tabular}{ccc}
       
  1228   \isa{\mbox{}\inferrule{\mbox{}}{\mbox{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps}}}\hspace{1cm} &
       
  1229   \isa{\mbox{}\inferrule{\mbox{p\isactrlsub {\isadigit{1}}\ {\isacharless}{\kern0pt}\ p\isactrlsub {\isadigit{2}}}}{\mbox{p\isactrlsub {\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{2}}}}}\hspace{1cm} &
       
  1230   \isa{\mbox{}\inferrule{\mbox{ps\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ ps\isactrlsub {\isadigit{2}}}}{\mbox{p\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}ps\isactrlsub {\isadigit{2}}}}}
       
  1231   \end{tabular}
       
  1232   \end{center}
       
  1233 
       
  1234   With the norm and lexicographic order in place,
       
  1235   we can state the key definition of Okui and Suzuki
       
  1236   \cite{OkuiSuzuki2010}: a value \isa{v\isactrlsub {\isadigit{1}}} is \emph{smaller at position \isa{p}} than
       
  1237   \isa{v\isactrlsub {\isadigit{2}}}, written \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub p\isactrlesub \ v\isactrlsub {\isadigit{2}}}, 
       
  1238   if and only if  $(i)$ the norm at position \isa{p} is
       
  1239   greater in \isa{v\isactrlsub {\isadigit{1}}} (that is the string \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub {\isacharbar}{\kern0pt}} is longer 
       
  1240   than \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}\mbox{$\downharpoonleft$}\isactrlbsub p\isactrlesub {\isacharbar}{\kern0pt}}) and $(ii)$ all subvalues at 
       
  1241   positions that are inside \isa{v\isactrlsub {\isadigit{1}}} or \isa{v\isactrlsub {\isadigit{2}}} and that are
       
  1242   lexicographically smaller than \isa{p}, we have the same norm, namely
       
  1243 
       
  1244  \begin{center}
       
  1245  \begin{tabular}{c}
       
  1246  \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub p\isactrlesub \ v\isactrlsub {\isadigit{2}}} 
       
  1247  \isa{{\isasymequiv}} 
       
  1248  $\begin{cases}
       
  1249  (i) & \isa{{\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p\isactrlesub }   \quad\text{and}\smallskip \\
       
  1250  (ii) & \isa{{\isasymforall}q{\isasymin}Pos\ v\isactrlsub {\isadigit{1}}\ {\isasymunion}\ Pos\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}\ q\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p\ {\isasymlongrightarrow}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub q\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub q\isactrlesub }
       
  1251  \end{cases}$
       
  1252  \end{tabular}
       
  1253  \end{center}
       
  1254 
       
  1255  \noindent The position \isa{p} in this definition acts as the
       
  1256   \emph{first distinct position} of \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}}, where both values match strings of different length
       
  1257   \cite{OkuiSuzuki2010}.  Since at \isa{p} the values \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} match different strings, the
       
  1258   ordering is irreflexive. Derived from the definition above
       
  1259   are the following two orderings:
       
  1260   
       
  1261   \begin{center}
       
  1262   \begin{tabular}{l}
       
  1263   \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}\ {\isasymequiv}\ {\isasymexists}p{\isachardot}{\kern0pt}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\isactrlbsub p\isactrlesub \ v\isactrlsub {\isadigit{2}}}\\
       
  1264   \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}\ {\isasymequiv}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}\ {\isasymor}\ v\isactrlsub {\isadigit{1}}\ {\isacharequal}{\kern0pt}\ v\isactrlsub {\isadigit{2}}}
       
  1265   \end{tabular}
       
  1266   \end{center}
       
  1267 
       
  1268  While we encountered a number of obstacles for establishing properties like
       
  1269  transitivity for the ordering of Sulzmann and Lu (and which we failed
       
  1270  to overcome), it is relatively straightforward to establish this
       
  1271  property for the orderings
       
  1272  \isa{\underline{\hspace{2mm}}\ {\isasymprec}\ \underline{\hspace{2mm}}} and \isa{\underline{\hspace{2mm}}\ \mbox{$\preccurlyeq$}\ \underline{\hspace{2mm}}}  
       
  1273  by Okui and Suzuki.
       
  1274 
       
  1275  \begin{lemma}[Transitivity]\label{transitivity}
       
  1276  \isa{{\normalsize{}If\,}\ \mbox{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}}\ {\normalsize \,and\,}\ \mbox{v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ v\isactrlsub {\isadigit{3}}}\ {\normalsize \,then\,}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{3}}{\isachardot}{\kern0pt}} 
       
  1277  \end{lemma}
       
  1278 
       
  1279  \begin{proof} From the assumption we obtain two positions \isa{p}
       
  1280  and \isa{q}, where the values \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} (respectively \isa{v\isactrlsub {\isadigit{2}}} and \isa{v\isactrlsub {\isadigit{3}}}) are `distinct'.  Since \isa{{\isasymprec}\isactrlbsub lex\isactrlesub } is trichotomous, we need to consider
       
  1281  three cases, namely \isa{p\ {\isacharequal}{\kern0pt}\ q}, \isa{p\ {\isasymprec}\isactrlbsub lex\isactrlesub \ q} and
       
  1282  \isa{q\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p}. Let us look at the first case.  Clearly
       
  1283  \isa{{\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p\isactrlesub } and \isa{{\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p\isactrlesub } imply \isa{{\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p\isactrlesub \ {\isacharless}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p\isactrlesub }.  It remains to show
       
  1284  that for a \isa{p{\isacharprime}{\kern0pt}\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}\ {\isasymunion}\ Pos\ v\isactrlsub {\isadigit{3}}}
       
  1285  with \isa{p{\isacharprime}{\kern0pt}\ {\isasymprec}\isactrlbsub lex\isactrlesub \ p} that \isa{{\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub } holds.  Suppose \isa{p{\isacharprime}{\kern0pt}\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}}, then we can infer from the first assumption that \isa{{\isasymparallel}v\isactrlsub {\isadigit{1}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub }.  But this means
       
  1286  that \isa{p{\isacharprime}{\kern0pt}} must be in \isa{Pos\ v\isactrlsub {\isadigit{2}}} too (the norm
       
  1287  cannot be \isa{{\isacharminus}{\kern0pt}{\isadigit{1}}} given \isa{p{\isacharprime}{\kern0pt}\ {\isasymin}\ Pos\ v\isactrlsub {\isadigit{1}}}).  
       
  1288  Hence we can use the second assumption and
       
  1289  infer \isa{{\isasymparallel}v\isactrlsub {\isadigit{2}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub \ {\isacharequal}{\kern0pt}\ {\isasymparallel}v\isactrlsub {\isadigit{3}}{\isasymparallel}\isactrlbsub p{\isacharprime}{\kern0pt}\isactrlesub },
       
  1290  which concludes this case with \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{3}}}.  The reasoning in the other cases is similar.\qed
       
  1291  \end{proof}
       
  1292 
       
  1293  \noindent 
       
  1294  The proof for $\preccurlyeq$ is similar and omitted.
       
  1295  It is also straightforward to show that \isa{{\isasymprec}} and
       
  1296  $\preccurlyeq$ are partial orders.  Okui and Suzuki furthermore show that they
       
  1297  are linear orderings for lexical values \cite{OkuiSuzuki2010} of a given
       
  1298  regular expression and given string, but we have not formalised this in Isabelle. It is
       
  1299  not essential for our results. What we are going to show below is
       
  1300  that for a given \isa{r} and \isa{s}, the orderings have a unique
       
  1301  minimal element on the set \isa{LV\ r\ s}, which is the POSIX value
       
  1302  we defined in the previous section. We start with two properties that
       
  1303  show how the length of a flattened value relates to the \isa{{\isasymprec}}-ordering.
       
  1304 
       
  1305  \begin{proposition}\mbox{}\smallskip\\\label{ordlen}
       
  1306  \begin{tabular}{@ {}ll}
       
  1307  (1) &
       
  1308  \isa{{\normalsize{}If\,}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}\ {\normalsize \,then\,}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isasymle}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}{\isachardot}{\kern0pt}}\\
       
  1309  (2) &
       
  1310  \isa{{\normalsize{}If\,}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharless}{\kern0pt}\ len\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\normalsize \,then\,}\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}} 
       
  1311  \end{tabular} 
       
  1312  \end{proposition}
       
  1313  
       
  1314  \noindent Both properties follow from the definition of the ordering. Note that
       
  1315  \textit{(2)} entails that a value, say \isa{v\isactrlsub {\isadigit{2}}}, whose underlying 
       
  1316  string is a strict prefix of another flattened value, say \isa{v\isactrlsub {\isadigit{1}}}, then
       
  1317  \isa{v\isactrlsub {\isadigit{1}}} must be smaller than \isa{v\isactrlsub {\isadigit{2}}}. For our proofs it
       
  1318  will be useful to have the following properties---in each case the underlying strings 
       
  1319  of the compared values are the same: 
       
  1320 
       
  1321   \begin{proposition}\mbox{}\smallskip\\\label{ordintros}
       
  1322   \begin{tabular}{ll}
       
  1323   \textit{(1)} & 
       
  1324   \isa{{\normalsize{}If\,}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\normalsize \,then\,}\ Left\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Right\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}}\\
       
  1325   \textit{(2)} & If
       
  1326   \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
       
  1327   \isa{Left\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Left\ v\isactrlsub {\isadigit{2}}} \;iff\;
       
  1328   \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}}\\
       
  1329   \textit{(3)} & If
       
  1330   \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
       
  1331   \isa{Right\ v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Right\ v\isactrlsub {\isadigit{2}}} \;iff\;
       
  1332   \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}}\\
       
  1333   \textit{(4)} & If
       
  1334   \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
       
  1335   \isa{Seq\ v\ v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ Seq\ v\ w\isactrlsub {\isadigit{2}}} \;iff\;
       
  1336   \isa{v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ w\isactrlsub {\isadigit{2}}}\\
       
  1337   \textit{(5)} & If
       
  1338   \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;and\;
       
  1339   \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ w\isactrlsub {\isadigit{1}}} \;then\;
       
  1340   \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}\ {\isasymprec}\ Seq\ w\isactrlsub {\isadigit{1}}\ w\isactrlsub {\isadigit{2}}}\\
       
  1341   \textit{(6)} & If
       
  1342   \isa{{\isacharbar}{\kern0pt}vs\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}vs\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;then\;
       
  1343   \isa{Stars\ {\isacharparenleft}{\kern0pt}vs\ {\isacharat}{\kern0pt}\ vs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymprec}\ Stars\ {\isacharparenleft}{\kern0pt}vs\ {\isacharat}{\kern0pt}\ vs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} \;iff\;
       
  1344   \isa{Stars\ vs\isactrlsub {\isadigit{1}}\ {\isasymprec}\ Stars\ vs\isactrlsub {\isadigit{2}}}\\  
       
  1345   
       
  1346   \textit{(7)} & If
       
  1347   \isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \;and\;
       
  1348   \isa{v\isactrlsub {\isadigit{1}}\ {\isasymprec}\ v\isactrlsub {\isadigit{2}}} \;then\;
       
  1349    \isa{Stars\ {\isacharparenleft}{\kern0pt}v\isactrlsub {\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isasymprec}\ Stars\ {\isacharparenleft}{\kern0pt}v\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1350   \end{tabular} 
       
  1351   \end{proposition}
       
  1352 
       
  1353   \noindent One might prefer that statements \textit{(4)} and \textit{(5)} 
       
  1354   (respectively \textit{(6)} and \textit{(7)})
       
  1355   are combined into a single \textit{iff}-statement (like the ones for \isa{Left} and \isa{Right}). Unfortunately this cannot be done easily: such
       
  1356   a single statement would require an additional assumption about the
       
  1357   two values \isa{Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}} and \isa{Seq\ w\isactrlsub {\isadigit{1}}\ w\isactrlsub {\isadigit{2}}}
       
  1358   being inhabited by the same regular expression. The
       
  1359   complexity of the proofs involved seems to not justify such a
       
  1360   `cleaner' single statement. The statements given are just the properties that
       
  1361   allow us to establish our theorems without any difficulty. The proofs 
       
  1362   for Proposition~\ref{ordintros} are routine.
       
  1363  
       
  1364 
       
  1365   Next we establish how Okui and Suzuki's orderings relate to our
       
  1366   definition of POSIX values.  Given a \isa{POSIX} value \isa{v\isactrlsub {\isadigit{1}}}
       
  1367   for \isa{r} and \isa{s}, then any other lexical value \isa{v\isactrlsub {\isadigit{2}}} in \isa{LV\ r\ s} is greater or equal than \isa{v\isactrlsub {\isadigit{1}}}, namely:
       
  1368 
       
  1369 
       
  1370   \begin{theorem}\label{orderone}
       
  1371   \isa{{\normalsize{}If\,}\ \mbox{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}}\ {\normalsize \,and\,}\ \mbox{v\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ r\ s}\ {\normalsize \,then\,}\ v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}{\isachardot}{\kern0pt}}
       
  1372   \end{theorem}
       
  1373 
       
  1374   \begin{proof} By induction on our POSIX rules. By
       
  1375   Theorem~\ref{posixdeterm} and the definition of \isa{LV}, it is clear
       
  1376   that \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} have the same
       
  1377   underlying string \isa{s}.  The three base cases are
       
  1378   straightforward: for example for \isa{v\isactrlsub {\isadigit{1}}\ {\isacharequal}{\kern0pt}\ Empty}, we have
       
  1379   that \isa{v\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ \isactrlbold {\isadigit{1}}\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} must also be of the form
       
  1380   \mbox{\isa{v\isactrlsub {\isadigit{2}}\ {\isacharequal}{\kern0pt}\ Empty}}. Therefore we have \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}.  The inductive cases for
       
  1381   \isa{r} being of the form \isa{r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}} and
       
  1382   \isa{r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}} are as follows:
       
  1383 
       
  1384 
       
  1385   \begin{itemize} 
       
  1386 
       
  1387   \item[$\bullet$] Case \isa{P{\isacharplus}{\kern0pt}L} with \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Left\ w\isactrlsub {\isadigit{1}}}: In this case the value 
       
  1388   \isa{v\isactrlsub {\isadigit{2}}} is either of the
       
  1389   form \isa{Left\ w\isactrlsub {\isadigit{2}}} or \isa{Right\ w\isactrlsub {\isadigit{2}}}. In the
       
  1390   latter case we can immediately conclude with \mbox{\isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}} since a \isa{Left}-value with the
       
  1391   same underlying string \isa{s} is always smaller than a
       
  1392   \isa{Right}-value by Proposition~\ref{ordintros}\textit{(1)}.  
       
  1393   In the former case we have \isa{w\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ r\isactrlsub {\isadigit{1}}\ s} and can use the induction hypothesis to infer
       
  1394   \isa{w\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ w\isactrlsub {\isadigit{2}}}. Because \isa{w\isactrlsub {\isadigit{1}}} and \isa{w\isactrlsub {\isadigit{2}}} have the same underlying string
       
  1395   \isa{s}, we can conclude with \isa{Left\ w\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ Left\ w\isactrlsub {\isadigit{2}}} using
       
  1396   Proposition~\ref{ordintros}\textit{(2)}.\smallskip
       
  1397 
       
  1398   \item[$\bullet$] Case \isa{P{\isacharplus}{\kern0pt}R} with \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Right\ w\isactrlsub {\isadigit{1}}}: This case similar to the previous
       
  1399   case, except that we additionally know \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}. This is needed when \isa{v\isactrlsub {\isadigit{2}}} is of the form
       
  1400   \mbox{\isa{Left\ w\isactrlsub {\isadigit{2}}}}. Since \mbox{\isa{{\isacharbar}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}w\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}} \isa{{\isacharequal}{\kern0pt}\ s}} and \isa{w\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}}, we can derive a contradiction for \mbox{\isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}} using
       
  1401   Proposition~\ref{inhabs}. So also in this case \mbox{\isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}}.\smallskip
       
  1402 
       
  1403   \item[$\bullet$] Case \isa{PS} with \isa{{\isacharparenleft}{\kern0pt}s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Seq\ w\isactrlsub {\isadigit{1}}\ w\isactrlsub {\isadigit{2}}}: We can assume \isa{v\isactrlsub {\isadigit{2}}\ {\isacharequal}{\kern0pt}\ Seq\ u\isactrlsub {\isadigit{1}}\ u\isactrlsub {\isadigit{2}}} with \isa{u\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{1}}} and \mbox{\isa{u\isactrlsub {\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}}. We have \isa{s\isactrlsub {\isadigit{1}}\ {\isacharat}{\kern0pt}\ s\isactrlsub {\isadigit{2}}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}\ {\isacharat}{\kern0pt}\ {\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{2}}{\isacharbar}{\kern0pt}}.  By the side-condition of the
       
  1404   \isa{PS}-rule we know that either \isa{s\isactrlsub {\isadigit{1}}\ {\isacharequal}{\kern0pt}\ {\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}} or that \isa{{\isacharbar}{\kern0pt}u\isactrlsub {\isadigit{1}}{\isacharbar}{\kern0pt}} is a strict prefix of
       
  1405   \isa{s\isactrlsub {\isadigit{1}}}. In the latter case we can infer \isa{w\isactrlsub {\isadigit{1}}\ {\isasymprec}\ u\isactrlsub {\isadigit{1}}} by
       
  1406   Proposition~\ref{ordlen}\textit{(2)} and from this \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}} by Proposition~\ref{ordintros}\textit{(5)}
       
  1407   (as noted above \isa{v\isactrlsub {\isadigit{1}}} and \isa{v\isactrlsub {\isadigit{2}}} must have the
       
  1408   same underlying string).
       
  1409   In the former case we know
       
  1410   \isa{u\isactrlsub {\isadigit{1}}\ {\isasymin}\ LV\ r\isactrlsub {\isadigit{1}}\ s\isactrlsub {\isadigit{1}}} and \isa{u\isactrlsub {\isadigit{2}}\ {\isasymin}\ LV\ r\isactrlsub {\isadigit{2}}\ s\isactrlsub {\isadigit{2}}}. With this we can use the
       
  1411   induction hypotheses to infer \isa{w\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ u\isactrlsub {\isadigit{1}}} and \isa{w\isactrlsub {\isadigit{2}}\ \mbox{$\preccurlyeq$}\ u\isactrlsub {\isadigit{2}}}. By
       
  1412   Proposition~\ref{ordintros}\textit{(4,5)} we can again infer 
       
  1413   \isa{v\isactrlsub {\isadigit{1}}\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{2}}}.
       
  1414 
       
  1415   \end{itemize}
       
  1416 
       
  1417   \noindent The case for \isa{P{\isasymstar}} is similar to the \isa{PS}-case and omitted.\qed
       
  1418   \end{proof}
       
  1419 
       
  1420   \noindent This theorem shows that our \isa{POSIX} value for a
       
  1421   regular expression \isa{r} and string \isa{s} is in fact a
       
  1422   minimal element of the values in \isa{LV\ r\ s}. By
       
  1423   Proposition~\ref{ordlen}\textit{(2)} we also know that any value in
       
  1424   \isa{LV\ r\ s{\isacharprime}{\kern0pt}}, with \isa{s{\isacharprime}{\kern0pt}} being a strict prefix, cannot be
       
  1425   smaller than \isa{v\isactrlsub {\isadigit{1}}}. The next theorem shows the
       
  1426   opposite---namely any minimal element in \isa{LV\ r\ s} must be a
       
  1427   \isa{POSIX} value. This can be established by induction on \isa{r}, but the proof can be drastically simplified by using the fact
       
  1428   from the previous section about the existence of a \isa{POSIX} value
       
  1429   whenever a string \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}.
       
  1430 
       
  1431 
       
  1432   \begin{theorem}
       
  1433   \isa{{\normalsize{}If\,}\ \mbox{v\isactrlsub {\isadigit{1}}\ {\isasymin}\ LV\ r\ s}\ {\normalsize \,and\,}\ \mbox{{\isasymforall}v\isactrlsub {\isadigit{2}}{\isasymin}LV\ r\ s{\isachardot}{\kern0pt}\ v\isactrlsub {\isadigit{2}}\ \mbox{$\not\prec$}\ v\isactrlsub {\isadigit{1}}}\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub {\isadigit{1}}{\isachardot}{\kern0pt}} 
       
  1434   \end{theorem}
       
  1435 
       
  1436   \begin{proof} 
       
  1437   If \isa{v\isactrlsub {\isadigit{1}}\ {\isasymin}\ LV\ r\ s} then 
       
  1438   \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}} by Proposition~\ref{inhabs}. Hence by Theorem~\ref{lexercorrect}(2) 
       
  1439   there exists a
       
  1440   \isa{POSIX} value \isa{v\isactrlsub P} with \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\isactrlsub P}
       
  1441   and by Lemma~\ref{LVposix} we also have \mbox{\isa{v\isactrlsub P\ {\isasymin}\ LV\ r\ s}}.
       
  1442   By Theorem~\ref{orderone} we therefore have 
       
  1443   \isa{v\isactrlsub P\ \mbox{$\preccurlyeq$}\ v\isactrlsub {\isadigit{1}}}. If \isa{v\isactrlsub P\ {\isacharequal}{\kern0pt}\ v\isactrlsub {\isadigit{1}}} then
       
  1444   we are done. Otherwise we have \isa{v\isactrlsub P\ {\isasymprec}\ v\isactrlsub {\isadigit{1}}}, which 
       
  1445   however contradicts the second assumption about \isa{v\isactrlsub {\isadigit{1}}} being the smallest
       
  1446   element in \isa{LV\ r\ s}. So we are done in this case too.\qed
       
  1447   \end{proof}
       
  1448 
       
  1449   \noindent
       
  1450   From this we can also show 
       
  1451   that if \isa{LV\ r\ s} is non-empty (or equivalently \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}) then 
       
  1452   it has a unique minimal element:
       
  1453 
       
  1454   \begin{corollary}
       
  1455   \isa{{\normalsize{}If\,}\ LV\ r\ s\ {\isasymnoteq}\ {\isasymemptyset}\ {\normalsize \,then\,}\ {\isasymexists}{\isacharbang}{\kern0pt}vmin{\isachardot}{\kern0pt}\ vmin\ {\isasymin}\ LV\ r\ s\ {\isasymand}\ {\isacharparenleft}{\kern0pt}{\isasymforall}v{\isasymin}LV\ r\ s{\isachardot}{\kern0pt}\ vmin\ \mbox{$\preccurlyeq$}\ v{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}}
       
  1456   \end{corollary}
       
  1457 
       
  1458 
       
  1459 
       
  1460   \noindent To sum up, we have shown that the (unique) minimal elements 
       
  1461   of the ordering by Okui and Suzuki are exactly the \isa{POSIX}
       
  1462   values we defined inductively in Section~\ref{posixsec}. This provides
       
  1463   an independent confirmation that our ternary relation formalises the
       
  1464   informal POSIX rules.%
       
  1465 \end{isamarkuptext}\isamarkuptrue%
       
  1466 %
       
  1467 \isadelimdocument
       
  1468 %
       
  1469 \endisadelimdocument
       
  1470 %
       
  1471 \isatagdocument
       
  1472 %
       
  1473 \isamarkupsection{Bitcoded Lexing%
       
  1474 }
       
  1475 \isamarkuptrue%
       
  1476 %
       
  1477 \endisatagdocument
       
  1478 {\isafolddocument}%
       
  1479 %
       
  1480 \isadelimdocument
       
  1481 %
       
  1482 \endisadelimdocument
       
  1483 %
       
  1484 \begin{isamarkuptext}%
       
  1485 Incremental calculation of the value. To simplify the proof we first define the function
       
  1486 \isa{flex} which calculates the ``iterated'' injection function. With this we can 
       
  1487 rewrite the lexer as
       
  1488 
       
  1489 \begin{center}
       
  1490 \isa{lexer\ r\ s\ {\isacharequal}{\kern0pt}\ {\isacharparenleft}{\kern0pt}\textrm{if}\ nullable\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}s{\isacharparenright}{\kern0pt}\ \textrm{then}\ Some\ {\isacharparenleft}{\kern0pt}flex\ r\ id\ s\ {\isacharparenleft}{\kern0pt}mkeps\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}s{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ \textrm{else}\ None{\isacharparenright}{\kern0pt}}
       
  1491 \end{center}%
       
  1492 \end{isamarkuptext}\isamarkuptrue%
       
  1493 %
       
  1494 \isadelimdocument
       
  1495 %
       
  1496 \endisadelimdocument
       
  1497 %
       
  1498 \isatagdocument
       
  1499 %
       
  1500 \isamarkupsection{Optimisations%
       
  1501 }
       
  1502 \isamarkuptrue%
       
  1503 %
       
  1504 \endisatagdocument
       
  1505 {\isafolddocument}%
       
  1506 %
       
  1507 \isadelimdocument
       
  1508 %
       
  1509 \endisadelimdocument
       
  1510 %
       
  1511 \begin{isamarkuptext}%
       
  1512 Derivatives as calculated by \Brz's method are usually more complex
       
  1513   regular expressions than the initial one; the result is that the
       
  1514   derivative-based matching and lexing algorithms are often abysmally slow.
       
  1515   However, various optimisations are possible, such as the simplifications
       
  1516   of \isa{\isactrlbold {\isadigit{0}}\ {\isacharplus}{\kern0pt}\ r}, \isa{r\ {\isacharplus}{\kern0pt}\ \isactrlbold {\isadigit{0}}}, \isa{\isactrlbold {\isadigit{1}}\ {\isasymcdot}\ r} and
       
  1517   \isa{r\ {\isasymcdot}\ \isactrlbold {\isadigit{1}}} to \isa{r}. These simplifications can speed up the
       
  1518   algorithms considerably, as noted in \cite{Sulzmann2014}. One of the
       
  1519   advantages of having a simple specification and correctness proof is that
       
  1520   the latter can be refined to prove the correctness of such simplification
       
  1521   steps. While the simplification of regular expressions according to 
       
  1522   rules like
       
  1523 
       
  1524   \begin{equation}\label{Simpl}
       
  1525   \begin{array}{lcllcllcllcl}
       
  1526   \isa{\isactrlbold {\isadigit{0}}\ {\isacharplus}{\kern0pt}\ r} & \isa{{\isasymRightarrow}} & \isa{r} \hspace{8mm}%\\
       
  1527   \isa{r\ {\isacharplus}{\kern0pt}\ \isactrlbold {\isadigit{0}}} & \isa{{\isasymRightarrow}} & \isa{r} \hspace{8mm}%\\
       
  1528   \isa{\isactrlbold {\isadigit{1}}\ {\isasymcdot}\ r}  & \isa{{\isasymRightarrow}} & \isa{r} \hspace{8mm}%\\
       
  1529   \isa{r\ {\isasymcdot}\ \isactrlbold {\isadigit{1}}}  & \isa{{\isasymRightarrow}} & \isa{r}
       
  1530   \end{array}
       
  1531   \end{equation}
       
  1532 
       
  1533   \noindent is well understood, there is an obstacle with the POSIX value
       
  1534   calculation algorithm by Sulzmann and Lu: if we build a derivative regular
       
  1535   expression and then simplify it, we will calculate a POSIX value for this
       
  1536   simplified derivative regular expression, \emph{not} for the original (unsimplified)
       
  1537   derivative regular expression. Sulzmann and Lu \cite{Sulzmann2014} overcome this obstacle by
       
  1538   not just calculating a simplified regular expression, but also calculating
       
  1539   a \emph{rectification function} that ``repairs'' the incorrect value.
       
  1540   
       
  1541   The rectification functions can be (slightly clumsily) implemented  in
       
  1542   Isabelle/HOL as follows using some auxiliary functions:
       
  1543 
       
  1544   \begin{center}
       
  1545   \begin{tabular}{lcl}
       
  1546   \isa{F\isactrlbsub Right\isactrlesub \ f\ v} & $\dn$ & \isa{Right\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}}\\
       
  1547   \isa{F\isactrlbsub Left\isactrlesub \ f\ v} & $\dn$ & \isa{Left\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}}\\
       
  1548   
       
  1549   \isa{F\isactrlbsub Alt\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}Right\ v{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Right\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}}\\
       
  1550   \isa{F\isactrlbsub Alt\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}Left\ v{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Left\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}}\\
       
  1551   
       
  1552   \isa{F\isactrlbsub Seq{\isadigit{1}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ v} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}}\\
       
  1553   \isa{F\isactrlbsub Seq{\isadigit{2}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ v} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}\\
       
  1554   \isa{F\isactrlbsub Seq\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}Seq\ v\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\medskip\\
       
  1555   %\end{tabular}
       
  1556   %
       
  1557   %\begin{tabular}{lcl}
       
  1558   \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharcomma}{\kern0pt}\ \underline{\hspace{2mm}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Right\isactrlesub \ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1559   \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{0}}{\isacharcomma}{\kern0pt}\ \underline{\hspace{2mm}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Left\isactrlesub \ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}\\
       
  1560   \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Alt\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1561   \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Seq{\isadigit{1}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1562   \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}\isactrlbold {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Seq{\isadigit{2}}\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1563   \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F\isactrlbsub Seq\isactrlesub \ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1564   \end{tabular}
       
  1565   \end{center}
       
  1566 
       
  1567   \noindent
       
  1568   The functions \isa{simp\isactrlbsub Alt\isactrlesub } and \isa{simp\isactrlbsub Seq\isactrlesub } encode the simplification rules
       
  1569   in \eqref{Simpl} and compose the rectification functions (simplifications can occur
       
  1570   deep inside the regular expression). The main simplification function is then 
       
  1571 
       
  1572   \begin{center}
       
  1573   \begin{tabular}{lcl}
       
  1574   \isa{simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{simp\isactrlbsub Alt\isactrlesub \ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1575   \isa{simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} & $\dn$ & \isa{simp\isactrlbsub Seq\isactrlesub \ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}}\\
       
  1576   \isa{simp\ r} & $\dn$ & \isa{{\isacharparenleft}{\kern0pt}r{\isacharcomma}{\kern0pt}\ id{\isacharparenright}{\kern0pt}}\\
       
  1577   \end{tabular}
       
  1578   \end{center} 
       
  1579 
       
  1580   \noindent where \isa{id} stands for the identity function. The
       
  1581   function \isa{simp} returns a simplified regular expression and a corresponding
       
  1582   rectification function. Note that we do not simplify under stars: this
       
  1583   seems to slow down the algorithm, rather than speed it up. The optimised
       
  1584   lexer is then given by the clauses:
       
  1585   
       
  1586   \begin{center}
       
  1587   \begin{tabular}{lcl}
       
  1588   \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} & $\dn$ & \isa{\textrm{if}\ nullable\ r\ \textrm{then}\ Some\ {\isacharparenleft}{\kern0pt}mkeps\ r{\isacharparenright}{\kern0pt}\ \textrm{else}\ None}\\
       
  1589   \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ {\isacharparenleft}{\kern0pt}c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s{\isacharparenright}{\kern0pt}} & $\dn$ & 
       
  1590                          \isa{let\ {\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharcomma}{\kern0pt}\ f\isactrlsub r{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ simp\ {\isacharparenleft}{\kern0pt}r}$\backslash$\isa{c{\isacharparenright}{\kern0pt}\ in}\\
       
  1591                      & & \isa{case} \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\isactrlsub s\ s} \isa{of}\\
       
  1592                      & & \phantom{$|$} \isa{None}  \isa{{\isasymRightarrow}} \isa{None}\\
       
  1593                      & & $|$ \isa{Some\ v} \isa{{\isasymRightarrow}} \isa{Some\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ {\isacharparenleft}{\kern0pt}f\isactrlsub r\ v{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}                          
       
  1594   \end{tabular}
       
  1595   \end{center}
       
  1596 
       
  1597   \noindent
       
  1598   In the second clause we first calculate the derivative \isa{r{\isacharbackslash}{\kern0pt}c}
       
  1599   and then simpli
       
  1600 
       
  1601 text \isa{\ \ Incremental\ calculation\ of\ the\ value{\isachardot}{\kern0pt}\ To\ simplify\ the\ proof\ we\ first\ define\ the\ function\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ flex{\isacharbraceright}{\kern0pt}\ which\ calculates\ the\ {\isacharbackquote}{\kern0pt}{\isacharbackquote}{\kern0pt}iterated{\isacharprime}{\kern0pt}{\isacharprime}{\kern0pt}\ injection\ function{\isachardot}{\kern0pt}\ With\ this\ we\ can\ rewrite\ the\ lexer\ as\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ lexer{\isacharunderscore}{\kern0pt}flex{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}v\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{7}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ code{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{7}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ areg{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}{\isacharequal}{\kern0pt}{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}AZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}AONE\ bs{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ACHAR\ bs\ c{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}AALT\ bs\ r{\isadigit{1}}\ r{\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ASEQ\ bs\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}mid{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ASTAR\ bs\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ intern{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ erase{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ Some\ simple\ facts\ about\ erase\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ erase{\isacharunderscore}{\kern0pt}bder{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ erase{\isacharunderscore}{\kern0pt}intern{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bnullable{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}medskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ \ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharpercent}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{5}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bder{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{6}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{3}}{\isacharparenright}{\kern0pt}{\isacharbrackleft}{\kern0pt}of\ bs\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}\ {\isachardoublequote}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ bmkeps{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{4}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}medskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharbrackleft}{\kern0pt}mode{\isacharequal}{\kern0pt}IfThen{\isacharbrackright}{\kern0pt}\ bder{\isacharunderscore}{\kern0pt}retrieve{\isacharbraceright}{\kern0pt}\ \ By\ induction\ on\ {\isasymopen}r{\isasymclose}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}{\isacharbrackleft}{\kern0pt}Main\ Lemma{\isacharbrackright}{\kern0pt}{\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharbrackleft}{\kern0pt}mode{\isacharequal}{\kern0pt}IfThen{\isacharbrackright}{\kern0pt}\ MAIN{\isacharunderscore}{\kern0pt}decode{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ Definition\ of\ the\ bitcoded\ lexer\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ blexer{\isacharunderscore}{\kern0pt}def{\isacharbraceright}{\kern0pt}\ \ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ blexer{\isacharunderscore}{\kern0pt}correctness{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ \ }
       
  1602 
       
  1603 section \isa{Optimisations}
       
  1604 
       
  1605 text \isa{\ \ Derivatives\ as\ calculated\ by\ {\isacharbackslash}{\kern0pt}Brz{\isacharprime}{\kern0pt}s\ method\ are\ usually\ more\ complex\ regular\ expressions\ than\ the\ initial\ one{\isacharsemicolon}{\kern0pt}\ the\ result\ is\ that\ the\ derivative{\isacharminus}{\kern0pt}based\ matching\ and\ lexing\ algorithms\ are\ often\ abysmally\ slow{\isachardot}{\kern0pt}\ However{\isacharcomma}{\kern0pt}\ various\ optimisations\ are\ possible{\isacharcomma}{\kern0pt}\ such\ as\ the\ simplifications\ of\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ ZERO\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ r\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ ONE\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ r\ ONE{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ to\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ These\ simplifications\ can\ speed\ up\ the\ algorithms\ considerably{\isacharcomma}{\kern0pt}\ as\ noted\ in\ {\isacharbackslash}{\kern0pt}cite{\isacharbraceleft}{\kern0pt}Sulzmann{\isadigit{2}}{\isadigit{0}}{\isadigit{1}}{\isadigit{4}}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ One\ of\ the\ advantages\ of\ having\ a\ simple\ specification\ and\ correctness\ proof\ is\ that\ the\ latter\ can\ be\ refined\ to\ prove\ the\ correctness\ of\ such\ simplification\ steps{\isachardot}{\kern0pt}\ While\ the\ simplification\ of\ regular\ expressions\ according\ to\ rules\ like\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}equation{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}label{\isacharbraceleft}{\kern0pt}Simpl{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}array{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcllcllcllcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ ZERO\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}hspace{\isacharbraceleft}{\kern0pt}{\isadigit{8}}mm{\isacharbraceright}{\kern0pt}{\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}ALT\ r\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}hspace{\isacharbraceleft}{\kern0pt}{\isadigit{8}}mm{\isacharbraceright}{\kern0pt}{\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ ONE\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}hspace{\isacharbraceleft}{\kern0pt}{\isadigit{8}}mm{\isacharbraceright}{\kern0pt}{\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}SEQ\ r\ ONE{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \ {\isacharampersand}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}array{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}equation{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ is\ well\ understood{\isacharcomma}{\kern0pt}\ there\ is\ an\ obstacle\ with\ the\ POSIX\ value\ calculation\ algorithm\ by\ Sulzmann\ and\ Lu{\isacharcolon}{\kern0pt}\ if\ we\ build\ a\ derivative\ regular\ expression\ and\ then\ simplify\ it{\isacharcomma}{\kern0pt}\ we\ will\ calculate\ a\ POSIX\ value\ for\ this\ simplified\ derivative\ regular\ expression{\isacharcomma}{\kern0pt}\ {\isacharbackslash}{\kern0pt}emph{\isacharbraceleft}{\kern0pt}not{\isacharbraceright}{\kern0pt}\ for\ the\ original\ {\isacharparenleft}{\kern0pt}unsimplified{\isacharparenright}{\kern0pt}\ derivative\ regular\ expression{\isachardot}{\kern0pt}\ Sulzmann\ and\ Lu\ {\isacharbackslash}{\kern0pt}cite{\isacharbraceleft}{\kern0pt}Sulzmann{\isadigit{2}}{\isadigit{0}}{\isadigit{1}}{\isadigit{4}}{\isacharbraceright}{\kern0pt}\ overcome\ this\ obstacle\ by\ not\ just\ calculating\ a\ simplified\ regular\ expression{\isacharcomma}{\kern0pt}\ but\ also\ calculating\ a\ {\isacharbackslash}{\kern0pt}emph{\isacharbraceleft}{\kern0pt}rectification\ function{\isacharbraceright}{\kern0pt}\ that\ {\isacharbackquote}{\kern0pt}{\isacharbackquote}{\kern0pt}repairs{\isacharprime}{\kern0pt}{\isacharprime}{\kern0pt}\ the\ incorrect\ value{\isachardot}{\kern0pt}\ \ The\ rectification\ functions\ can\ be\ {\isacharparenleft}{\kern0pt}slightly\ clumsily{\isacharparenright}{\kern0pt}\ implemented\ \ in\ Isabelle{\isacharslash}{\kern0pt}HOL\ as\ follows\ using\ some\ auxiliary\ functions{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}RIGHT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Right\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}LEFT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Left\ {\isacharparenleft}{\kern0pt}f\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}ALT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Right\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}ALT{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Left\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ \ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{1}}{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{2}}{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ {\isacharparenleft}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}Seq\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{1}}\ v\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}f\isactrlsub {\isadigit{2}}\ v\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isasymclose}{\isacharbackslash}{\kern0pt}medskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharpercent}{\kern0pt}\ {\isacharpercent}{\kern0pt}{\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}ZERO{\isacharcomma}{\kern0pt}\ DUMMY{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}RIGHT\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}ZERO{\isacharcomma}{\kern0pt}\ DUMMY{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}LEFT\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}ALT\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}ONE{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{1}}\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}ONE{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ{\isadigit{2}}\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}SEQ\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharcomma}{\kern0pt}\ F{\isacharunderscore}{\kern0pt}SEQ\ f\isactrlsub {\isadigit{1}}\ f\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ The\ functions\ {\isasymopen}simp\isactrlbsub Alt\isactrlesub {\isasymclose}\ and\ {\isasymopen}simp\isactrlbsub Seq\isactrlesub {\isasymclose}\ encode\ the\ simplification\ rules\ in\ {\isacharbackslash}{\kern0pt}eqref{\isacharbraceleft}{\kern0pt}Simpl{\isacharbraceright}{\kern0pt}\ and\ compose\ the\ rectification\ functions\ {\isacharparenleft}{\kern0pt}simplifications\ can\ occur\ deep\ inside\ the\ regular\ expression{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ The\ main\ simplification\ function\ is\ then\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}ALT\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}SEQ\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp{\isacharunderscore}{\kern0pt}SEQ\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}simp\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharparenleft}{\kern0pt}r{\isacharcomma}{\kern0pt}\ id{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ where\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}id{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ stands\ for\ the\ identity\ function{\isachardot}{\kern0pt}\ The\ function\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ simp{\isacharbraceright}{\kern0pt}\ returns\ a\ simplified\ regular\ expression\ and\ a\ corresponding\ rectification\ function{\isachardot}{\kern0pt}\ Note\ that\ we\ do\ not\ simplify\ under\ stars{\isacharcolon}{\kern0pt}\ this\ seems\ to\ slow\ down\ the\ algorithm{\isacharcomma}{\kern0pt}\ rather\ than\ speed\ it\ up{\isachardot}{\kern0pt}\ The\ optimised\ lexer\ is\ then\ given\ by\ the\ clauses{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}lcl{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ slexer{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}rhs{\isacharparenright}{\kern0pt}\ slexer{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ {\isacharparenleft}{\kern0pt}lhs{\isacharparenright}{\kern0pt}\ slexer{\isachardot}{\kern0pt}simps{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}dn{\isachardollar}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}let\ {\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharcomma}{\kern0pt}\ f\isactrlsub r{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ simp\ {\isacharparenleft}{\kern0pt}r\ {\isasymclose}{\isachardollar}{\kern0pt}{\isacharbackslash}{\kern0pt}backslash{\isachardollar}{\kern0pt}{\isasymopen}\ c{\isacharparenright}{\kern0pt}\ in{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isasymopen}case{\isasymclose}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer\ r\isactrlsub s\ s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymopen}of{\isasymclose}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharbackslash}{\kern0pt}phantom{\isacharbraceleft}{\kern0pt}{\isachardollar}{\kern0pt}{\isacharbar}{\kern0pt}{\isachardollar}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ \ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ None{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isachardollar}{\kern0pt}{\isacharbar}{\kern0pt}{\isachardollar}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}Some\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ {\isasymopen}{\isasymRightarrow}{\isasymclose}\ {\isasymopen}Some\ {\isacharparenleft}{\kern0pt}inj\ r\ c\ {\isacharparenleft}{\kern0pt}f\isactrlsub r\ v{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isasymclose}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}center{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ In\ the\ second\ clause\ we\ first\ calculate\ the\ derivative\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}der\ c\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ then\ simplify\ the\ result{\isachardot}{\kern0pt}\ This\ gives\ us\ a\ simplified\ derivative\ {\isasymopen}r\isactrlsub s{\isasymclose}\ and\ a\ rectification\ function\ {\isasymopen}f\isactrlsub r{\isasymclose}{\isachardot}{\kern0pt}\ The\ lexer\ is\ then\ recursively\ called\ with\ the\ simplified\ derivative{\isacharcomma}{\kern0pt}\ but\ before\ we\ inject\ the\ character\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ c{\isacharbraceright}{\kern0pt}\ into\ the\ value\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ v{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ we\ need\ to\ rectify\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ v{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}that\ is\ construct\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}f\isactrlsub r\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ Before\ we\ can\ establish\ the\ correctness\ of\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ we\ need\ to\ show\ that\ simplification\ preserves\ the\ language\ and\ simplification\ preserves\ our\ POSIX\ relation\ once\ the\ value\ is\ rectified\ {\isacharparenleft}{\kern0pt}recall\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ {\isachardoublequote}{\kern0pt}simp{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ generates\ a\ {\isacharparenleft}{\kern0pt}regular\ expression{\isacharcomma}{\kern0pt}\ rectification\ function{\isacharparenright}{\kern0pt}\ pair{\isacharparenright}{\kern0pt}{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}smallskip{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}label{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}{\isacharbraceleft}{\kern0pt}ll{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ L{\isacharunderscore}{\kern0pt}fst{\isacharunderscore}{\kern0pt}simp{\isacharbrackleft}{\kern0pt}symmetric{\isacharbrackright}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharbackslash}{\kern0pt}{\isacharbackslash}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isacharampersand}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm{\isacharbrackleft}{\kern0pt}mode{\isacharequal}{\kern0pt}IfThen{\isacharbrackright}{\kern0pt}\ Posix{\isacharunderscore}{\kern0pt}simp{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}tabular{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}lemma{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ Both\ are\ by\ induction\ on\ {\isasymopen}r{\isasymclose}{\isachardot}{\kern0pt}\ There\ is\ no\ interesting\ case\ for\ the\ first\ statement{\isachardot}{\kern0pt}\ For\ the\ second\ statement{\isacharcomma}{\kern0pt}\ of\ interest\ are\ the\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\ {\isacharequal}{\kern0pt}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\ {\isacharequal}{\kern0pt}\ SEQ\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ cases{\isachardot}{\kern0pt}\ In\ each\ case\ we\ have\ to\ analyse\ four\ subcases\ whether\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ equals\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ ZERO{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}respectively\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ ONE{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ For\ example\ for\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\ {\isacharequal}{\kern0pt}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ consider\ the\ subcase\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymnoteq}\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ By\ assumption\ we\ know\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ From\ this\ we\ can\ infer\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ by\ IH\ also\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ r\isactrlsub {\isadigit{2}}\ {\isasymrightarrow}\ {\isacharparenleft}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ Given\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ ZERO{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ we\ know\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}L\ {\isacharparenleft}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isacharbraceleft}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ By\ the\ first\ statement\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}L\ r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ is\ the\ empty\ set{\isacharcomma}{\kern0pt}\ meaning\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymnotin}\ L\ r\isactrlsub {\isadigit{1}}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ Taking\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ and\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ together\ gives\ by\ the\ {\isacharbackslash}{\kern0pt}mbox{\isacharbraceleft}{\kern0pt}{\isasymopen}P{\isacharplus}{\kern0pt}R{\isasymclose}{\isacharbraceright}{\kern0pt}{\isacharminus}{\kern0pt}rule\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}\ {\isasymrightarrow}\ Right\ {\isacharparenleft}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ In\ turn\ this\ gives\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}ALT\ r\isactrlsub {\isadigit{1}}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ as\ we\ need\ to\ show{\isachardot}{\kern0pt}\ The\ other\ cases\ are\ similar{\isachardot}{\kern0pt}{\isacharbackslash}{\kern0pt}qed\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}noindent\ We\ can\ now\ prove\ relatively\ straightforwardly\ that\ the\ optimised\ lexer\ produces\ the\ expected\ result{\isacharcolon}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}thm\ slexer{\isacharunderscore}{\kern0pt}correctness{\isacharbraceright}{\kern0pt}\ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}theorem{\isacharbraceright}{\kern0pt}\ \ {\isacharbackslash}{\kern0pt}begin{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ By\ induction\ on\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ s{\isacharbraceright}{\kern0pt}\ generalising\ over\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ The\ case\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ is\ trivial{\isachardot}{\kern0pt}\ For\ the\ cons{\isacharminus}{\kern0pt}case\ suppose\ the\ string\ is\ of\ the\ form\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}c\ {\isacharhash}{\kern0pt}\ s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ By\ induction\ hypothesis\ we\ know\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ holds\ for\ all\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ r{\isacharbraceright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}in\ particular\ for\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ being\ the\ derivative\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}der\ c\ r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ Let\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}r\isactrlsub s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ be\ the\ simplified\ derivative\ regular\ expression{\isacharcomma}{\kern0pt}\ that\ is\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharcomma}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}f\isactrlsub r{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ be\ the\ rectification\ function{\isacharcomma}{\kern0pt}\ that\ is\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ \ We\ distinguish\ the\ cases\ whether\ {\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ L\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ or\ not{\isachardot}{\kern0pt}\ In\ the\ first\ case\ we\ have\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ a\ value\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ so\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ Some\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ der\ c\ r\ {\isasymrightarrow}\ v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ hold{\isachardot}{\kern0pt}\ By\ Lemma{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ we\ can\ also\ infer\ from{\isachartilde}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isacharasterisk}{\kern0pt}{\isacharparenright}{\kern0pt}\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ L\ r\isactrlsub s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ holds{\isachardot}{\kern0pt}\ \ Hence\ we\ know\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ that\ there\ exists\ a\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ with\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ Some\ v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ r\isactrlsub s\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ From\ the\ latter\ we\ know\ by\ Lemma{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{2}}{\isacharparenright}{\kern0pt}\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymin}\ der\ c\ r\ {\isasymrightarrow}\ {\isacharparenleft}{\kern0pt}f\isactrlsub r\ v{\isacharprime}{\kern0pt}{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ holds{\isachardot}{\kern0pt}\ By\ the\ uniqueness\ of\ the\ POSIX\ relation\ {\isacharparenleft}{\kern0pt}Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}posixdeterm{\isacharbraceright}{\kern0pt}{\isacharparenright}{\kern0pt}\ we\ can\ infer\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ v{\isacharbraceright}{\kern0pt}\ is\ equal\ to\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}f\isactrlsub r\ v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isacharminus}{\kern0pt}{\isacharminus}{\kern0pt}{\isacharminus}{\kern0pt}that\ is\ the\ rectification\ function\ applied\ to\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isacharprime}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ produces\ the\ original\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}v{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ \ Now\ the\ case\ follows\ by\ the\ definitions\ of\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ lexer{\isacharbraceright}{\kern0pt}\ and\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}const\ slexer{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ \ In\ the\ second\ case\ where\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymnotin}\ L\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ we\ have\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ {\isacharparenleft}{\kern0pt}der\ c\ r{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}\ \ We\ also\ know\ by\ Lemma{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}slexeraux{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ that\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}s\ {\isasymnotin}\ L\ r\isactrlsub s{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ Hence\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}\ by\ Theorem{\isachartilde}{\kern0pt}{\isacharbackslash}{\kern0pt}ref{\isacharbraceleft}{\kern0pt}lexercorrect{\isacharbraceright}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isadigit{1}}{\isacharparenright}{\kern0pt}\ and\ by\ IH\ then\ also\ {\isacharat}{\kern0pt}{\isacharbraceleft}{\kern0pt}term\ {\isachardoublequote}{\kern0pt}slexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None{\isachardoublequote}{\kern0pt}{\isacharbraceright}{\kern0pt}{\isachardot}{\kern0pt}\ With\ this\ we\ can\ conclude\ in\ this\ case\ too{\isachardot}{\kern0pt}{\isacharbackslash}{\kern0pt}qed\ \ {\isacharbackslash}{\kern0pt}end{\isacharbraceleft}{\kern0pt}proof{\isacharbraceright}{\kern0pt}\ \ }
       
  1606 fy the result. This gives us a simplified derivative
       
  1607   \isa{r\isactrlsub s} and a rectification function \isa{f\isactrlsub r}. The lexer
       
  1608   is then recursively called with the simplified derivative, but before
       
  1609   we inject the character \isa{c} into the value \isa{v}, we need to rectify
       
  1610   \isa{v} (that is construct \isa{f\isactrlsub r\ v}). Before we can establish the correctness
       
  1611   of \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}}, we need to show that simplification preserves the language
       
  1612   and simplification preserves our POSIX relation once the value is rectified
       
  1613   (recall \isa{simp} generates a (regular expression, rectification function) pair):
       
  1614 
       
  1615   \begin{lemma}\mbox{}\smallskip\\\label{slexeraux}
       
  1616   \begin{tabular}{ll}
       
  1617   (1) & \isa{L{\isacharparenleft}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ L{\isacharparenleft}{\kern0pt}r{\isacharparenright}{\kern0pt}}\\
       
  1618   (2) & \isa{{\normalsize{}If\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ fst\ {\isacharparenleft}{\kern0pt}simp\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v\ {\normalsize \,then\,}\ {\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ r{\isacharparenright}{\kern0pt}\ v{\isachardot}{\kern0pt}}
       
  1619   \end{tabular}
       
  1620   \end{lemma}
       
  1621 
       
  1622   \begin{proof} Both are by induction on \isa{r}. There is no
       
  1623   interesting case for the first statement. For the second statement,
       
  1624   of interest are the \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}} and \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isasymcdot}\ r\isactrlsub {\isadigit{2}}} cases. In each case we have to analyse four subcases whether
       
  1625   \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} and \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}} equals \isa{\isactrlbold {\isadigit{0}}} (respectively \isa{\isactrlbold {\isadigit{1}}}). For example for \isa{r\ {\isacharequal}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}}, consider the subcase \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ \isactrlbold {\isadigit{0}}} and
       
  1626   \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymnoteq}\ \isactrlbold {\isadigit{0}}}. By assumption we know \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}. From this we can infer \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v}
       
  1627   and by IH also (*) \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v}. Given \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ \isactrlbold {\isadigit{0}}}
       
  1628   we know \isa{L{\isacharparenleft}{\kern0pt}fst\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharequal}{\kern0pt}\ {\isasymemptyset}}. By the first statement
       
  1629   \isa{L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}} is the empty set, meaning (**) \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}{\isacharparenright}{\kern0pt}}.
       
  1630   Taking (*) and (**) together gives by the \mbox{\isa{P{\isacharplus}{\kern0pt}R}}-rule 
       
  1631   \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ Right\ {\isacharparenleft}{\kern0pt}snd\ {\isacharparenleft}{\kern0pt}simp\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ v{\isacharparenright}{\kern0pt}}. In turn this
       
  1632   gives \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\ {\isacharplus}{\kern0pt}\ r\isactrlsub {\isadigit{2}}{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v} as we need to show.
       
  1633   The other cases are similar.\qed
       
  1634   \end{proof}
       
  1635 
       
  1636   \noindent We can now prove relatively straightforwardly that the
       
  1637   optimised lexer produces the expected result:
       
  1638 
       
  1639   \begin{theorem}
       
  1640   \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s}
       
  1641   \end{theorem}
       
  1642 
       
  1643   \begin{proof} By induction on \isa{s} generalising over \isa{r}. The case \isa{{\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}} is trivial. For the cons-case suppose the
       
  1644   string is of the form \isa{c\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}s}. By induction hypothesis we
       
  1645   know \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\ s\ {\isacharequal}{\kern0pt}\ lexer\ r\ s} holds for all \isa{r} (in
       
  1646   particular for \isa{r} being the derivative \isa{r{\isacharbackslash}{\kern0pt}c}). Let \isa{r\isactrlsub s} be the simplified derivative regular expression, that is \isa{fst\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}, and \isa{f\isactrlsub r} be the rectification
       
  1647   function, that is \isa{snd\ {\isacharparenleft}{\kern0pt}simp\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}}.  We distinguish the cases
       
  1648   whether (*) \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}} or not. In the first case we
       
  1649   have by Theorem~\ref{lexercorrect}(2) a value \isa{v} so that \isa{lexer\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ Some\ v} and \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v} hold.
       
  1650   By Lemma~\ref{slexeraux}(1) we can also infer from~(*) that \isa{s\ {\isasymin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharparenright}{\kern0pt}} holds.  Hence we know by Theorem~\ref{lexercorrect}(2) that
       
  1651   there exists a \isa{v{\isacharprime}{\kern0pt}} with \isa{lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ Some\ v{\isacharprime}{\kern0pt}} and
       
  1652   \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r\isactrlsub s{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ v{\isacharprime}{\kern0pt}}. From the latter we know by
       
  1653   Lemma~\ref{slexeraux}(2) that \isa{{\isacharparenleft}{\kern0pt}s{\isacharcomma}{\kern0pt}\ r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymrightarrow}\ f\isactrlsub r\ v{\isacharprime}{\kern0pt}} holds.
       
  1654   By the uniqueness of the POSIX relation (Theorem~\ref{posixdeterm}) we
       
  1655   can infer that \isa{v} is equal to \isa{f\isactrlsub r\ v{\isacharprime}{\kern0pt}}---that is the 
       
  1656   rectification function applied to \isa{v{\isacharprime}{\kern0pt}}
       
  1657   produces the original \isa{v}.  Now the case follows by the
       
  1658   definitions of \isa{lexer} and \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}}.
       
  1659 
       
  1660   In the second case where \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}} we have that
       
  1661   \isa{lexer\ {\isacharparenleft}{\kern0pt}r{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ s\ {\isacharequal}{\kern0pt}\ None} by Theorem~\ref{lexercorrect}(1).  We
       
  1662   also know by Lemma~\ref{slexeraux}(1) that \isa{s\ {\isasymnotin}\ L{\isacharparenleft}{\kern0pt}r\isactrlsub s{\isacharparenright}{\kern0pt}}. Hence
       
  1663   \isa{lexer\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None} by Theorem~\ref{lexercorrect}(1) and
       
  1664   by IH then also \isa{lexer\isactrlsup {\isacharplus}{\kern0pt}\ r\isactrlsub s\ s\ {\isacharequal}{\kern0pt}\ None}. With this we can
       
  1665   conclude in this case too.\qed   
       
  1666 
       
  1667   \end{proof}%
       
  1668 \end{isamarkuptext}\isamarkuptrue%
       
  1669 %
       
  1670 \isadelimdocument
       
  1671 %
       
  1672 \endisadelimdocument
       
  1673 %
       
  1674 \isatagdocument
       
  1675 %
       
  1676 \isamarkupsection{HERE%
       
  1677 }
       
  1678 \isamarkuptrue%
       
  1679 %
       
  1680 \endisatagdocument
       
  1681 {\isafolddocument}%
       
  1682 %
       
  1683 \isadelimdocument
       
  1684 %
       
  1685 \endisadelimdocument
       
  1686 %
       
  1687 \begin{isamarkuptext}%
       
  1688 \begin{lemma}
       
  1689   \isa{{\normalsize{}If\,}\ v\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c\ {\normalsize \,then\,}\ retrieve\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}\ v\ {\isacharequal}{\kern0pt}\ retrieve\ r\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isacharparenright}{\kern0pt}{\isachardot}{\kern0pt}}
       
  1690   \end{lemma}
       
  1691 
       
  1692   \begin{proof}
       
  1693   By induction on the definition of \isa{r\mbox{$^\downarrow$}}. The cases for rule 1) and 2) are
       
  1694   straightforward as \isa{\isactrlbold {\isadigit{0}}{\isacharbackslash}{\kern0pt}c} and \isa{\isactrlbold {\isadigit{1}}{\isacharbackslash}{\kern0pt}c} are both equal to 
       
  1695   \isa{\isactrlbold {\isadigit{0}}}. This means \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{0}}} cannot hold. Similarly in case of rule 3)
       
  1696   where \isa{r} is of the form \isa{ACHAR\ d} with \isa{c\ {\isacharequal}{\kern0pt}\ d}. Then by assumption
       
  1697   we know \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{1}}}, which implies \isa{v\ {\isacharequal}{\kern0pt}\ Empty}. The equation follows by 
       
  1698   simplification of left- and right-hand side. In  case \isa{c\ {\isasymnoteq}\ d} we have again
       
  1699   \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{0}}}, which cannot  hold. 
       
  1700 
       
  1701   For rule 4a) we have again \isa{v\ {\isacharcolon}{\kern0pt}\ \isactrlbold {\isadigit{0}}}. The property holds by IH for rule 4b).
       
  1702   The  induction hypothesis is 
       
  1703   \[
       
  1704   \isa{retrieve\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}\ v\ {\isacharequal}{\kern0pt}\ retrieve\ r\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isacharparenright}{\kern0pt}}
       
  1705   \]
       
  1706   which is what left- and right-hand side simplify to.  The slightly more interesting case
       
  1707   is for 4c). By assumption  we have 
       
  1708   \isa{v\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isacharplus}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}AALTs\ bs\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}}. This means we 
       
  1709   have either (*) \isa{v{\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{1}}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} with \isa{v\ {\isacharequal}{\kern0pt}\ Left\ v{\isadigit{1}}} or
       
  1710   (**) \isa{v{\isadigit{2}}\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}AALTs\ bs\ {\isacharparenleft}{\kern0pt}r\isactrlsub {\isadigit{2}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}rs{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c} with \isa{v\ {\isacharequal}{\kern0pt}\ Right\ v{\isadigit{2}}}.
       
  1711   The former  case is straightforward by simplification. The second case is \ldots TBD.
       
  1712 
       
  1713   Rule 5) TBD.
       
  1714 
       
  1715   Finally for rule 6) the reasoning is as follows:   By assumption we  have
       
  1716   \isa{v\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c{\isacharparenright}{\kern0pt}\ {\isasymcdot}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}}. This means we also have
       
  1717   \isa{v\ {\isacharequal}{\kern0pt}\ Seq\ v{\isadigit{1}}\ v{\isadigit{2}}}, \isa{v{\isadigit{1}}\ {\isacharcolon}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}{\isacharbackslash}{\kern0pt}c}  and \isa{v{\isadigit{2}}\ {\isacharequal}{\kern0pt}\ Stars\ vs}.
       
  1718   We want to prove
       
  1719   \begin{align}
       
  1720   & \isa{retrieve\ {\isacharparenleft}{\kern0pt}ASEQ\ bs\ {\isacharparenleft}{\kern0pt}fuse\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}ASTAR\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v}\\
       
  1721   &= \isa{retrieve\ {\isacharparenleft}{\kern0pt}ASTAR\ bs\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}{\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\isactrlsup {\isasymstar}{\isacharparenright}{\kern0pt}\ c\ v{\isacharparenright}{\kern0pt}}
       
  1722   \end{align}
       
  1723   The right-hand side \isa{inj}-expression is equal to 
       
  1724   \isa{Stars\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isadigit{1}}\mbox{$\,$}{\isacharcolon}{\kern0pt}{\isacharcolon}{\kern0pt}\mbox{$\,$}vs{\isacharparenright}{\kern0pt}}, which means the \isa{retrieve}-expression
       
  1725   simplifies to 
       
  1726   \[
       
  1727   \isa{bs\ {\isacharat}{\kern0pt}\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}\ {\isacharat}{\kern0pt}\ retrieve\ r\ {\isacharparenleft}{\kern0pt}inj\ {\isacharparenleft}{\kern0pt}r\mbox{$^\downarrow$}{\isacharparenright}{\kern0pt}\ c\ v{\isadigit{1}}{\isacharparenright}{\kern0pt}\ {\isacharat}{\kern0pt}\ retrieve\ {\isacharparenleft}{\kern0pt}ASTAR\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}}
       
  1728   \]
       
  1729   The left-hand side (3) above simplifies to 
       
  1730   \[
       
  1731   \isa{bs\ {\isacharat}{\kern0pt}\ retrieve\ {\isacharparenleft}{\kern0pt}fuse\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}r\mbox{$\bbslash$}c{\isacharparenright}{\kern0pt}{\isacharparenright}{\kern0pt}\ v{\isadigit{1}}\ {\isacharat}{\kern0pt}\ retrieve\ {\isacharparenleft}{\kern0pt}ASTAR\ {\isacharbrackleft}{\kern0pt}{\isacharbrackright}{\kern0pt}\ r{\isacharparenright}{\kern0pt}\ {\isacharparenleft}{\kern0pt}Stars\ vs{\isacharparenright}{\kern0pt}} 
       
  1732   \]
       
  1733   We can move out the \isa{fuse\ {\isacharbrackleft}{\kern0pt}Z{\isacharbrackright}{\kern0pt}} and then use the IH to show that left-hand side
       
  1734   and right-hand side are equal. This completes the proof. 
       
  1735   \end{proof}   
       
  1736 
       
  1737    
       
  1738 
       
  1739   \bibliographystyle{plain}
       
  1740   \bibliography{root}%
       
  1741 \end{isamarkuptext}\isamarkuptrue%
       
  1742 %
       
  1743 \isadelimtheory
       
  1744 %
       
  1745 \endisadelimtheory
       
  1746 %
       
  1747 \isatagtheory
       
  1748 %
       
  1749 \endisatagtheory
       
  1750 {\isafoldtheory}%
       
  1751 %
       
  1752 \isadelimtheory
       
  1753 \isanewline
       
  1754 %
       
  1755 \endisadelimtheory
       
  1756 \isanewline
       
  1757 \isanewline
       
  1758 %
       
  1759 \end{isabellebody}%
       
  1760 \endinput
       
  1761 %:%file=~/Dropbox/Workspace/journalpaper/lexing/thys2/Journal/Paper.thy%:%
       
  1762 %:%50=134%:%
       
  1763 %:%62=136%:%
       
  1764 %:%63=137%:%
       
  1765 %:%64=138%:%
       
  1766 %:%65=139%:%
       
  1767 %:%66=140%:%
       
  1768 %:%67=141%:%
       
  1769 %:%68=142%:%
       
  1770 %:%69=143%:%
       
  1771 %:%70=144%:%
       
  1772 %:%71=145%:%
       
  1773 %:%72=146%:%
       
  1774 %:%73=147%:%
       
  1775 %:%74=148%:%
       
  1776 %:%75=149%:%
       
  1777 %:%76=150%:%
       
  1778 %:%77=151%:%
       
  1779 %:%78=152%:%
       
  1780 %:%79=153%:%
       
  1781 %:%80=154%:%
       
  1782 %:%81=155%:%
       
  1783 %:%82=156%:%
       
  1784 %:%83=157%:%
       
  1785 %:%84=158%:%
       
  1786 %:%85=159%:%
       
  1787 %:%86=160%:%
       
  1788 %:%87=161%:%
       
  1789 %:%88=162%:%
       
  1790 %:%89=163%:%
       
  1791 %:%90=164%:%
       
  1792 %:%91=165%:%
       
  1793 %:%92=166%:%
       
  1794 %:%93=167%:%
       
  1795 %:%94=168%:%
       
  1796 %:%95=169%:%
       
  1797 %:%96=170%:%
       
  1798 %:%97=171%:%
       
  1799 %:%98=172%:%
       
  1800 %:%99=173%:%
       
  1801 %:%100=174%:%
       
  1802 %:%101=175%:%
       
  1803 %:%102=176%:%
       
  1804 %:%103=177%:%
       
  1805 %:%104=178%:%
       
  1806 %:%105=179%:%
       
  1807 %:%106=180%:%
       
  1808 %:%107=181%:%
       
  1809 %:%108=182%:%
       
  1810 %:%109=183%:%
       
  1811 %:%110=184%:%
       
  1812 %:%111=185%:%
       
  1813 %:%112=186%:%
       
  1814 %:%113=187%:%
       
  1815 %:%114=188%:%
       
  1816 %:%115=189%:%
       
  1817 %:%116=190%:%
       
  1818 %:%117=191%:%
       
  1819 %:%118=192%:%
       
  1820 %:%119=193%:%
       
  1821 %:%120=194%:%
       
  1822 %:%121=195%:%
       
  1823 %:%122=196%:%
       
  1824 %:%123=197%:%
       
  1825 %:%124=198%:%
       
  1826 %:%125=199%:%
       
  1827 %:%126=200%:%
       
  1828 %:%127=201%:%
       
  1829 %:%128=202%:%
       
  1830 %:%129=203%:%
       
  1831 %:%130=204%:%
       
  1832 %:%131=205%:%
       
  1833 %:%132=206%:%
       
  1834 %:%133=207%:%
       
  1835 %:%134=208%:%
       
  1836 %:%135=209%:%
       
  1837 %:%136=210%:%
       
  1838 %:%137=211%:%
       
  1839 %:%138=212%:%
       
  1840 %:%139=213%:%
       
  1841 %:%140=214%:%
       
  1842 %:%141=215%:%
       
  1843 %:%142=216%:%
       
  1844 %:%143=217%:%
       
  1845 %:%144=218%:%
       
  1846 %:%145=219%:%
       
  1847 %:%146=220%:%
       
  1848 %:%147=221%:%
       
  1849 %:%148=222%:%
       
  1850 %:%149=223%:%
       
  1851 %:%150=224%:%
       
  1852 %:%151=225%:%
       
  1853 %:%152=226%:%
       
  1854 %:%153=227%:%
       
  1855 %:%154=228%:%
       
  1856 %:%155=229%:%
       
  1857 %:%156=230%:%
       
  1858 %:%157=231%:%
       
  1859 %:%158=232%:%
       
  1860 %:%159=233%:%
       
  1861 %:%160=234%:%
       
  1862 %:%161=235%:%
       
  1863 %:%162=236%:%
       
  1864 %:%163=237%:%
       
  1865 %:%164=238%:%
       
  1866 %:%165=239%:%
       
  1867 %:%166=240%:%
       
  1868 %:%167=241%:%
       
  1869 %:%168=242%:%
       
  1870 %:%169=243%:%
       
  1871 %:%170=244%:%
       
  1872 %:%171=245%:%
       
  1873 %:%172=246%:%
       
  1874 %:%173=247%:%
       
  1875 %:%174=248%:%
       
  1876 %:%175=249%:%
       
  1877 %:%176=250%:%
       
  1878 %:%177=251%:%
       
  1879 %:%178=252%:%
       
  1880 %:%179=253%:%
       
  1881 %:%180=254%:%
       
  1882 %:%181=255%:%
       
  1883 %:%182=256%:%
       
  1884 %:%183=257%:%
       
  1885 %:%184=258%:%
       
  1886 %:%185=259%:%
       
  1887 %:%186=260%:%
       
  1888 %:%187=261%:%
       
  1889 %:%188=262%:%
       
  1890 %:%189=263%:%
       
  1891 %:%190=264%:%
       
  1892 %:%191=265%:%
       
  1893 %:%192=266%:%
       
  1894 %:%193=267%:%
       
  1895 %:%194=268%:%
       
  1896 %:%203=272%:%
       
  1897 %:%215=276%:%
       
  1898 %:%216=277%:%
       
  1899 %:%217=278%:%
       
  1900 %:%218=279%:%
       
  1901 %:%219=280%:%
       
  1902 %:%220=281%:%
       
  1903 %:%221=282%:%
       
  1904 %:%222=283%:%
       
  1905 %:%223=284%:%
       
  1906 %:%224=285%:%
       
  1907 %:%225=286%:%
       
  1908 %:%226=287%:%
       
  1909 %:%227=288%:%
       
  1910 %:%228=289%:%
       
  1911 %:%237=297%:%
       
  1912 %:%249=303%:%
       
  1913 %:%250=304%:%
       
  1914 %:%251=305%:%
       
  1915 %:%252=306%:%
       
  1916 %:%252=307%:%
       
  1917 %:%253=308%:%
       
  1918 %:%254=309%:%
       
  1919 %:%255=310%:%
       
  1920 %:%256=311%:%
       
  1921 %:%257=312%:%
       
  1922 %:%258=313%:%
       
  1923 %:%259=314%:%
       
  1924 %:%260=315%:%
       
  1925 %:%261=316%:%
       
  1926 %:%262=317%:%
       
  1927 %:%263=318%:%
       
  1928 %:%264=319%:%
       
  1929 %:%265=320%:%
       
  1930 %:%266=321%:%
       
  1931 %:%267=322%:%
       
  1932 %:%268=323%:%
       
  1933 %:%269=324%:%
       
  1934 %:%270=325%:%
       
  1935 %:%271=326%:%
       
  1936 %:%272=327%:%
       
  1937 %:%273=328%:%
       
  1938 %:%274=329%:%
       
  1939 %:%275=330%:%
       
  1940 %:%276=331%:%
       
  1941 %:%277=332%:%
       
  1942 %:%278=333%:%
       
  1943 %:%279=334%:%
       
  1944 %:%280=335%:%
       
  1945 %:%281=336%:%
       
  1946 %:%282=337%:%
       
  1947 %:%283=338%:%
       
  1948 %:%284=339%:%
       
  1949 %:%285=340%:%
       
  1950 %:%286=341%:%
       
  1951 %:%287=342%:%
       
  1952 %:%288=343%:%
       
  1953 %:%289=344%:%
       
  1954 %:%290=345%:%
       
  1955 %:%291=346%:%
       
  1956 %:%292=347%:%
       
  1957 %:%293=348%:%
       
  1958 %:%294=349%:%
       
  1959 %:%295=350%:%
       
  1960 %:%296=351%:%
       
  1961 %:%297=352%:%
       
  1962 %:%298=353%:%
       
  1963 %:%299=354%:%
       
  1964 %:%300=355%:%
       
  1965 %:%301=356%:%
       
  1966 %:%302=357%:%
       
  1967 %:%303=358%:%
       
  1968 %:%304=359%:%
       
  1969 %:%305=360%:%
       
  1970 %:%306=361%:%
       
  1971 %:%307=362%:%
       
  1972 %:%308=363%:%
       
  1973 %:%309=364%:%
       
  1974 %:%310=365%:%
       
  1975 %:%311=366%:%
       
  1976 %:%312=367%:%
       
  1977 %:%313=368%:%
       
  1978 %:%314=369%:%
       
  1979 %:%315=370%:%
       
  1980 %:%316=371%:%
       
  1981 %:%316=372%:%
       
  1982 %:%317=373%:%
       
  1983 %:%318=374%:%
       
  1984 %:%319=375%:%
       
  1985 %:%320=376%:%
       
  1986 %:%321=377%:%
       
  1987 %:%322=378%:%
       
  1988 %:%323=379%:%
       
  1989 %:%324=380%:%
       
  1990 %:%325=381%:%
       
  1991 %:%326=382%:%
       
  1992 %:%327=383%:%
       
  1993 %:%328=384%:%
       
  1994 %:%329=385%:%
       
  1995 %:%330=386%:%
       
  1996 %:%331=387%:%
       
  1997 %:%332=388%:%
       
  1998 %:%333=389%:%
       
  1999 %:%334=390%:%
       
  2000 %:%335=391%:%
       
  2001 %:%336=392%:%
       
  2002 %:%337=393%:%
       
  2003 %:%338=394%:%
       
  2004 %:%339=395%:%
       
  2005 %:%340=396%:%
       
  2006 %:%341=397%:%
       
  2007 %:%342=398%:%
       
  2008 %:%343=399%:%
       
  2009 %:%344=400%:%
       
  2010 %:%345=401%:%
       
  2011 %:%346=402%:%
       
  2012 %:%347=403%:%
       
  2013 %:%348=404%:%
       
  2014 %:%349=405%:%
       
  2015 %:%350=406%:%
       
  2016 %:%351=407%:%
       
  2017 %:%352=408%:%
       
  2018 %:%353=409%:%
       
  2019 %:%354=410%:%
       
  2020 %:%355=411%:%
       
  2021 %:%356=412%:%
       
  2022 %:%357=413%:%
       
  2023 %:%358=414%:%
       
  2024 %:%359=415%:%
       
  2025 %:%360=416%:%
       
  2026 %:%361=417%:%
       
  2027 %:%362=418%:%
       
  2028 %:%363=419%:%
       
  2029 %:%364=420%:%
       
  2030 %:%365=421%:%
       
  2031 %:%366=422%:%
       
  2032 %:%367=423%:%
       
  2033 %:%368=424%:%
       
  2034 %:%369=425%:%
       
  2035 %:%370=426%:%
       
  2036 %:%371=427%:%
       
  2037 %:%372=428%:%
       
  2038 %:%373=429%:%
       
  2039 %:%374=430%:%
       
  2040 %:%375=431%:%
       
  2041 %:%376=432%:%
       
  2042 %:%377=433%:%
       
  2043 %:%378=434%:%
       
  2044 %:%379=435%:%
       
  2045 %:%380=436%:%
       
  2046 %:%381=437%:%
       
  2047 %:%382=438%:%
       
  2048 %:%383=439%:%
       
  2049 %:%384=440%:%
       
  2050 %:%385=441%:%
       
  2051 %:%386=442%:%
       
  2052 %:%387=443%:%
       
  2053 %:%388=444%:%
       
  2054 %:%389=445%:%
       
  2055 %:%390=446%:%
       
  2056 %:%391=447%:%
       
  2057 %:%392=448%:%
       
  2058 %:%393=449%:%
       
  2059 %:%394=450%:%
       
  2060 %:%395=451%:%
       
  2061 %:%396=452%:%
       
  2062 %:%397=453%:%
       
  2063 %:%398=454%:%
       
  2064 %:%399=455%:%
       
  2065 %:%400=456%:%
       
  2066 %:%401=457%:%
       
  2067 %:%402=458%:%
       
  2068 %:%403=459%:%
       
  2069 %:%404=460%:%
       
  2070 %:%405=461%:%
       
  2071 %:%406=462%:%
       
  2072 %:%407=463%:%
       
  2073 %:%408=464%:%
       
  2074 %:%409=465%:%
       
  2075 %:%410=466%:%
       
  2076 %:%411=467%:%
       
  2077 %:%412=468%:%
       
  2078 %:%413=469%:%
       
  2079 %:%414=470%:%
       
  2080 %:%415=471%:%
       
  2081 %:%416=472%:%
       
  2082 %:%417=473%:%
       
  2083 %:%418=474%:%
       
  2084 %:%419=475%:%
       
  2085 %:%420=476%:%
       
  2086 %:%421=477%:%
       
  2087 %:%430=484%:%
       
  2088 %:%442=486%:%
       
  2089 %:%443=487%:%
       
  2090 %:%443=488%:%
       
  2091 %:%444=489%:%
       
  2092 %:%445=490%:%
       
  2093 %:%446=491%:%
       
  2094 %:%447=492%:%
       
  2095 %:%448=493%:%
       
  2096 %:%449=494%:%
       
  2097 %:%450=495%:%
       
  2098 %:%451=496%:%
       
  2099 %:%452=497%:%
       
  2100 %:%453=498%:%
       
  2101 %:%454=499%:%
       
  2102 %:%455=500%:%
       
  2103 %:%456=501%:%
       
  2104 %:%457=502%:%
       
  2105 %:%458=503%:%
       
  2106 %:%459=504%:%
       
  2107 %:%460=505%:%
       
  2108 %:%461=506%:%
       
  2109 %:%462=507%:%
       
  2110 %:%463=508%:%
       
  2111 %:%464=509%:%
       
  2112 %:%465=510%:%
       
  2113 %:%466=511%:%
       
  2114 %:%467=512%:%
       
  2115 %:%468=513%:%
       
  2116 %:%469=514%:%
       
  2117 %:%470=515%:%
       
  2118 %:%471=516%:%
       
  2119 %:%472=517%:%
       
  2120 %:%473=518%:%
       
  2121 %:%474=519%:%
       
  2122 %:%475=520%:%
       
  2123 %:%476=521%:%
       
  2124 %:%477=522%:%
       
  2125 %:%478=523%:%
       
  2126 %:%479=524%:%
       
  2127 %:%480=525%:%
       
  2128 %:%481=526%:%
       
  2129 %:%482=527%:%
       
  2130 %:%482=528%:%
       
  2131 %:%483=529%:%
       
  2132 %:%484=530%:%
       
  2133 %:%485=531%:%
       
  2134 %:%486=532%:%
       
  2135 %:%487=533%:%
       
  2136 %:%487=534%:%
       
  2137 %:%488=535%:%
       
  2138 %:%489=536%:%
       
  2139 %:%490=537%:%
       
  2140 %:%491=538%:%
       
  2141 %:%492=539%:%
       
  2142 %:%493=540%:%
       
  2143 %:%494=541%:%
       
  2144 %:%495=542%:%
       
  2145 %:%496=543%:%
       
  2146 %:%497=544%:%
       
  2147 %:%498=545%:%
       
  2148 %:%499=546%:%
       
  2149 %:%500=547%:%
       
  2150 %:%501=548%:%
       
  2151 %:%502=549%:%
       
  2152 %:%503=550%:%
       
  2153 %:%504=551%:%
       
  2154 %:%505=552%:%
       
  2155 %:%506=553%:%
       
  2156 %:%507=554%:%
       
  2157 %:%508=555%:%
       
  2158 %:%509=556%:%
       
  2159 %:%510=557%:%
       
  2160 %:%511=558%:%
       
  2161 %:%512=559%:%
       
  2162 %:%513=560%:%
       
  2163 %:%514=561%:%
       
  2164 %:%515=562%:%
       
  2165 %:%516=563%:%
       
  2166 %:%517=564%:%
       
  2167 %:%518=565%:%
       
  2168 %:%519=566%:%
       
  2169 %:%520=567%:%
       
  2170 %:%521=568%:%
       
  2171 %:%522=569%:%
       
  2172 %:%523=570%:%
       
  2173 %:%524=571%:%
       
  2174 %:%525=572%:%
       
  2175 %:%526=573%:%
       
  2176 %:%527=574%:%
       
  2177 %:%528=575%:%
       
  2178 %:%529=576%:%
       
  2179 %:%530=577%:%
       
  2180 %:%531=578%:%
       
  2181 %:%532=579%:%
       
  2182 %:%533=580%:%
       
  2183 %:%534=581%:%
       
  2184 %:%535=582%:%
       
  2185 %:%536=583%:%
       
  2186 %:%537=584%:%
       
  2187 %:%538=585%:%
       
  2188 %:%539=586%:%
       
  2189 %:%540=587%:%
       
  2190 %:%541=588%:%
       
  2191 %:%542=589%:%
       
  2192 %:%543=590%:%
       
  2193 %:%544=591%:%
       
  2194 %:%545=592%:%
       
  2195 %:%546=593%:%
       
  2196 %:%547=594%:%
       
  2197 %:%548=595%:%
       
  2198 %:%549=596%:%
       
  2199 %:%550=597%:%
       
  2200 %:%551=598%:%
       
  2201 %:%552=599%:%
       
  2202 %:%553=600%:%
       
  2203 %:%554=601%:%
       
  2204 %:%555=602%:%
       
  2205 %:%556=603%:%
       
  2206 %:%557=604%:%
       
  2207 %:%558=605%:%
       
  2208 %:%559=606%:%
       
  2209 %:%560=607%:%
       
  2210 %:%561=608%:%
       
  2211 %:%562=609%:%
       
  2212 %:%563=610%:%
       
  2213 %:%564=611%:%
       
  2214 %:%565=612%:%
       
  2215 %:%566=613%:%
       
  2216 %:%567=614%:%
       
  2217 %:%568=615%:%
       
  2218 %:%569=616%:%
       
  2219 %:%570=617%:%
       
  2220 %:%571=618%:%
       
  2221 %:%572=619%:%
       
  2222 %:%573=620%:%
       
  2223 %:%574=621%:%
       
  2224 %:%575=622%:%
       
  2225 %:%576=623%:%
       
  2226 %:%585=627%:%
       
  2227 %:%597=631%:%
       
  2228 %:%598=632%:%
       
  2229 %:%599=633%:%
       
  2230 %:%600=634%:%
       
  2231 %:%601=635%:%
       
  2232 %:%602=636%:%
       
  2233 %:%603=637%:%
       
  2234 %:%604=638%:%
       
  2235 %:%605=639%:%
       
  2236 %:%606=640%:%
       
  2237 %:%607=641%:%
       
  2238 %:%608=642%:%
       
  2239 %:%609=643%:%
       
  2240 %:%610=644%:%
       
  2241 %:%611=645%:%
       
  2242 %:%612=646%:%
       
  2243 %:%613=647%:%
       
  2244 %:%614=648%:%
       
  2245 %:%615=649%:%
       
  2246 %:%616=650%:%
       
  2247 %:%617=651%:%
       
  2248 %:%618=652%:%
       
  2249 %:%619=653%:%
       
  2250 %:%620=654%:%
       
  2251 %:%621=655%:%
       
  2252 %:%622=656%:%
       
  2253 %:%623=657%:%
       
  2254 %:%624=658%:%
       
  2255 %:%625=659%:%
       
  2256 %:%626=660%:%
       
  2257 %:%627=661%:%
       
  2258 %:%628=662%:%
       
  2259 %:%629=663%:%
       
  2260 %:%630=664%:%
       
  2261 %:%631=665%:%
       
  2262 %:%632=666%:%
       
  2263 %:%633=667%:%
       
  2264 %:%634=668%:%
       
  2265 %:%635=669%:%
       
  2266 %:%636=670%:%
       
  2267 %:%637=671%:%
       
  2268 %:%638=672%:%
       
  2269 %:%639=673%:%
       
  2270 %:%640=674%:%
       
  2271 %:%641=675%:%
       
  2272 %:%642=676%:%
       
  2273 %:%643=677%:%
       
  2274 %:%644=678%:%
       
  2275 %:%645=679%:%
       
  2276 %:%646=680%:%
       
  2277 %:%647=681%:%
       
  2278 %:%648=682%:%
       
  2279 %:%649=683%:%
       
  2280 %:%650=684%:%
       
  2281 %:%651=685%:%
       
  2282 %:%652=686%:%
       
  2283 %:%653=687%:%
       
  2284 %:%654=688%:%
       
  2285 %:%655=689%:%
       
  2286 %:%656=690%:%
       
  2287 %:%657=691%:%
       
  2288 %:%658=692%:%
       
  2289 %:%659=693%:%
       
  2290 %:%660=694%:%
       
  2291 %:%661=695%:%
       
  2292 %:%662=696%:%
       
  2293 %:%663=697%:%
       
  2294 %:%664=698%:%
       
  2295 %:%665=699%:%
       
  2296 %:%666=700%:%
       
  2297 %:%667=701%:%
       
  2298 %:%668=702%:%
       
  2299 %:%669=703%:%
       
  2300 %:%670=704%:%
       
  2301 %:%671=705%:%
       
  2302 %:%672=706%:%
       
  2303 %:%673=707%:%
       
  2304 %:%674=708%:%
       
  2305 %:%675=709%:%
       
  2306 %:%676=710%:%
       
  2307 %:%677=711%:%
       
  2308 %:%678=712%:%
       
  2309 %:%679=713%:%
       
  2310 %:%680=714%:%
       
  2311 %:%681=715%:%
       
  2312 %:%682=716%:%
       
  2313 %:%683=717%:%
       
  2314 %:%684=718%:%
       
  2315 %:%685=719%:%
       
  2316 %:%686=720%:%
       
  2317 %:%687=721%:%
       
  2318 %:%688=722%:%
       
  2319 %:%689=723%:%
       
  2320 %:%690=724%:%
       
  2321 %:%691=725%:%
       
  2322 %:%692=726%:%
       
  2323 %:%693=727%:%
       
  2324 %:%694=728%:%
       
  2325 %:%695=729%:%
       
  2326 %:%696=730%:%
       
  2327 %:%697=731%:%
       
  2328 %:%698=732%:%
       
  2329 %:%699=733%:%
       
  2330 %:%700=734%:%
       
  2331 %:%701=735%:%
       
  2332 %:%702=736%:%
       
  2333 %:%703=737%:%
       
  2334 %:%704=738%:%
       
  2335 %:%705=739%:%
       
  2336 %:%706=740%:%
       
  2337 %:%707=741%:%
       
  2338 %:%708=742%:%
       
  2339 %:%709=743%:%
       
  2340 %:%710=744%:%
       
  2341 %:%711=745%:%
       
  2342 %:%711=746%:%
       
  2343 %:%712=747%:%
       
  2344 %:%712=748%:%
       
  2345 %:%713=749%:%
       
  2346 %:%714=750%:%
       
  2347 %:%714=751%:%
       
  2348 %:%715=752%:%
       
  2349 %:%716=753%:%
       
  2350 %:%717=754%:%
       
  2351 %:%718=755%:%
       
  2352 %:%719=756%:%
       
  2353 %:%720=757%:%
       
  2354 %:%721=758%:%
       
  2355 %:%722=759%:%
       
  2356 %:%723=760%:%
       
  2357 %:%724=761%:%
       
  2358 %:%725=762%:%
       
  2359 %:%726=763%:%
       
  2360 %:%727=764%:%
       
  2361 %:%728=765%:%
       
  2362 %:%729=766%:%
       
  2363 %:%730=767%:%
       
  2364 %:%731=768%:%
       
  2365 %:%732=769%:%
       
  2366 %:%733=770%:%
       
  2367 %:%734=771%:%
       
  2368 %:%735=772%:%
       
  2369 %:%736=773%:%
       
  2370 %:%737=774%:%
       
  2371 %:%738=775%:%
       
  2372 %:%739=776%:%
       
  2373 %:%740=777%:%
       
  2374 %:%741=778%:%
       
  2375 %:%742=779%:%
       
  2376 %:%743=780%:%
       
  2377 %:%744=781%:%
       
  2378 %:%745=782%:%
       
  2379 %:%746=783%:%
       
  2380 %:%747=784%:%
       
  2381 %:%748=785%:%
       
  2382 %:%749=786%:%
       
  2383 %:%750=787%:%
       
  2384 %:%751=788%:%
       
  2385 %:%752=789%:%
       
  2386 %:%753=790%:%
       
  2387 %:%754=791%:%
       
  2388 %:%755=792%:%
       
  2389 %:%756=793%:%
       
  2390 %:%757=794%:%
       
  2391 %:%758=795%:%
       
  2392 %:%759=796%:%
       
  2393 %:%760=797%:%
       
  2394 %:%761=798%:%
       
  2395 %:%762=799%:%
       
  2396 %:%763=800%:%
       
  2397 %:%764=801%:%
       
  2398 %:%765=802%:%
       
  2399 %:%766=803%:%
       
  2400 %:%767=804%:%
       
  2401 %:%768=805%:%
       
  2402 %:%769=806%:%
       
  2403 %:%770=807%:%
       
  2404 %:%770=808%:%
       
  2405 %:%770=809%:%
       
  2406 %:%771=810%:%
       
  2407 %:%772=811%:%
       
  2408 %:%773=812%:%
       
  2409 %:%774=813%:%
       
  2410 %:%775=814%:%
       
  2411 %:%776=815%:%
       
  2412 %:%777=816%:%
       
  2413 %:%778=817%:%
       
  2414 %:%779=818%:%
       
  2415 %:%779=819%:%
       
  2416 %:%780=820%:%
       
  2417 %:%781=821%:%
       
  2418 %:%782=822%:%
       
  2419 %:%783=823%:%
       
  2420 %:%784=824%:%
       
  2421 %:%785=825%:%
       
  2422 %:%786=826%:%
       
  2423 %:%787=827%:%
       
  2424 %:%788=828%:%
       
  2425 %:%789=829%:%
       
  2426 %:%790=830%:%
       
  2427 %:%791=831%:%
       
  2428 %:%792=832%:%
       
  2429 %:%793=833%:%
       
  2430 %:%794=834%:%
       
  2431 %:%795=835%:%
       
  2432 %:%796=836%:%
       
  2433 %:%797=837%:%
       
  2434 %:%798=838%:%
       
  2435 %:%799=839%:%
       
  2436 %:%800=840%:%
       
  2437 %:%801=841%:%
       
  2438 %:%802=842%:%
       
  2439 %:%803=843%:%
       
  2440 %:%804=844%:%
       
  2441 %:%805=845%:%
       
  2442 %:%806=846%:%
       
  2443 %:%807=847%:%
       
  2444 %:%808=848%:%
       
  2445 %:%809=849%:%
       
  2446 %:%810=850%:%
       
  2447 %:%811=851%:%
       
  2448 %:%812=852%:%
       
  2449 %:%813=853%:%
       
  2450 %:%814=854%:%
       
  2451 %:%814=855%:%
       
  2452 %:%815=856%:%
       
  2453 %:%816=857%:%
       
  2454 %:%817=858%:%
       
  2455 %:%818=859%:%
       
  2456 %:%819=860%:%
       
  2457 %:%820=861%:%
       
  2458 %:%821=862%:%
       
  2459 %:%821=863%:%
       
  2460 %:%822=864%:%
       
  2461 %:%823=865%:%
       
  2462 %:%824=866%:%
       
  2463 %:%824=867%:%
       
  2464 %:%825=868%:%
       
  2465 %:%826=869%:%
       
  2466 %:%827=870%:%
       
  2467 %:%828=871%:%
       
  2468 %:%829=872%:%
       
  2469 %:%830=873%:%
       
  2470 %:%831=874%:%
       
  2471 %:%832=875%:%
       
  2472 %:%833=876%:%
       
  2473 %:%834=877%:%
       
  2474 %:%835=878%:%
       
  2475 %:%835=879%:%
       
  2476 %:%836=880%:%
       
  2477 %:%837=881%:%
       
  2478 %:%838=882%:%
       
  2479 %:%839=883%:%
       
  2480 %:%839=884%:%
       
  2481 %:%840=885%:%
       
  2482 %:%841=886%:%
       
  2483 %:%842=887%:%
       
  2484 %:%843=888%:%
       
  2485 %:%844=889%:%
       
  2486 %:%845=890%:%
       
  2487 %:%846=891%:%
       
  2488 %:%847=892%:%
       
  2489 %:%848=893%:%
       
  2490 %:%849=894%:%
       
  2491 %:%850=895%:%
       
  2492 %:%851=896%:%
       
  2493 %:%852=897%:%
       
  2494 %:%853=898%:%
       
  2495 %:%854=899%:%
       
  2496 %:%855=900%:%
       
  2497 %:%856=901%:%
       
  2498 %:%857=902%:%
       
  2499 %:%858=903%:%
       
  2500 %:%859=904%:%
       
  2501 %:%860=905%:%
       
  2502 %:%861=906%:%
       
  2503 %:%862=907%:%
       
  2504 %:%863=908%:%
       
  2505 %:%864=909%:%
       
  2506 %:%865=910%:%
       
  2507 %:%866=911%:%
       
  2508 %:%867=912%:%
       
  2509 %:%868=913%:%
       
  2510 %:%869=914%:%
       
  2511 %:%870=915%:%
       
  2512 %:%871=916%:%
       
  2513 %:%872=917%:%
       
  2514 %:%873=918%:%
       
  2515 %:%874=919%:%
       
  2516 %:%875=920%:%
       
  2517 %:%876=921%:%
       
  2518 %:%877=922%:%
       
  2519 %:%878=923%:%
       
  2520 %:%879=924%:%
       
  2521 %:%880=925%:%
       
  2522 %:%881=926%:%
       
  2523 %:%882=927%:%
       
  2524 %:%883=928%:%
       
  2525 %:%884=929%:%
       
  2526 %:%885=930%:%
       
  2527 %:%886=931%:%
       
  2528 %:%887=932%:%
       
  2529 %:%888=933%:%
       
  2530 %:%889=934%:%
       
  2531 %:%890=935%:%
       
  2532 %:%891=936%:%
       
  2533 %:%892=937%:%
       
  2534 %:%893=938%:%
       
  2535 %:%894=939%:%
       
  2536 %:%895=940%:%
       
  2537 %:%896=941%:%
       
  2538 %:%897=942%:%
       
  2539 %:%897=943%:%
       
  2540 %:%898=944%:%
       
  2541 %:%899=945%:%
       
  2542 %:%900=946%:%
       
  2543 %:%901=947%:%
       
  2544 %:%902=948%:%
       
  2545 %:%903=949%:%
       
  2546 %:%904=950%:%
       
  2547 %:%905=951%:%
       
  2548 %:%906=952%:%
       
  2549 %:%907=953%:%
       
  2550 %:%908=954%:%
       
  2551 %:%909=955%:%
       
  2552 %:%910=956%:%
       
  2553 %:%911=957%:%
       
  2554 %:%912=958%:%
       
  2555 %:%913=959%:%
       
  2556 %:%914=960%:%
       
  2557 %:%915=961%:%
       
  2558 %:%916=962%:%
       
  2559 %:%917=963%:%
       
  2560 %:%918=964%:%
       
  2561 %:%919=965%:%
       
  2562 %:%920=966%:%
       
  2563 %:%921=967%:%
       
  2564 %:%922=968%:%
       
  2565 %:%923=969%:%
       
  2566 %:%924=970%:%
       
  2567 %:%925=971%:%
       
  2568 %:%926=972%:%
       
  2569 %:%927=973%:%
       
  2570 %:%928=974%:%
       
  2571 %:%929=975%:%
       
  2572 %:%930=976%:%
       
  2573 %:%930=977%:%
       
  2574 %:%931=978%:%
       
  2575 %:%932=979%:%
       
  2576 %:%933=980%:%
       
  2577 %:%934=981%:%
       
  2578 %:%935=982%:%
       
  2579 %:%936=983%:%
       
  2580 %:%937=984%:%
       
  2581 %:%938=985%:%
       
  2582 %:%939=986%:%
       
  2583 %:%940=987%:%
       
  2584 %:%941=988%:%
       
  2585 %:%942=989%:%
       
  2586 %:%943=990%:%
       
  2587 %:%944=991%:%
       
  2588 %:%945=992%:%
       
  2589 %:%946=993%:%
       
  2590 %:%947=994%:%
       
  2591 %:%948=995%:%
       
  2592 %:%949=996%:%
       
  2593 %:%950=997%:%
       
  2594 %:%951=998%:%
       
  2595 %:%952=999%:%
       
  2596 %:%953=1000%:%
       
  2597 %:%954=1001%:%
       
  2598 %:%955=1002%:%
       
  2599 %:%956=1003%:%
       
  2600 %:%957=1004%:%
       
  2601 %:%958=1005%:%
       
  2602 %:%959=1006%:%
       
  2603 %:%960=1007%:%
       
  2604 %:%960=1008%:%
       
  2605 %:%961=1009%:%
       
  2606 %:%962=1010%:%
       
  2607 %:%963=1011%:%
       
  2608 %:%964=1012%:%
       
  2609 %:%965=1013%:%
       
  2610 %:%966=1014%:%
       
  2611 %:%967=1015%:%
       
  2612 %:%968=1016%:%
       
  2613 %:%968=1017%:%
       
  2614 %:%969=1018%:%
       
  2615 %:%970=1019%:%
       
  2616 %:%971=1020%:%
       
  2617 %:%972=1021%:%
       
  2618 %:%973=1022%:%
       
  2619 %:%974=1023%:%
       
  2620 %:%975=1024%:%
       
  2621 %:%976=1025%:%
       
  2622 %:%977=1026%:%
       
  2623 %:%978=1027%:%
       
  2624 %:%979=1028%:%
       
  2625 %:%980=1029%:%
       
  2626 %:%981=1030%:%
       
  2627 %:%982=1031%:%
       
  2628 %:%983=1032%:%
       
  2629 %:%984=1033%:%
       
  2630 %:%985=1034%:%
       
  2631 %:%986=1035%:%
       
  2632 %:%987=1036%:%
       
  2633 %:%988=1037%:%
       
  2634 %:%989=1038%:%
       
  2635 %:%990=1039%:%
       
  2636 %:%991=1040%:%
       
  2637 %:%992=1041%:%
       
  2638 %:%993=1042%:%
       
  2639 %:%994=1043%:%
       
  2640 %:%995=1044%:%
       
  2641 %:%996=1045%:%
       
  2642 %:%997=1046%:%
       
  2643 %:%998=1047%:%
       
  2644 %:%999=1048%:%
       
  2645 %:%1000=1049%:%
       
  2646 %:%1001=1050%:%
       
  2647 %:%1002=1051%:%
       
  2648 %:%1003=1052%:%
       
  2649 %:%1004=1053%:%
       
  2650 %:%1005=1054%:%
       
  2651 %:%1005=1055%:%
       
  2652 %:%1005=1056%:%
       
  2653 %:%1006=1057%:%
       
  2654 %:%1006=1058%:%
       
  2655 %:%1006=1059%:%
       
  2656 %:%1007=1060%:%
       
  2657 %:%1008=1061%:%
       
  2658 %:%1008=1062%:%
       
  2659 %:%1009=1063%:%
       
  2660 %:%1010=1064%:%
       
  2661 %:%1011=1065%:%
       
  2662 %:%1012=1066%:%
       
  2663 %:%1013=1067%:%
       
  2664 %:%1014=1068%:%
       
  2665 %:%1015=1069%:%
       
  2666 %:%1016=1070%:%
       
  2667 %:%1017=1071%:%
       
  2668 %:%1018=1072%:%
       
  2669 %:%1019=1073%:%
       
  2670 %:%1020=1074%:%
       
  2671 %:%1021=1075%:%
       
  2672 %:%1022=1076%:%
       
  2673 %:%1023=1077%:%
       
  2674 %:%1024=1078%:%
       
  2675 %:%1025=1079%:%
       
  2676 %:%1026=1080%:%
       
  2677 %:%1027=1081%:%
       
  2678 %:%1028=1082%:%
       
  2679 %:%1029=1083%:%
       
  2680 %:%1030=1084%:%
       
  2681 %:%1031=1085%:%
       
  2682 %:%1032=1086%:%
       
  2683 %:%1033=1087%:%
       
  2684 %:%1034=1088%:%
       
  2685 %:%1035=1089%:%
       
  2686 %:%1036=1090%:%
       
  2687 %:%1037=1091%:%
       
  2688 %:%1038=1092%:%
       
  2689 %:%1039=1093%:%
       
  2690 %:%1040=1094%:%
       
  2691 %:%1041=1095%:%
       
  2692 %:%1042=1096%:%
       
  2693 %:%1042=1097%:%
       
  2694 %:%1043=1098%:%
       
  2695 %:%1044=1099%:%
       
  2696 %:%1045=1100%:%
       
  2697 %:%1045=1101%:%
       
  2698 %:%1045=1102%:%
       
  2699 %:%1045=1103%:%
       
  2700 %:%1046=1104%:%
       
  2701 %:%1047=1105%:%
       
  2702 %:%1048=1106%:%
       
  2703 %:%1049=1107%:%
       
  2704 %:%1050=1108%:%
       
  2705 %:%1051=1109%:%
       
  2706 %:%1052=1110%:%
       
  2707 %:%1053=1111%:%
       
  2708 %:%1054=1112%:%
       
  2709 %:%1055=1113%:%
       
  2710 %:%1056=1114%:%
       
  2711 %:%1057=1115%:%
       
  2712 %:%1058=1116%:%
       
  2713 %:%1059=1117%:%
       
  2714 %:%1060=1118%:%
       
  2715 %:%1061=1119%:%
       
  2716 %:%1062=1120%:%
       
  2717 %:%1063=1121%:%
       
  2718 %:%1064=1122%:%
       
  2719 %:%1065=1123%:%
       
  2720 %:%1066=1124%:%
       
  2721 %:%1067=1125%:%
       
  2722 %:%1068=1126%:%
       
  2723 %:%1069=1127%:%
       
  2724 %:%1070=1128%:%
       
  2725 %:%1071=1129%:%
       
  2726 %:%1072=1130%:%
       
  2727 %:%1073=1131%:%
       
  2728 %:%1074=1132%:%
       
  2729 %:%1075=1133%:%
       
  2730 %:%1076=1134%:%
       
  2731 %:%1077=1135%:%
       
  2732 %:%1078=1136%:%
       
  2733 %:%1079=1137%:%
       
  2734 %:%1080=1138%:%
       
  2735 %:%1081=1139%:%
       
  2736 %:%1082=1140%:%
       
  2737 %:%1091=1144%:%
       
  2738 %:%1103=1148%:%
       
  2739 %:%1104=1149%:%
       
  2740 %:%1105=1150%:%
       
  2741 %:%1106=1151%:%
       
  2742 %:%1107=1152%:%
       
  2743 %:%1108=1153%:%
       
  2744 %:%1109=1154%:%
       
  2745 %:%1110=1155%:%
       
  2746 %:%1111=1156%:%
       
  2747 %:%1112=1157%:%
       
  2748 %:%1113=1158%:%
       
  2749 %:%1114=1159%:%
       
  2750 %:%1115=1160%:%
       
  2751 %:%1116=1161%:%
       
  2752 %:%1117=1162%:%
       
  2753 %:%1118=1163%:%
       
  2754 %:%1119=1164%:%
       
  2755 %:%1120=1165%:%
       
  2756 %:%1121=1166%:%
       
  2757 %:%1122=1167%:%
       
  2758 %:%1123=1168%:%
       
  2759 %:%1124=1169%:%
       
  2760 %:%1125=1170%:%
       
  2761 %:%1126=1171%:%
       
  2762 %:%1127=1172%:%
       
  2763 %:%1128=1173%:%
       
  2764 %:%1129=1174%:%
       
  2765 %:%1130=1175%:%
       
  2766 %:%1131=1176%:%
       
  2767 %:%1132=1177%:%
       
  2768 %:%1133=1178%:%
       
  2769 %:%1134=1179%:%
       
  2770 %:%1135=1180%:%
       
  2771 %:%1136=1181%:%
       
  2772 %:%1137=1182%:%
       
  2773 %:%1138=1183%:%
       
  2774 %:%1139=1184%:%
       
  2775 %:%1140=1185%:%
       
  2776 %:%1141=1186%:%
       
  2777 %:%1142=1187%:%
       
  2778 %:%1143=1188%:%
       
  2779 %:%1144=1189%:%
       
  2780 %:%1145=1190%:%
       
  2781 %:%1146=1191%:%
       
  2782 %:%1147=1192%:%
       
  2783 %:%1148=1193%:%
       
  2784 %:%1149=1194%:%
       
  2785 %:%1150=1195%:%
       
  2786 %:%1151=1196%:%
       
  2787 %:%1152=1197%:%
       
  2788 %:%1153=1198%:%
       
  2789 %:%1154=1199%:%
       
  2790 %:%1155=1200%:%
       
  2791 %:%1156=1201%:%
       
  2792 %:%1157=1202%:%
       
  2793 %:%1158=1203%:%
       
  2794 %:%1159=1204%:%
       
  2795 %:%1160=1205%:%
       
  2796 %:%1161=1206%:%
       
  2797 %:%1162=1207%:%
       
  2798 %:%1163=1208%:%
       
  2799 %:%1164=1209%:%
       
  2800 %:%1165=1210%:%
       
  2801 %:%1166=1211%:%
       
  2802 %:%1167=1212%:%
       
  2803 %:%1168=1213%:%
       
  2804 %:%1169=1214%:%
       
  2805 %:%1170=1215%:%
       
  2806 %:%1171=1216%:%
       
  2807 %:%1172=1217%:%
       
  2808 %:%1173=1218%:%
       
  2809 %:%1174=1219%:%
       
  2810 %:%1175=1220%:%
       
  2811 %:%1176=1221%:%
       
  2812 %:%1177=1222%:%
       
  2813 %:%1178=1223%:%
       
  2814 %:%1179=1224%:%
       
  2815 %:%1180=1225%:%
       
  2816 %:%1181=1226%:%
       
  2817 %:%1182=1227%:%
       
  2818 %:%1183=1228%:%
       
  2819 %:%1184=1229%:%
       
  2820 %:%1185=1230%:%
       
  2821 %:%1186=1231%:%
       
  2822 %:%1187=1232%:%
       
  2823 %:%1188=1233%:%
       
  2824 %:%1189=1234%:%
       
  2825 %:%1190=1235%:%
       
  2826 %:%1191=1236%:%
       
  2827 %:%1192=1237%:%
       
  2828 %:%1193=1238%:%
       
  2829 %:%1194=1239%:%
       
  2830 %:%1195=1240%:%
       
  2831 %:%1196=1241%:%
       
  2832 %:%1197=1242%:%
       
  2833 %:%1198=1243%:%
       
  2834 %:%1199=1244%:%
       
  2835 %:%1200=1245%:%
       
  2836 %:%1201=1246%:%
       
  2837 %:%1202=1247%:%
       
  2838 %:%1203=1248%:%
       
  2839 %:%1204=1249%:%
       
  2840 %:%1205=1250%:%
       
  2841 %:%1206=1251%:%
       
  2842 %:%1207=1252%:%
       
  2843 %:%1208=1253%:%
       
  2844 %:%1209=1254%:%
       
  2845 %:%1210=1255%:%
       
  2846 %:%1211=1256%:%
       
  2847 %:%1212=1257%:%
       
  2848 %:%1213=1258%:%
       
  2849 %:%1214=1259%:%
       
  2850 %:%1215=1260%:%
       
  2851 %:%1216=1261%:%
       
  2852 %:%1217=1262%:%
       
  2853 %:%1218=1263%:%
       
  2854 %:%1218=1264%:%
       
  2855 %:%1219=1265%:%
       
  2856 %:%1220=1266%:%
       
  2857 %:%1221=1267%:%
       
  2858 %:%1222=1268%:%
       
  2859 %:%1223=1269%:%
       
  2860 %:%1224=1270%:%
       
  2861 %:%1225=1271%:%
       
  2862 %:%1226=1272%:%
       
  2863 %:%1227=1273%:%
       
  2864 %:%1228=1274%:%
       
  2865 %:%1229=1275%:%
       
  2866 %:%1229=1276%:%
       
  2867 %:%1230=1277%:%
       
  2868 %:%1231=1278%:%
       
  2869 %:%1232=1279%:%
       
  2870 %:%1233=1280%:%
       
  2871 %:%1234=1281%:%
       
  2872 %:%1235=1282%:%
       
  2873 %:%1236=1283%:%
       
  2874 %:%1237=1284%:%
       
  2875 %:%1238=1285%:%
       
  2876 %:%1239=1286%:%
       
  2877 %:%1240=1287%:%
       
  2878 %:%1241=1288%:%
       
  2879 %:%1242=1289%:%
       
  2880 %:%1243=1290%:%
       
  2881 %:%1244=1291%:%
       
  2882 %:%1245=1292%:%
       
  2883 %:%1246=1293%:%
       
  2884 %:%1247=1294%:%
       
  2885 %:%1248=1295%:%
       
  2886 %:%1249=1296%:%
       
  2887 %:%1250=1297%:%
       
  2888 %:%1251=1298%:%
       
  2889 %:%1252=1299%:%
       
  2890 %:%1253=1300%:%
       
  2891 %:%1254=1301%:%
       
  2892 %:%1255=1302%:%
       
  2893 %:%1256=1303%:%
       
  2894 %:%1257=1304%:%
       
  2895 %:%1258=1305%:%
       
  2896 %:%1259=1306%:%
       
  2897 %:%1260=1307%:%
       
  2898 %:%1261=1308%:%
       
  2899 %:%1262=1309%:%
       
  2900 %:%1263=1310%:%
       
  2901 %:%1264=1311%:%
       
  2902 %:%1265=1312%:%
       
  2903 %:%1266=1313%:%
       
  2904 %:%1267=1314%:%
       
  2905 %:%1268=1315%:%
       
  2906 %:%1269=1316%:%
       
  2907 %:%1270=1317%:%
       
  2908 %:%1271=1318%:%
       
  2909 %:%1272=1319%:%
       
  2910 %:%1273=1320%:%
       
  2911 %:%1274=1321%:%
       
  2912 %:%1275=1322%:%
       
  2913 %:%1276=1323%:%
       
  2914 %:%1277=1324%:%
       
  2915 %:%1278=1325%:%
       
  2916 %:%1279=1326%:%
       
  2917 %:%1280=1327%:%
       
  2918 %:%1281=1328%:%
       
  2919 %:%1282=1329%:%
       
  2920 %:%1283=1330%:%
       
  2921 %:%1283=1331%:%
       
  2922 %:%1283=1332%:%
       
  2923 %:%1284=1333%:%
       
  2924 %:%1285=1334%:%
       
  2925 %:%1285=1335%:%
       
  2926 %:%1285=1336%:%
       
  2927 %:%1285=1337%:%
       
  2928 %:%1286=1338%:%
       
  2929 %:%1287=1339%:%
       
  2930 %:%1288=1340%:%
       
  2931 %:%1289=1341%:%
       
  2932 %:%1290=1342%:%
       
  2933 %:%1290=1343%:%
       
  2934 %:%1291=1344%:%
       
  2935 %:%1292=1345%:%
       
  2936 %:%1293=1346%:%
       
  2937 %:%1294=1347%:%
       
  2938 %:%1295=1348%:%
       
  2939 %:%1296=1349%:%
       
  2940 %:%1297=1350%:%
       
  2941 %:%1298=1351%:%
       
  2942 %:%1299=1352%:%
       
  2943 %:%1300=1353%:%
       
  2944 %:%1301=1354%:%
       
  2945 %:%1302=1355%:%
       
  2946 %:%1303=1356%:%
       
  2947 %:%1304=1357%:%
       
  2948 %:%1305=1358%:%
       
  2949 %:%1306=1359%:%
       
  2950 %:%1307=1360%:%
       
  2951 %:%1308=1361%:%
       
  2952 %:%1309=1362%:%
       
  2953 %:%1310=1363%:%
       
  2954 %:%1311=1364%:%
       
  2955 %:%1312=1365%:%
       
  2956 %:%1313=1366%:%
       
  2957 %:%1314=1367%:%
       
  2958 %:%1315=1368%:%
       
  2959 %:%1316=1369%:%
       
  2960 %:%1317=1370%:%
       
  2961 %:%1318=1371%:%
       
  2962 %:%1319=1372%:%
       
  2963 %:%1320=1373%:%
       
  2964 %:%1321=1374%:%
       
  2965 %:%1322=1375%:%
       
  2966 %:%1323=1376%:%
       
  2967 %:%1324=1377%:%
       
  2968 %:%1325=1378%:%
       
  2969 %:%1326=1379%:%
       
  2970 %:%1327=1380%:%
       
  2971 %:%1328=1381%:%
       
  2972 %:%1329=1382%:%
       
  2973 %:%1330=1383%:%
       
  2974 %:%1331=1384%:%
       
  2975 %:%1332=1385%:%
       
  2976 %:%1333=1386%:%
       
  2977 %:%1334=1387%:%
       
  2978 %:%1335=1388%:%
       
  2979 %:%1336=1389%:%
       
  2980 %:%1337=1390%:%
       
  2981 %:%1338=1391%:%
       
  2982 %:%1338=1392%:%
       
  2983 %:%1339=1393%:%
       
  2984 %:%1339=1394%:%
       
  2985 %:%1340=1395%:%
       
  2986 %:%1340=1396%:%
       
  2987 %:%1341=1397%:%
       
  2988 %:%1342=1398%:%
       
  2989 %:%1343=1399%:%
       
  2990 %:%1344=1400%:%
       
  2991 %:%1345=1401%:%
       
  2992 %:%1346=1402%:%
       
  2993 %:%1347=1403%:%
       
  2994 %:%1347=1404%:%
       
  2995 %:%1348=1405%:%
       
  2996 %:%1348=1406%:%
       
  2997 %:%1349=1407%:%
       
  2998 %:%1349=1408%:%
       
  2999 %:%1350=1409%:%
       
  3000 %:%1351=1410%:%
       
  3001 %:%1352=1411%:%
       
  3002 %:%1353=1412%:%
       
  3003 %:%1354=1413%:%
       
  3004 %:%1355=1414%:%
       
  3005 %:%1356=1415%:%
       
  3006 %:%1357=1416%:%
       
  3007 %:%1358=1417%:%
       
  3008 %:%1359=1418%:%
       
  3009 %:%1360=1419%:%
       
  3010 %:%1361=1420%:%
       
  3011 %:%1362=1421%:%
       
  3012 %:%1363=1422%:%
       
  3013 %:%1364=1423%:%
       
  3014 %:%1365=1424%:%
       
  3015 %:%1366=1425%:%
       
  3016 %:%1367=1426%:%
       
  3017 %:%1368=1427%:%
       
  3018 %:%1369=1428%:%
       
  3019 %:%1370=1429%:%
       
  3020 %:%1371=1430%:%
       
  3021 %:%1372=1431%:%
       
  3022 %:%1373=1432%:%
       
  3023 %:%1374=1433%:%
       
  3024 %:%1375=1434%:%
       
  3025 %:%1376=1435%:%
       
  3026 %:%1377=1436%:%
       
  3027 %:%1378=1437%:%
       
  3028 %:%1379=1438%:%
       
  3029 %:%1380=1439%:%
       
  3030 %:%1380=1440%:%
       
  3031 %:%1381=1441%:%
       
  3032 %:%1382=1442%:%
       
  3033 %:%1383=1443%:%
       
  3034 %:%1384=1444%:%
       
  3035 %:%1385=1445%:%
       
  3036 %:%1386=1446%:%
       
  3037 %:%1387=1447%:%
       
  3038 %:%1387=1448%:%
       
  3039 %:%1388=1449%:%
       
  3040 %:%1389=1450%:%
       
  3041 %:%1390=1451%:%
       
  3042 %:%1390=1452%:%
       
  3043 %:%1391=1453%:%
       
  3044 %:%1392=1454%:%
       
  3045 %:%1393=1455%:%
       
  3046 %:%1393=1456%:%
       
  3047 %:%1394=1457%:%
       
  3048 %:%1394=1458%:%
       
  3049 %:%1395=1459%:%
       
  3050 %:%1395=1460%:%
       
  3051 %:%1396=1461%:%
       
  3052 %:%1397=1462%:%
       
  3053 %:%1398=1463%:%
       
  3054 %:%1398=1464%:%
       
  3055 %:%1399=1465%:%
       
  3056 %:%1399=1466%:%
       
  3057 %:%1400=1467%:%
       
  3058 %:%1400=1468%:%
       
  3059 %:%1400=1469%:%
       
  3060 %:%1400=1470%:%
       
  3061 %:%1401=1471%:%
       
  3062 %:%1401=1472%:%
       
  3063 %:%1402=1473%:%
       
  3064 %:%1403=1474%:%
       
  3065 %:%1403=1476%:%
       
  3066 %:%1403=1477%:%
       
  3067 %:%1403=1478%:%
       
  3068 %:%1403=1479%:%
       
  3069 %:%1403=1480%:%
       
  3070 %:%1404=1481%:%
       
  3071 %:%1404=1482%:%
       
  3072 %:%1405=1483%:%
       
  3073 %:%1405=1484%:%
       
  3074 %:%1406=1485%:%
       
  3075 %:%1406=1486%:%
       
  3076 %:%1407=1487%:%
       
  3077 %:%1408=1488%:%
       
  3078 %:%1409=1489%:%
       
  3079 %:%1410=1490%:%
       
  3080 %:%1410=1491%:%
       
  3081 %:%1411=1492%:%
       
  3082 %:%1411=1493%:%
       
  3083 %:%1412=1494%:%
       
  3084 %:%1413=1495%:%
       
  3085 %:%1413=1496%:%
       
  3086 %:%1414=1497%:%
       
  3087 %:%1415=1498%:%
       
  3088 %:%1416=1499%:%
       
  3089 %:%1417=1500%:%
       
  3090 %:%1418=1501%:%
       
  3091 %:%1419=1502%:%
       
  3092 %:%1420=1503%:%
       
  3093 %:%1421=1504%:%
       
  3094 %:%1422=1505%:%
       
  3095 %:%1423=1506%:%
       
  3096 %:%1424=1507%:%
       
  3097 %:%1425=1508%:%
       
  3098 %:%1426=1509%:%
       
  3099 %:%1427=1510%:%
       
  3100 %:%1428=1511%:%
       
  3101 %:%1429=1512%:%
       
  3102 %:%1430=1513%:%
       
  3103 %:%1431=1514%:%
       
  3104 %:%1432=1515%:%
       
  3105 %:%1433=1516%:%
       
  3106 %:%1434=1517%:%
       
  3107 %:%1435=1518%:%
       
  3108 %:%1436=1519%:%
       
  3109 %:%1437=1520%:%
       
  3110 %:%1438=1521%:%
       
  3111 %:%1439=1522%:%
       
  3112 %:%1440=1523%:%
       
  3113 %:%1441=1524%:%
       
  3114 %:%1442=1525%:%
       
  3115 %:%1443=1526%:%
       
  3116 %:%1444=1527%:%
       
  3117 %:%1445=1528%:%
       
  3118 %:%1446=1529%:%
       
  3119 %:%1447=1530%:%
       
  3120 %:%1448=1531%:%
       
  3121 %:%1449=1532%:%
       
  3122 %:%1450=1533%:%
       
  3123 %:%1451=1534%:%
       
  3124 %:%1452=1535%:%
       
  3125 %:%1453=1536%:%
       
  3126 %:%1454=1537%:%
       
  3127 %:%1455=1538%:%
       
  3128 %:%1456=1539%:%
       
  3129 %:%1457=1540%:%
       
  3130 %:%1458=1541%:%
       
  3131 %:%1459=1542%:%
       
  3132 %:%1460=1543%:%
       
  3133 %:%1461=1544%:%
       
  3134 %:%1462=1545%:%
       
  3135 %:%1463=1546%:%
       
  3136 %:%1464=1547%:%
       
  3137 %:%1473=1551%:%
       
  3138 %:%1485=1558%:%
       
  3139 %:%1486=1559%:%
       
  3140 %:%1487=1560%:%
       
  3141 %:%1488=1561%:%
       
  3142 %:%1489=1562%:%
       
  3143 %:%1490=1563%:%
       
  3144 %:%1491=1564%:%
       
  3145 %:%1500=1569%:%
       
  3146 %:%1512=1573%:%
       
  3147 %:%1513=1574%:%
       
  3148 %:%1514=1575%:%
       
  3149 %:%1515=1576%:%
       
  3150 %:%1516=1577%:%
       
  3151 %:%1517=1578%:%
       
  3152 %:%1518=1579%:%
       
  3153 %:%1519=1580%:%
       
  3154 %:%1520=1581%:%
       
  3155 %:%1521=1582%:%
       
  3156 %:%1522=1583%:%
       
  3157 %:%1523=1584%:%
       
  3158 %:%1524=1585%:%
       
  3159 %:%1525=1586%:%
       
  3160 %:%1526=1587%:%
       
  3161 %:%1527=1588%:%
       
  3162 %:%1528=1589%:%
       
  3163 %:%1529=1590%:%
       
  3164 %:%1530=1591%:%
       
  3165 %:%1531=1592%:%
       
  3166 %:%1532=1593%:%
       
  3167 %:%1533=1594%:%
       
  3168 %:%1534=1595%:%
       
  3169 %:%1535=1596%:%
       
  3170 %:%1536=1597%:%
       
  3171 %:%1537=1598%:%
       
  3172 %:%1538=1599%:%
       
  3173 %:%1539=1600%:%
       
  3174 %:%1540=1601%:%
       
  3175 %:%1541=1602%:%
       
  3176 %:%1542=1603%:%
       
  3177 %:%1543=1604%:%
       
  3178 %:%1544=1605%:%
       
  3179 %:%1545=1606%:%
       
  3180 %:%1546=1607%:%
       
  3181 %:%1547=1608%:%
       
  3182 %:%1548=1609%:%
       
  3183 %:%1549=1610%:%
       
  3184 %:%1550=1611%:%
       
  3185 %:%1551=1612%:%
       
  3186 %:%1552=1613%:%
       
  3187 %:%1553=1614%:%
       
  3188 %:%1554=1615%:%
       
  3189 %:%1555=1616%:%
       
  3190 %:%1556=1617%:%
       
  3191 %:%1557=1618%:%
       
  3192 %:%1558=1619%:%
       
  3193 %:%1559=1620%:%
       
  3194 %:%1560=1621%:%
       
  3195 %:%1561=1622%:%
       
  3196 %:%1562=1623%:%
       
  3197 %:%1563=1624%:%
       
  3198 %:%1564=1625%:%
       
  3199 %:%1565=1626%:%
       
  3200 %:%1566=1627%:%
       
  3201 %:%1567=1628%:%
       
  3202 %:%1568=1629%:%
       
  3203 %:%1569=1630%:%
       
  3204 %:%1570=1631%:%
       
  3205 %:%1571=1632%:%
       
  3206 %:%1572=1633%:%
       
  3207 %:%1573=1634%:%
       
  3208 %:%1574=1635%:%
       
  3209 %:%1575=1636%:%
       
  3210 %:%1576=1637%:%
       
  3211 %:%1577=1638%:%
       
  3212 %:%1578=1639%:%
       
  3213 %:%1579=1640%:%
       
  3214 %:%1580=1641%:%
       
  3215 %:%1581=1642%:%
       
  3216 %:%1582=1643%:%
       
  3217 %:%1583=1644%:%
       
  3218 %:%1584=1645%:%
       
  3219 %:%1585=1646%:%
       
  3220 %:%1586=1647%:%
       
  3221 %:%1587=1648%:%
       
  3222 %:%1588=1649%:%
       
  3223 %:%1589=1650%:%
       
  3224 %:%1590=1651%:%
       
  3225 %:%1591=1652%:%
       
  3226 %:%1592=1653%:%
       
  3227 %:%1593=1654%:%
       
  3228 %:%1594=1655%:%
       
  3229 %:%1595=1656%:%
       
  3230 %:%1596=1657%:%
       
  3231 %:%1597=1658%:%
       
  3232 %:%1598=1659%:%
       
  3233 %:%1599=1660%:%
       
  3234 %:%1600=1661%:%
       
  3235 %:%1601=1662%:%
       
  3236 %:%1601=1778%:%
       
  3237 %:%1602=1779%:%
       
  3238 %:%1603=1780%:%
       
  3239 %:%1604=1781%:%
       
  3240 %:%1605=1782%:%
       
  3241 %:%1605=1943%:%
       
  3242 %:%1606=1944%:%
       
  3243 %:%1607=1945%:%
       
  3244 %:%1608=1946%:%
       
  3245 %:%1609=1947%:%
       
  3246 %:%1610=1948%:%
       
  3247 %:%1611=1949%:%
       
  3248 %:%1612=1950%:%
       
  3249 %:%1613=1951%:%
       
  3250 %:%1614=1952%:%
       
  3251 %:%1615=1953%:%
       
  3252 %:%1616=1954%:%
       
  3253 %:%1617=1955%:%
       
  3254 %:%1618=1956%:%
       
  3255 %:%1619=1957%:%
       
  3256 %:%1620=1958%:%
       
  3257 %:%1621=1959%:%
       
  3258 %:%1622=1960%:%
       
  3259 %:%1623=1961%:%
       
  3260 %:%1624=1962%:%
       
  3261 %:%1624=1963%:%
       
  3262 %:%1625=1964%:%
       
  3263 %:%1625=1965%:%
       
  3264 %:%1625=1966%:%
       
  3265 %:%1626=1967%:%
       
  3266 %:%1626=1968%:%
       
  3267 %:%1627=1969%:%
       
  3268 %:%1628=1970%:%
       
  3269 %:%1629=1971%:%
       
  3270 %:%1630=1972%:%
       
  3271 %:%1631=1973%:%
       
  3272 %:%1632=1974%:%
       
  3273 %:%1633=1975%:%
       
  3274 %:%1634=1976%:%
       
  3275 %:%1635=1977%:%
       
  3276 %:%1636=1978%:%
       
  3277 %:%1637=1979%:%
       
  3278 %:%1638=1980%:%
       
  3279 %:%1639=1981%:%
       
  3280 %:%1640=1982%:%
       
  3281 %:%1641=1983%:%
       
  3282 %:%1642=1984%:%
       
  3283 %:%1643=1985%:%
       
  3284 %:%1643=1986%:%
       
  3285 %:%1644=1987%:%
       
  3286 %:%1645=1988%:%
       
  3287 %:%1646=1989%:%
       
  3288 %:%1646=1990%:%
       
  3289 %:%1646=1991%:%
       
  3290 %:%1647=1992%:%
       
  3291 %:%1648=1993%:%
       
  3292 %:%1649=1994%:%
       
  3293 %:%1649=1995%:%
       
  3294 %:%1650=1996%:%
       
  3295 %:%1650=1997%:%
       
  3296 %:%1651=1998%:%
       
  3297 %:%1652=1999%:%
       
  3298 %:%1653=2000%:%
       
  3299 %:%1654=2001%:%
       
  3300 %:%1655=2002%:%
       
  3301 %:%1656=2003%:%
       
  3302 %:%1657=2004%:%
       
  3303 %:%1658=2005%:%
       
  3304 %:%1659=2006%:%
       
  3305 %:%1660=2007%:%
       
  3306 %:%1661=2008%:%
       
  3307 %:%1662=2009%:%
       
  3308 %:%1663=2010%:%
       
  3309 %:%1664=2011%:%
       
  3310 %:%1665=2012%:%
       
  3311 %:%1666=2013%:%
       
  3312 %:%1667=2014%:%
       
  3313 %:%1676=2019%:%
       
  3314 %:%1688=2023%:%
       
  3315 %:%1689=2024%:%
       
  3316 %:%1690=2025%:%
       
  3317 %:%1691=2026%:%
       
  3318 %:%1692=2027%:%
       
  3319 %:%1693=2028%:%
       
  3320 %:%1694=2029%:%
       
  3321 %:%1695=2030%:%
       
  3322 %:%1696=2031%:%
       
  3323 %:%1697=2032%:%
       
  3324 %:%1698=2033%:%
       
  3325 %:%1699=2034%:%
       
  3326 %:%1700=2035%:%
       
  3327 %:%1701=2036%:%
       
  3328 %:%1702=2037%:%
       
  3329 %:%1703=2038%:%
       
  3330 %:%1704=2039%:%
       
  3331 %:%1705=2040%:%
       
  3332 %:%1706=2041%:%
       
  3333 %:%1707=2042%:%
       
  3334 %:%1708=2043%:%
       
  3335 %:%1709=2044%:%
       
  3336 %:%1710=2045%:%
       
  3337 %:%1711=2046%:%
       
  3338 %:%1712=2047%:%
       
  3339 %:%1713=2048%:%
       
  3340 %:%1714=2049%:%
       
  3341 %:%1715=2050%:%
       
  3342 %:%1716=2051%:%
       
  3343 %:%1717=2052%:%
       
  3344 %:%1718=2053%:%
       
  3345 %:%1719=2054%:%
       
  3346 %:%1720=2055%:%
       
  3347 %:%1721=2056%:%
       
  3348 %:%1722=2057%:%
       
  3349 %:%1723=2058%:%
       
  3350 %:%1724=2059%:%
       
  3351 %:%1725=2060%:%
       
  3352 %:%1726=2061%:%
       
  3353 %:%1727=2062%:%
       
  3354 %:%1728=2063%:%
       
  3355 %:%1729=2064%:%
       
  3356 %:%1730=2065%:%
       
  3357 %:%1731=2066%:%
       
  3358 %:%1732=2067%:%
       
  3359 %:%1733=2068%:%
       
  3360 %:%1734=2069%:%
       
  3361 %:%1735=2070%:%
       
  3362 %:%1736=2071%:%
       
  3363 %:%1737=2072%:%
       
  3364 %:%1738=2073%:%
       
  3365 %:%1739=2074%:%
       
  3366 %:%1740=2075%:%
       
  3367 %:%1753=2081%:%
       
  3368 %:%1756=2082%:%
       
  3369 %:%1757=2083%:%