thys/LexerExt.thy
changeset 220 a8b32da484df
parent 216 ce3d07860a4a
child 221 c21938d0b396
equal deleted inserted replaced
219:e45d80bcb9ba 220:a8b32da484df
       
     1    
       
     2 theory LexerExt
       
     3   imports Main
       
     4 begin
       
     5 
       
     6 
       
     7 section {* Sequential Composition of Languages *}
       
     8 
       
     9 definition
       
    10   Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
       
    11 where 
       
    12   "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
       
    13 
       
    14 text {* Two Simple Properties about Sequential Composition *}
       
    15 
       
    16 lemma seq_empty [simp]:
       
    17   shows "A ;; {[]} = A"
       
    18   and   "{[]} ;; A = A"
       
    19 by (simp_all add: Sequ_def)
       
    20 
       
    21 lemma seq_null [simp]:
       
    22   shows "A ;; {} = {}"
       
    23   and   "{} ;; A = {}"
       
    24 by (simp_all add: Sequ_def)
       
    25 
       
    26 lemma seq_assoc: 
       
    27   shows "A ;; (B ;; C) = (A ;; B) ;; C"
       
    28 apply(auto simp add: Sequ_def)
       
    29 apply(metis append_assoc)
       
    30 apply(metis)
       
    31 done
       
    32 
       
    33 section {* Semantic Derivative (Left Quotient) of Languages *}
       
    34 
       
    35 definition
       
    36   Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
       
    37 where
       
    38   "Der c A \<equiv> {s. c # s \<in> A}"
       
    39 
       
    40 definition
       
    41   Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
       
    42 where
       
    43   "Ders s A \<equiv> {s'. s @ s' \<in> A}"
       
    44 
       
    45 lemma Der_null [simp]:
       
    46   shows "Der c {} = {}"
       
    47 unfolding Der_def
       
    48 by auto
       
    49 
       
    50 lemma Der_empty [simp]:
       
    51   shows "Der c {[]} = {}"
       
    52 unfolding Der_def
       
    53 by auto
       
    54 
       
    55 lemma Der_char [simp]:
       
    56   shows "Der c {[d]} = (if c = d then {[]} else {})"
       
    57 unfolding Der_def
       
    58 by auto
       
    59 
       
    60 lemma Der_union [simp]:
       
    61   shows "Der c (A \<union> B) = Der c A \<union> Der c B"
       
    62 unfolding Der_def
       
    63 by auto
       
    64 
       
    65 lemma Der_Sequ [simp]:
       
    66   shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
       
    67 unfolding Der_def Sequ_def
       
    68 by (auto simp add: Cons_eq_append_conv)
       
    69 
       
    70 lemma Der_UNION: 
       
    71   shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
       
    72 by (auto simp add: Der_def)
       
    73 
       
    74 
       
    75 section {* Power operation for Sets *}
       
    76 
       
    77 fun 
       
    78   Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
       
    79 where
       
    80    "A \<up> 0 = {[]}"
       
    81 |  "A \<up> (Suc n) = A ;; (A \<up> n)"
       
    82 
       
    83 lemma Pow_empty [simp]:
       
    84   shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
       
    85 by(induct n) (auto simp add: Sequ_def)
       
    86 
       
    87 lemma Pow_plus:
       
    88   "A \<up> (n + m) = A \<up> n ;; A \<up> m"
       
    89 by (induct n) (simp_all add: seq_assoc)
       
    90 
       
    91 
       
    92 section {* Kleene Star for Languages *}
       
    93 
       
    94 inductive_set
       
    95   Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
       
    96   for A :: "string set"
       
    97 where
       
    98   start[intro]: "[] \<in> A\<star>"
       
    99 | step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
       
   100 
       
   101 lemma star_cases:
       
   102   shows "A\<star> = {[]} \<union> A ;; A\<star>"
       
   103 unfolding Sequ_def
       
   104 by (auto) (metis Star.simps)
       
   105 
       
   106 lemma star_decomp: 
       
   107   assumes a: "c # x \<in> A\<star>" 
       
   108   shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>"
       
   109 using a
       
   110 by (induct x\<equiv>"c # x" rule: Star.induct) 
       
   111    (auto simp add: append_eq_Cons_conv)
       
   112 
       
   113 lemma Der_star [simp]:
       
   114   shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
       
   115 proof -    
       
   116   have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
       
   117     by (simp only: star_cases[symmetric])
       
   118   also have "... = Der c (A ;; A\<star>)"
       
   119     by (simp only: Der_union Der_empty) (simp)
       
   120   also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
       
   121     by simp
       
   122   also have "... =  (Der c A) ;; A\<star>"
       
   123     unfolding Sequ_def Der_def
       
   124     by (auto dest: star_decomp)
       
   125   finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
       
   126 qed
       
   127 
       
   128 lemma Star_in_Pow:
       
   129   assumes a: "s \<in> A\<star>"
       
   130   shows "\<exists>n. s \<in> A \<up> n"
       
   131 using a
       
   132 apply(induct)
       
   133 apply(auto)
       
   134 apply(rule_tac x="Suc n" in exI)
       
   135 apply(auto simp add: Sequ_def)
       
   136 done
       
   137 
       
   138 lemma Pow_in_Star:
       
   139   assumes a: "s \<in> A \<up> n"
       
   140   shows "s \<in> A\<star>"
       
   141 using a
       
   142 by (induct n arbitrary: s) (auto simp add: Sequ_def)
       
   143 
       
   144 
       
   145 lemma Star_def2: 
       
   146   shows "A\<star> = (\<Union>n. A \<up> n)"
       
   147 using Star_in_Pow Pow_in_Star
       
   148 by (auto)
       
   149 
       
   150 
       
   151 section {* Regular Expressions *}
       
   152 
       
   153 datatype rexp =
       
   154   ZERO
       
   155 | ONE
       
   156 | CHAR char
       
   157 | SEQ rexp rexp
       
   158 | ALT rexp rexp
       
   159 | STAR rexp
       
   160 | UPNTIMES rexp nat
       
   161 
       
   162 section {* Semantics of Regular Expressions *}
       
   163  
       
   164 fun
       
   165   L :: "rexp \<Rightarrow> string set"
       
   166 where
       
   167   "L (ZERO) = {}"
       
   168 | "L (ONE) = {[]}"
       
   169 | "L (CHAR c) = {[c]}"
       
   170 | "L (SEQ r1 r2) = (L r1) ;; (L r2)"
       
   171 | "L (ALT r1 r2) = (L r1) \<union> (L r2)"
       
   172 | "L (STAR r) = (L r)\<star>"
       
   173 | "L (UPNTIMES r n) = (\<Union>i\<in> {..n} . (L r) \<up> i)"
       
   174 
       
   175 
       
   176 section {* Nullable, Derivatives *}
       
   177 
       
   178 fun
       
   179  nullable :: "rexp \<Rightarrow> bool"
       
   180 where
       
   181   "nullable (ZERO) = False"
       
   182 | "nullable (ONE) = True"
       
   183 | "nullable (CHAR c) = False"
       
   184 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
       
   185 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
       
   186 | "nullable (STAR r) = True"
       
   187 | "nullable (UPNTIMES r n) = True"
       
   188 
       
   189 fun
       
   190  der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
       
   191 where
       
   192   "der c (ZERO) = ZERO"
       
   193 | "der c (ONE) = ZERO"
       
   194 | "der c (CHAR d) = (if c = d then ONE else ZERO)"
       
   195 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
       
   196 | "der c (SEQ r1 r2) = 
       
   197      (if nullable r1
       
   198       then ALT (SEQ (der c r1) r2) (der c r2)
       
   199       else SEQ (der c r1) r2)"
       
   200 | "der c (STAR r) = SEQ (der c r) (STAR r)"
       
   201 | "der c (UPNTIMES r 0) = ZERO"
       
   202 | "der c (UPNTIMES r (Suc n)) = SEQ (der c r) (UPNTIMES r n)"
       
   203 
       
   204 
       
   205 fun 
       
   206  ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
       
   207 where
       
   208   "ders [] r = r"
       
   209 | "ders (c # s) r = ders s (der c r)"
       
   210 
       
   211 
       
   212 lemma nullable_correctness:
       
   213   shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
       
   214 by (induct r) (auto simp add: Sequ_def) 
       
   215 
       
   216 lemma Suc_reduce_Union:
       
   217   "(\<Union>x\<in>{Suc n..Suc m}. B x) = (\<Union>x\<in>{n..m}. B (Suc x))"
       
   218 by (metis UN_extend_simps(10) image_Suc_atLeastAtMost)
       
   219 
       
   220 lemma Suc_reduce_Union2:
       
   221   "(\<Union>x\<in>{Suc n..}. B x) = (\<Union>x\<in>{n..}. B (Suc x))"
       
   222 apply(auto)
       
   223 apply(rule_tac x="xa - 1" in bexI)
       
   224 apply(simp)
       
   225 apply(simp)
       
   226 done
       
   227 
       
   228 lemma Seq_UNION: 
       
   229   shows "(\<Union>x\<in>A. B ;; C x) = B ;; (\<Union>x\<in>A. C x)"
       
   230 by (auto simp add: Sequ_def)
       
   231 
       
   232 lemma Seq_Union:
       
   233   shows "A ;; (\<Union>x\<in>B. C x) = (\<Union>x\<in>B. A ;; C x)"
       
   234 by (auto simp add: Sequ_def)
       
   235 
       
   236 lemma Der_Pow [simp]:
       
   237   shows "Der c (A \<up> (Suc n)) = 
       
   238      (Der c A) ;; (A \<up> n) \<union> (if [] \<in> A then Der c (A \<up> n) else {})"
       
   239 unfolding Der_def Sequ_def 
       
   240 by(auto simp add: Cons_eq_append_conv Sequ_def)
       
   241 
       
   242 lemma Suc_Union:
       
   243   "(\<Union>x\<le>Suc m. B x) = (B (Suc m) \<union> (\<Union>x\<le>m. B x))"
       
   244 by (metis UN_insert atMost_Suc)
       
   245 
       
   246 
       
   247 lemma test:
       
   248   shows "(\<Union>x\<le>Suc n. Der c (L r \<up> x)) = (\<Union>x\<le>n. Der c (L r) ;; L r \<up> x)"
       
   249 apply(induct n)
       
   250 apply(simp)
       
   251 apply(auto)[1]
       
   252 apply(case_tac xa)
       
   253 apply(simp)
       
   254 apply(simp)
       
   255 apply(auto)[1]
       
   256 apply(case_tac "[] \<in> L r")
       
   257 apply(simp)
       
   258 apply(simp)
       
   259 by (smt Der_Pow Suc_Union inf_sup_aci(5) inf_sup_aci(7) sup_idem)
       
   260 
       
   261 
       
   262 lemma der_correctness:
       
   263   shows "L (der c r) = Der c (L r)"
       
   264 apply(induct c r rule: der.induct) 
       
   265 apply(simp_all add: nullable_correctness)[7]
       
   266 apply(simp only: der.simps L.simps)
       
   267 apply(simp only: Der_UNION)
       
   268 apply(simp only: Seq_UNION[symmetric])
       
   269 apply(simp add: test)
       
   270 done
       
   271 
       
   272 
       
   273 lemma ders_correctness:
       
   274   shows "L (ders s r) = Ders s (L r)"
       
   275 apply(induct s arbitrary: r)
       
   276 apply(simp_all add: Ders_def der_correctness Der_def)
       
   277 done
       
   278 
       
   279 lemma ders_ZERO:
       
   280   shows "ders s (ZERO) = ZERO"
       
   281 apply(induct s)
       
   282 apply(simp_all)
       
   283 done
       
   284 
       
   285 lemma ders_ONE:
       
   286   shows "ders s (ONE) = (if s = [] then ONE else ZERO)"
       
   287 apply(induct s)
       
   288 apply(simp_all add: ders_ZERO)
       
   289 done
       
   290 
       
   291 lemma ders_CHAR:
       
   292   shows "ders s (CHAR c) = (if s = [c] then ONE else 
       
   293                            (if s = [] then (CHAR c) else ZERO))"
       
   294 apply(induct s)
       
   295 apply(simp_all add: ders_ZERO ders_ONE)
       
   296 done
       
   297 
       
   298 lemma  ders_ALT:
       
   299   shows "ders s (ALT r1 r2) = ALT (ders s r1) (ders s r2)"
       
   300 apply(induct s arbitrary: r1 r2)
       
   301 apply(simp_all)
       
   302 done
       
   303 
       
   304 section {* Values *}
       
   305 
       
   306 datatype val = 
       
   307   Void
       
   308 | Char char
       
   309 | Seq val val
       
   310 | Right val
       
   311 | Left val
       
   312 | Stars "val list"
       
   313 
       
   314 
       
   315 section {* The string behind a value *}
       
   316 
       
   317 fun 
       
   318   flat :: "val \<Rightarrow> string"
       
   319 where
       
   320   "flat (Void) = []"
       
   321 | "flat (Char c) = [c]"
       
   322 | "flat (Left v) = flat v"
       
   323 | "flat (Right v) = flat v"
       
   324 | "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
       
   325 | "flat (Stars []) = []"
       
   326 | "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" 
       
   327 
       
   328 lemma flat_Stars [simp]:
       
   329  "flat (Stars vs) = concat (map flat vs)"
       
   330 by (induct vs) (auto)
       
   331 
       
   332 
       
   333 section {* Relation between values and regular expressions *}
       
   334 
       
   335 inductive 
       
   336   Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100)
       
   337 where
       
   338  "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2"
       
   339 | "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2"
       
   340 | "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2"
       
   341 | "\<turnstile> Void : ONE"
       
   342 | "\<turnstile> Char c : CHAR c"
       
   343 | "\<turnstile> Stars [] : STAR r"
       
   344 | "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r"
       
   345 | "\<turnstile> Stars [] : UPNTIMES r 0"
       
   346 | "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : UPNTIMES r (Suc n)"
       
   347 | "\<lbrakk>\<turnstile> Stars vs : UPNTIMES r n\<rbrakk> \<Longrightarrow> \<turnstile> Stars vs : UPNTIMES r (Suc n)"
       
   348 
       
   349 
       
   350 
       
   351 inductive_cases Prf_elims:
       
   352   "\<turnstile> v : ZERO"
       
   353   "\<turnstile> v : SEQ r1 r2"
       
   354   "\<turnstile> v : ALT r1 r2"
       
   355   "\<turnstile> v : ONE"
       
   356   "\<turnstile> v : CHAR c"
       
   357 (*  "\<turnstile> vs : STAR r"*)
       
   358 
       
   359 lemma Prf_flat_L:
       
   360   assumes "\<turnstile> v : r" shows "flat v \<in> L r"
       
   361 using assms
       
   362 apply(induct v r rule: Prf.induct)
       
   363 apply(auto simp add: Sequ_def)
       
   364 apply(rotate_tac 2)
       
   365 apply(rule_tac x="Suc x" in bexI)
       
   366 apply(auto simp add: Sequ_def)[2]
       
   367 done
       
   368 
       
   369 lemma Prf_Stars:
       
   370   assumes "\<forall>v \<in> set vs. \<turnstile> v : r"
       
   371   shows "\<turnstile> Stars vs : STAR r"
       
   372 using assms
       
   373 by(induct vs) (auto intro: Prf.intros)
       
   374 
       
   375 lemma Prf_Stars_UPNTIMES:
       
   376   assumes "\<forall>v \<in> set vs. \<turnstile> v : r" "(length vs) = n"
       
   377   shows "\<turnstile> Stars vs : UPNTIMES r n"
       
   378 using assms
       
   379 apply(induct vs arbitrary: n) 
       
   380 apply(auto intro: Prf.intros)
       
   381 done
       
   382 
       
   383 lemma Prf_UPNTIMES_bigger:
       
   384   assumes "\<turnstile> Stars vs : UPNTIMES r n" "n \<le> m" 
       
   385   shows "\<turnstile> Stars vs : UPNTIMES r m"
       
   386 using assms
       
   387 apply(induct m arbitrary:)
       
   388 apply(auto)
       
   389 using Prf.intros(10) le_Suc_eq by blast
       
   390 
       
   391 lemma UPNTIMES_Stars:
       
   392  assumes "\<turnstile> v : UPNTIMES r n"
       
   393  shows "\<exists>vs. v = Stars vs \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> length vs \<le> n"
       
   394 using assms
       
   395 apply(induct n arbitrary: v)
       
   396 apply(erule Prf.cases)
       
   397 apply(simp_all)
       
   398 apply(erule Prf.cases)
       
   399 apply(simp_all)
       
   400 apply(auto)
       
   401 using le_SucI by blast
       
   402 
       
   403 lemma Star_string:
       
   404   assumes "s \<in> A\<star>"
       
   405   shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)"
       
   406 using assms
       
   407 apply(induct rule: Star.induct)
       
   408 apply(auto)
       
   409 apply(rule_tac x="[]" in exI)
       
   410 apply(simp)
       
   411 apply(rule_tac x="s1#ss" in exI)
       
   412 apply(simp)
       
   413 done
       
   414 
       
   415 lemma Star_val:
       
   416   assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
       
   417   shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)"
       
   418 using assms
       
   419 apply(induct ss)
       
   420 apply(auto)
       
   421 apply (metis empty_iff list.set(1))
       
   422 by (metis concat.simps(2) list.simps(9) set_ConsD)
       
   423 
       
   424 lemma Star_val_length:
       
   425   assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r"
       
   426   shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r) \<and> (length vs) = (length ss)"
       
   427 using assms
       
   428 apply(induct ss)
       
   429 apply(auto)
       
   430 by (metis List.bind_def bind_simps(2) length_Suc_conv set_ConsD)
       
   431 
       
   432 
       
   433 lemma Star_Pow:
       
   434   assumes "s \<in> A \<up> n"
       
   435   shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A) \<and> (length ss = n)"
       
   436 using assms
       
   437 apply(induct n arbitrary: s)
       
   438 apply(auto simp add: Sequ_def)
       
   439 apply(drule_tac x="s2" in meta_spec)
       
   440 apply(auto)
       
   441 apply(rule_tac x="s1#ss" in exI)
       
   442 apply(simp)
       
   443 done
       
   444 
       
   445 lemma L_flat_Prf1:
       
   446   assumes "\<turnstile> v : r" shows "flat v \<in> L r"
       
   447 using assms
       
   448 apply(induct)
       
   449 apply(auto simp add: Sequ_def)
       
   450 apply(rule_tac x="Suc x" in bexI)
       
   451 apply(auto simp add: Sequ_def)[2]
       
   452 done
       
   453 
       
   454 lemma L_flat_Prf2:
       
   455   assumes "s \<in> L r" shows "\<exists>v. \<turnstile> v : r \<and> flat v = s"
       
   456 using assms
       
   457 apply(induct r arbitrary: s)
       
   458 apply(auto simp add: Sequ_def intro: Prf.intros)
       
   459 using Prf.intros(1) flat.simps(5) apply blast
       
   460 using Prf.intros(2) flat.simps(3) apply blast
       
   461 using Prf.intros(3) flat.simps(4) apply blast
       
   462 apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)")
       
   463 apply(auto)[1]
       
   464 apply(rule_tac x="Stars vs" in exI)
       
   465 apply(simp)
       
   466 apply (simp add: Prf_Stars)
       
   467 apply(drule Star_string)
       
   468 apply(auto)
       
   469 apply(rule Star_val)
       
   470 apply(auto)
       
   471 apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = s \<and> (\<forall>v \<in> set vs. \<turnstile> v : r) \<and> (length vs = x)")
       
   472 apply(auto)[1]
       
   473 apply(rule_tac x="Stars vs" in exI)
       
   474 apply(simp)
       
   475 apply(drule_tac n="length vs" in Prf_Stars_UPNTIMES)
       
   476 apply(simp)
       
   477 using Prf_UPNTIMES_bigger apply blast
       
   478 apply(drule Star_Pow)
       
   479 apply(auto)
       
   480 using Star_val_length by blast
       
   481 
       
   482 lemma L_flat_Prf:
       
   483   "L(r) = {flat v | v. \<turnstile> v : r}"
       
   484 using L_flat_Prf1 L_flat_Prf2 by blast
       
   485 
       
   486 
       
   487 section {* Sulzmann and Lu functions *}
       
   488 
       
   489 fun 
       
   490   mkeps :: "rexp \<Rightarrow> val"
       
   491 where
       
   492   "mkeps(ONE) = Void"
       
   493 | "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)"
       
   494 | "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))"
       
   495 | "mkeps(STAR r) = Stars []"
       
   496 | "mkeps(UPNTIMES r n) = Stars []"
       
   497 
       
   498 
       
   499 fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val"
       
   500 where
       
   501   "injval (CHAR d) c Void = Char d"
       
   502 | "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)"
       
   503 | "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)"
       
   504 | "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2"
       
   505 | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2"
       
   506 | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)"
       
   507 | "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" 
       
   508 | "injval (UPNTIMES r n) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)"
       
   509 
       
   510 section {* Mkeps, injval *}
       
   511 
       
   512 lemma mkeps_nullable:
       
   513   assumes "nullable(r)" 
       
   514   shows "\<turnstile> mkeps r : r"
       
   515 using assms
       
   516 apply(induct rule: nullable.induct) 
       
   517 apply(auto intro: Prf.intros)
       
   518 using Prf.intros(8) Prf_UPNTIMES_bigger by blast
       
   519 
       
   520 
       
   521 lemma mkeps_flat:
       
   522   assumes "nullable(r)" 
       
   523   shows "flat (mkeps r) = []"
       
   524 using assms
       
   525 by (induct rule: nullable.induct) (auto)
       
   526 
       
   527 
       
   528 lemma Prf_injval:
       
   529   assumes "\<turnstile> v : der c r" 
       
   530   shows "\<turnstile> (injval r c v) : r"
       
   531 using assms
       
   532 apply(induct r arbitrary: c v rule: rexp.induct)
       
   533 apply(auto intro!: Prf.intros mkeps_nullable elim!: Prf_elims split: if_splits)
       
   534 (* STAR *)
       
   535 apply(rotate_tac 2)
       
   536 apply(erule Prf.cases)
       
   537 apply(simp_all)[7]
       
   538 apply(auto)
       
   539 apply (metis Prf.intros(6) Prf.intros(7))
       
   540 apply (metis Prf.intros(7))
       
   541 (* UPNTIMES *)
       
   542 apply(case_tac x2)
       
   543 apply(simp)
       
   544 using Prf_elims(1) apply auto[1]
       
   545 apply(simp)
       
   546 apply(erule Prf.cases)
       
   547 apply(simp_all)
       
   548 apply(clarify)
       
   549 apply(drule UPNTIMES_Stars)
       
   550 apply(clarify)
       
   551 apply(simp)
       
   552 apply(rule Prf.intros(9))
       
   553 apply(simp)
       
   554 using Prf_Stars_UPNTIMES Prf_UPNTIMES_bigger by blast
       
   555 
       
   556 lemma Prf_injval_flat:
       
   557   assumes "\<turnstile> v : der c r" 
       
   558   shows "flat (injval r c v) = c # (flat v)"
       
   559 using assms
       
   560 apply(induct arbitrary: v rule: der.induct)
       
   561 apply(auto elim!: Prf_elims split: if_splits)
       
   562 apply(metis mkeps_flat)
       
   563 apply(rotate_tac 2)
       
   564 apply(erule Prf.cases)
       
   565 apply(simp_all)
       
   566 apply(drule UPNTIMES_Stars)
       
   567 apply(clarify)
       
   568 apply(simp)
       
   569 done
       
   570 
       
   571 
       
   572 
       
   573 section {* Our Alternative Posix definition *}
       
   574 
       
   575 inductive 
       
   576   Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
       
   577 where
       
   578   Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
       
   579 | Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
       
   580 | Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
       
   581 | Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
       
   582 | Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
       
   583     \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> 
       
   584     (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
       
   585 | Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
       
   586     \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
       
   587     \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
       
   588 | Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
       
   589 | Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r n \<rightarrow> Stars vs; flat v \<noteq> [];
       
   590     \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))\<rbrakk>
       
   591     \<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> Stars (v # vs)"
       
   592 | Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []"
       
   593 
       
   594 
       
   595 inductive_cases Posix_elims:
       
   596   "s \<in> ZERO \<rightarrow> v"
       
   597   "s \<in> ONE \<rightarrow> v"
       
   598   "s \<in> CHAR c \<rightarrow> v"
       
   599   "s \<in> ALT r1 r2 \<rightarrow> v"
       
   600   "s \<in> SEQ r1 r2 \<rightarrow> v"
       
   601   "s \<in> STAR r \<rightarrow> v"
       
   602 
       
   603 lemma Posix1:
       
   604   assumes "s \<in> r \<rightarrow> v"
       
   605   shows "s \<in> L r" "flat v = s"
       
   606 using assms
       
   607 apply (induct s r v rule: Posix.induct)
       
   608 apply(auto simp add: Sequ_def)
       
   609 apply(rule_tac x="Suc x" in bexI)
       
   610 apply(auto simp add: Sequ_def)
       
   611 done
       
   612 
       
   613 
       
   614 lemma Posix1a:
       
   615   assumes "s \<in> r \<rightarrow> v"
       
   616   shows "\<turnstile> v : r"
       
   617 using assms
       
   618 apply(induct s r v rule: Posix.induct)
       
   619 apply(auto intro: Prf.intros)
       
   620 using Prf.intros(8) Prf_UPNTIMES_bigger by blast
       
   621 
       
   622 
       
   623 lemma Posix_mkeps:
       
   624   assumes "nullable r"
       
   625   shows "[] \<in> r \<rightarrow> mkeps r"
       
   626 using assms
       
   627 apply(induct r rule: nullable.induct)
       
   628 apply(auto intro: Posix.intros simp add: nullable_correctness Sequ_def)
       
   629 apply(subst append.simps(1)[symmetric])
       
   630 apply(rule Posix.intros)
       
   631 apply(auto)
       
   632 done
       
   633 
       
   634 
       
   635 lemma Posix_determ:
       
   636   assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
       
   637   shows "v1 = v2"
       
   638 using assms
       
   639 proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
       
   640   case (Posix_ONE v2)
       
   641   have "[] \<in> ONE \<rightarrow> v2" by fact
       
   642   then show "Void = v2" by cases auto
       
   643 next 
       
   644   case (Posix_CHAR c v2)
       
   645   have "[c] \<in> CHAR c \<rightarrow> v2" by fact
       
   646   then show "Char c = v2" by cases auto
       
   647 next 
       
   648   case (Posix_ALT1 s r1 v r2 v2)
       
   649   have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
       
   650   moreover
       
   651   have "s \<in> r1 \<rightarrow> v" by fact
       
   652   then have "s \<in> L r1" by (simp add: Posix1)
       
   653   ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto 
       
   654   moreover
       
   655   have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
       
   656   ultimately have "v = v'" by simp
       
   657   then show "Left v = v2" using eq by simp
       
   658 next 
       
   659   case (Posix_ALT2 s r2 v r1 v2)
       
   660   have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
       
   661   moreover
       
   662   have "s \<notin> L r1" by fact
       
   663   ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'" 
       
   664     by cases (auto simp add: Posix1) 
       
   665   moreover
       
   666   have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
       
   667   ultimately have "v = v'" by simp
       
   668   then show "Right v = v2" using eq by simp
       
   669 next
       
   670   case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
       
   671   have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'" 
       
   672        "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
       
   673        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
       
   674   then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
       
   675   apply(cases) apply (auto simp add: append_eq_append_conv2)
       
   676   using Posix1(1) by fastforce+
       
   677   moreover
       
   678   have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
       
   679             "\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
       
   680   ultimately show "Seq v1 v2 = v'" by simp
       
   681 next
       
   682   case (Posix_STAR1 s1 r v s2 vs v2)
       
   683   have "(s1 @ s2) \<in> STAR r \<rightarrow> v2" 
       
   684        "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
       
   685        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
       
   686   then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
       
   687   apply(cases) apply (auto simp add: append_eq_append_conv2)
       
   688   using Posix1(1) apply fastforce
       
   689   apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
       
   690   using Posix1(2) by blast
       
   691   moreover
       
   692   have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
       
   693             "\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
       
   694   ultimately show "Stars (v # vs) = v2" by auto
       
   695 next
       
   696   case (Posix_STAR2 r v2)
       
   697   have "[] \<in> STAR r \<rightarrow> v2" by fact
       
   698   then show "Stars [] = v2" by cases (auto simp add: Posix1)
       
   699 next
       
   700   case (Posix_UPNTIMES1 s1 r v s2 n vs v2)
       
   701   have "(s1 @ s2) \<in> UPNTIMES r (Suc n) \<rightarrow> v2" 
       
   702        "s1 \<in> r \<rightarrow> v" "s2 \<in> (UPNTIMES r n) \<rightarrow> Stars vs" "flat v \<noteq> []"
       
   703        "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r n))" by fact+
       
   704   then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r n) \<rightarrow> (Stars vs')"
       
   705   apply(cases) apply (auto simp add: append_eq_append_conv2)
       
   706   using Posix1(1) apply fastforce
       
   707   apply (metis Posix1(1) Posix_UPNTIMES1.hyps(6) append_Nil append_Nil2)
       
   708   using Posix1(2) by blast
       
   709   moreover
       
   710   have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
       
   711             "\<And>v2. s2 \<in> UPNTIMES r n \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
       
   712   ultimately show "Stars (v # vs) = v2" by auto
       
   713 next
       
   714   case (Posix_UPNTIMES2 r n v2)
       
   715   have "[] \<in> UPNTIMES r n \<rightarrow> v2" by fact
       
   716   then show "Stars [] = v2" by cases (auto simp add: Posix1)
       
   717 qed
       
   718 
       
   719 
       
   720 lemma Posix_injval:
       
   721   assumes "s \<in> (der c r) \<rightarrow> v"
       
   722   shows "(c # s) \<in> r \<rightarrow> (injval r c v)"
       
   723 using assms
       
   724 proof(induct r arbitrary: s v rule: rexp.induct)
       
   725   case ZERO
       
   726   have "s \<in> der c ZERO \<rightarrow> v" by fact
       
   727   then have "s \<in> ZERO \<rightarrow> v" by simp
       
   728   then have "False" by cases
       
   729   then show "(c # s) \<in> ZERO \<rightarrow> (injval ZERO c v)" by simp
       
   730 next
       
   731   case ONE
       
   732   have "s \<in> der c ONE \<rightarrow> v" by fact
       
   733   then have "s \<in> ZERO \<rightarrow> v" by simp
       
   734   then have "False" by cases
       
   735   then show "(c # s) \<in> ONE \<rightarrow> (injval ONE c v)" by simp
       
   736 next 
       
   737   case (CHAR d)
       
   738   consider (eq) "c = d" | (ineq) "c \<noteq> d" by blast
       
   739   then show "(c # s) \<in> (CHAR d) \<rightarrow> (injval (CHAR d) c v)"
       
   740   proof (cases)
       
   741     case eq
       
   742     have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
       
   743     then have "s \<in> ONE \<rightarrow> v" using eq by simp
       
   744     then have eqs: "s = [] \<and> v = Void" by cases simp
       
   745     show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" using eq eqs 
       
   746     by (auto intro: Posix.intros)
       
   747   next
       
   748     case ineq
       
   749     have "s \<in> der c (CHAR d) \<rightarrow> v" by fact
       
   750     then have "s \<in> ZERO \<rightarrow> v" using ineq by simp
       
   751     then have "False" by cases
       
   752     then show "(c # s) \<in> CHAR d \<rightarrow> injval (CHAR d) c v" by simp
       
   753   qed
       
   754 next
       
   755   case (ALT r1 r2)
       
   756   have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
       
   757   have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
       
   758   have "s \<in> der c (ALT r1 r2) \<rightarrow> v" by fact
       
   759   then have "s \<in> ALT (der c r1) (der c r2) \<rightarrow> v" by simp
       
   760   then consider (left) v' where "v = Left v'" "s \<in> der c r1 \<rightarrow> v'" 
       
   761               | (right) v' where "v = Right v'" "s \<notin> L (der c r1)" "s \<in> der c r2 \<rightarrow> v'" 
       
   762               by cases auto
       
   763   then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v"
       
   764   proof (cases)
       
   765     case left
       
   766     have "s \<in> der c r1 \<rightarrow> v'" by fact
       
   767     then have "(c # s) \<in> r1 \<rightarrow> injval r1 c v'" using IH1 by simp
       
   768     then have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Left v')" by (auto intro: Posix.intros)
       
   769     then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using left by simp
       
   770   next 
       
   771     case right
       
   772     have "s \<notin> L (der c r1)" by fact
       
   773     then have "c # s \<notin> L r1" by (simp add: der_correctness Der_def)
       
   774     moreover 
       
   775     have "s \<in> der c r2 \<rightarrow> v'" by fact
       
   776     then have "(c # s) \<in> r2 \<rightarrow> injval r2 c v'" using IH2 by simp
       
   777     ultimately have "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c (Right v')" 
       
   778       by (auto intro: Posix.intros)
       
   779     then show "(c # s) \<in> ALT r1 r2 \<rightarrow> injval (ALT r1 r2) c v" using right by simp
       
   780   qed
       
   781 next
       
   782   case (SEQ r1 r2)
       
   783   have IH1: "\<And>s v. s \<in> der c r1 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r1 \<rightarrow> injval r1 c v" by fact
       
   784   have IH2: "\<And>s v. s \<in> der c r2 \<rightarrow> v \<Longrightarrow> (c # s) \<in> r2 \<rightarrow> injval r2 c v" by fact
       
   785   have "s \<in> der c (SEQ r1 r2) \<rightarrow> v" by fact
       
   786   then consider 
       
   787         (left_nullable) v1 v2 s1 s2 where 
       
   788         "v = Left (Seq v1 v2)"  "s = s1 @ s2" 
       
   789         "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "nullable r1" 
       
   790         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
       
   791       | (right_nullable) v1 s1 s2 where 
       
   792         "v = Right v1" "s = s1 @ s2"  
       
   793         "s \<in> der c r2 \<rightarrow> v1" "nullable r1" "s1 @ s2 \<notin> L (SEQ (der c r1) r2)"
       
   794       | (not_nullable) v1 v2 s1 s2 where
       
   795         "v = Seq v1 v2" "s = s1 @ s2" 
       
   796         "s1 \<in> der c r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" "\<not>nullable r1" 
       
   797         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)"
       
   798         by (force split: if_splits elim!: Posix_elims simp add: Sequ_def der_correctness Der_def)   
       
   799   then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" 
       
   800     proof (cases)
       
   801       case left_nullable
       
   802       have "s1 \<in> der c r1 \<rightarrow> v1" by fact
       
   803       then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
       
   804       moreover
       
   805       have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
       
   806       then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
       
   807       ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using left_nullable by (rule_tac Posix.intros)
       
   808       then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using left_nullable by simp
       
   809     next
       
   810       case right_nullable
       
   811       have "nullable r1" by fact
       
   812       then have "[] \<in> r1 \<rightarrow> (mkeps r1)" by (rule Posix_mkeps)
       
   813       moreover
       
   814       have "s \<in> der c r2 \<rightarrow> v1" by fact
       
   815       then have "(c # s) \<in> r2 \<rightarrow> (injval r2 c v1)" using IH2 by simp
       
   816       moreover
       
   817       have "s1 @ s2 \<notin> L (SEQ (der c r1) r2)" by fact
       
   818       then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = c # s \<and> [] @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" using right_nullable
       
   819         by(auto simp add: der_correctness Der_def append_eq_Cons_conv Sequ_def)
       
   820       ultimately have "([] @ (c # s)) \<in> SEQ r1 r2 \<rightarrow> Seq (mkeps r1) (injval r2 c v1)"
       
   821       by(rule Posix.intros)
       
   822       then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using right_nullable by simp
       
   823     next
       
   824       case not_nullable
       
   825       have "s1 \<in> der c r1 \<rightarrow> v1" by fact
       
   826       then have "(c # s1) \<in> r1 \<rightarrow> injval r1 c v1" using IH1 by simp
       
   827       moreover
       
   828       have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r1) \<and> s\<^sub>4 \<in> L r2)" by fact
       
   829       then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by (simp add: der_correctness Der_def)
       
   830       ultimately have "((c # s1) @ s2) \<in> SEQ r1 r2 \<rightarrow> Seq (injval r1 c v1) v2" using not_nullable 
       
   831         by (rule_tac Posix.intros) (simp_all) 
       
   832       then show "(c # s) \<in> SEQ r1 r2 \<rightarrow> injval (SEQ r1 r2) c v" using not_nullable by simp
       
   833     qed
       
   834 next
       
   835   case (STAR r)
       
   836   have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
       
   837   have "s \<in> der c (STAR r) \<rightarrow> v" by fact
       
   838   then consider
       
   839       (cons) v1 vs s1 s2 where 
       
   840         "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
       
   841         "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (STAR r) \<rightarrow> (Stars vs)"
       
   842         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" 
       
   843         apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
       
   844         apply(rotate_tac 3)
       
   845         apply(erule_tac Posix_elims(6))
       
   846         apply (simp add: Posix.intros(6))
       
   847         using Posix.intros(7) by blast
       
   848     then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" 
       
   849     proof (cases)
       
   850       case cons
       
   851           have "s1 \<in> der c r \<rightarrow> v1" by fact
       
   852           then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
       
   853         moreover
       
   854           have "s2 \<in> STAR r \<rightarrow> Stars vs" by fact
       
   855         moreover 
       
   856           have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
       
   857           then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
       
   858           then have "flat (injval r c v1) \<noteq> []" by simp
       
   859         moreover 
       
   860           have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (STAR r))" by fact
       
   861           then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" 
       
   862             by (simp add: der_correctness Der_def)
       
   863         ultimately 
       
   864         have "((c # s1) @ s2) \<in> STAR r \<rightarrow> Stars (injval r c v1 # vs)" by (rule Posix.intros)
       
   865         then show "(c # s) \<in> STAR r \<rightarrow> injval (STAR r) c v" using cons by(simp)
       
   866     qed
       
   867 next 
       
   868   case (UPNTIMES r n)
       
   869   have IH: "\<And>s v. s \<in> der c r \<rightarrow> v \<Longrightarrow> (c # s) \<in> r \<rightarrow> injval r c v" by fact
       
   870   have "s \<in> der c (UPNTIMES r n) \<rightarrow> v" by fact
       
   871   then consider
       
   872       (cons) m v1 vs s1 s2 where 
       
   873         "n = Suc m"
       
   874         "v = Seq v1 (Stars vs)" "s = s1 @ s2" 
       
   875         "s1 \<in> der c r \<rightarrow> v1" "s2 \<in> (UPNTIMES r m) \<rightarrow> (Stars vs)"
       
   876         "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
       
   877         apply(case_tac n)
       
   878         apply(simp)
       
   879         using Posix_elims(1) apply blast
       
   880         apply(simp)
       
   881         apply(auto elim!: Posix_elims(1-5) simp add: der_correctness Der_def intro: Posix.intros)
       
   882         by (metis Posix1a UPNTIMES_Stars)
       
   883     then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" 
       
   884     proof (cases)
       
   885       case cons
       
   886         have "n = Suc m" by fact
       
   887         moreover
       
   888           have "s1 \<in> der c r \<rightarrow> v1" by fact
       
   889           then have "(c # s1) \<in> r \<rightarrow> injval r c v1" using IH by simp
       
   890         moreover
       
   891           have "s2 \<in> UPNTIMES r m \<rightarrow> Stars vs" by fact
       
   892         moreover 
       
   893           have "(c # s1) \<in> r \<rightarrow> injval r c v1" by fact 
       
   894           then have "flat (injval r c v1) = (c # s1)" by (rule Posix1)
       
   895           then have "flat (injval r c v1) \<noteq> []" by simp
       
   896         moreover 
       
   897           have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L (der c r) \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" by fact
       
   898           then have "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (c # s1) @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r m))" 
       
   899             by (simp add: der_correctness Der_def)
       
   900         ultimately 
       
   901         have "((c # s1) @ s2) \<in> UPNTIMES r (Suc m) \<rightarrow> Stars (injval r c v1 # vs)" 
       
   902           apply(rule_tac Posix.intros(8))
       
   903           apply(simp_all)
       
   904           done
       
   905         then show "(c # s) \<in> UPNTIMES r n \<rightarrow> injval (UPNTIMES r n) c v" using cons by(simp)
       
   906     qed
       
   907 qed
       
   908 
       
   909 
       
   910 section {* The Lexer by Sulzmann and Lu  *}
       
   911 
       
   912 fun 
       
   913   lexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
       
   914 where
       
   915   "lexer r [] = (if nullable r then Some(mkeps r) else None)"
       
   916 | "lexer r (c#s) = (case (lexer (der c r) s) of  
       
   917                     None \<Rightarrow> None
       
   918                   | Some(v) \<Rightarrow> Some(injval r c v))"
       
   919 
       
   920 
       
   921 lemma lexer_correct_None:
       
   922   shows "s \<notin> L r \<longleftrightarrow> lexer r s = None"
       
   923 apply(induct s arbitrary: r)
       
   924 apply(simp add: nullable_correctness)
       
   925 apply(drule_tac x="der a r" in meta_spec)
       
   926 apply(auto simp add: der_correctness Der_def)
       
   927 done
       
   928 
       
   929 lemma lexer_correct_Some:
       
   930   shows "s \<in> L r \<longleftrightarrow> (\<exists>v. lexer r s = Some(v) \<and> s \<in> r \<rightarrow> v)"
       
   931 apply(induct s arbitrary: r)
       
   932 apply(auto simp add: Posix_mkeps nullable_correctness)[1]
       
   933 apply(drule_tac x="der a r" in meta_spec)
       
   934 apply(simp add: der_correctness Der_def)
       
   935 apply(rule iffI)
       
   936 apply(auto intro: Posix_injval simp add: Posix1(1))
       
   937 done 
       
   938 
       
   939 lemma lexer_correctness:
       
   940   shows "(lexer r s = Some v) \<longleftrightarrow> s \<in> r \<rightarrow> v"
       
   941   and   "(lexer r s = None) \<longleftrightarrow> \<not>(\<exists>v. s \<in> r \<rightarrow> v)"
       
   942 using Posix1(1) Posix_determ lexer_correct_None lexer_correct_Some apply fastforce
       
   943 using Posix1(1) lexer_correct_None lexer_correct_Some by blast
       
   944 
       
   945 
       
   946 end