thys/BitCoded.thy
changeset 341 abf178a5db58
parent 340 6c71db65bdec
child 343 f139bdc0dcd5
equal deleted inserted replaced
340:6c71db65bdec 341:abf178a5db58
     1 
     1 
     2 theory BitCoded
     2 theory BitCodedCT
     3   imports "Lexer" 
     3   imports "Lexer" 
     4 begin
     4 begin
     5 
     5 
     6 section \<open>Bit-Encodings\<close>
     6 section \<open>Bit-Encodings\<close>
     7 
     7 
  2754 lemma patience_good5:
  2754 lemma patience_good5:
  2755   assumes "bsimp r = AALTs x y"
  2755   assumes "bsimp r = AALTs x y"
  2756   shows " \<exists> a aa list. y = a#aa#list"
  2756   shows " \<exists> a aa list. y = a#aa#list"
  2757   by (metis Nil_is_map_conv arexp.simps(13) assms bsimp_AALTs.elims flts1 good.simps(5) good1 k0a)
  2757   by (metis Nil_is_map_conv arexp.simps(13) assms bsimp_AALTs.elims flts1 good.simps(5) good1 k0a)
  2758 
  2758 
  2759 
  2759 (*SAD*)
  2760 (*this does not hold actually
  2760 (*this does not hold actually
  2761 lemma bsimp_equiv0:
  2761 lemma bsimp_equiv0:
  2762   shows "bsimp(bsimp r) = bsimp(bsimp (AALTs []  [r]))"
  2762   shows "bsimp(bsimp r) = bsimp(bsimp (AALTs []  [r]))"
  2763   apply(simp)
  2763   apply(simp)
  2764   apply(case_tac "bsimp r")
  2764   apply(case_tac "bsimp r")
  2879   done
  2879   done
  2880 lemma map_application2:
  2880 lemma map_application2:
  2881   shows"map f [a,b] = [f a, f b]"
  2881   shows"map f [a,b] = [f a, f b]"
  2882   apply simp
  2882   apply simp
  2883   done
  2883   done
  2884 
  2884 (*SAD*)
  2885 (* bsimp (bder c (bsimp_AALTs x51 (flts [bsimp a1, bsimp a2]))) =
  2885 (* bsimp (bder c (bsimp_AALTs x51 (flts [bsimp a1, bsimp a2]))) =
  2886        bsimp (AALT x51 (bder c (bsimp a1)) (bder c (bsimp a2)))*)
  2886        bsimp (AALT x51 (bder c (bsimp a1)) (bder c (bsimp a2)))*)
  2887 (*This equality does not hold*)
  2887 (*This equality does not hold*)
  2888 lemma medium01:
  2888 lemma medium01:
  2889   assumes " (bder c a1 = AZERO) "
  2889   assumes " (bder c a1 = AZERO) "