|
1 theory BasicIdentities imports |
|
2 "Lexer" "PDerivs" |
|
3 begin |
|
4 |
|
5 datatype rrexp = |
|
6 RZERO |
|
7 | RONE |
|
8 | RCHAR char |
|
9 | RSEQ rrexp rrexp |
|
10 | RALTS "rrexp list" |
|
11 | RSTAR rrexp |
|
12 |
|
13 abbreviation |
|
14 "RALT r1 r2 \<equiv> RALTS [r1, r2]" |
|
15 |
|
16 |
|
17 |
|
18 fun |
|
19 rnullable :: "rrexp \<Rightarrow> bool" |
|
20 where |
|
21 "rnullable (RZERO) = False" |
|
22 | "rnullable (RONE ) = True" |
|
23 | "rnullable (RCHAR c) = False" |
|
24 | "rnullable (RALTS rs) = (\<exists>r \<in> set rs. rnullable r)" |
|
25 | "rnullable (RSEQ r1 r2) = (rnullable r1 \<and> rnullable r2)" |
|
26 | "rnullable (RSTAR r) = True" |
|
27 |
|
28 |
|
29 fun |
|
30 rder :: "char \<Rightarrow> rrexp \<Rightarrow> rrexp" |
|
31 where |
|
32 "rder c (RZERO) = RZERO" |
|
33 | "rder c (RONE) = RZERO" |
|
34 | "rder c (RCHAR d) = (if c = d then RONE else RZERO)" |
|
35 | "rder c (RALTS rs) = RALTS (map (rder c) rs)" |
|
36 | "rder c (RSEQ r1 r2) = |
|
37 (if rnullable r1 |
|
38 then RALT (RSEQ (rder c r1) r2) (rder c r2) |
|
39 else RSEQ (rder c r1) r2)" |
|
40 | "rder c (RSTAR r) = RSEQ (rder c r) (RSTAR r)" |
|
41 |
|
42 |
|
43 fun |
|
44 rders :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp" |
|
45 where |
|
46 "rders r [] = r" |
|
47 | "rders r (c#s) = rders (rder c r) s" |
|
48 |
|
49 fun rdistinct :: "'a list \<Rightarrow>'a set \<Rightarrow> 'a list" |
|
50 where |
|
51 "rdistinct [] acc = []" |
|
52 | "rdistinct (x#xs) acc = |
|
53 (if x \<in> acc then rdistinct xs acc |
|
54 else x # (rdistinct xs ({x} \<union> acc)))" |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 fun rflts :: "rrexp list \<Rightarrow> rrexp list" |
|
61 where |
|
62 "rflts [] = []" |
|
63 | "rflts (RZERO # rs) = rflts rs" |
|
64 | "rflts ((RALTS rs1) # rs) = rs1 @ rflts rs" |
|
65 | "rflts (r1 # rs) = r1 # rflts rs" |
|
66 |
|
67 |
|
68 fun rsimp_ALTs :: " rrexp list \<Rightarrow> rrexp" |
|
69 where |
|
70 "rsimp_ALTs [] = RZERO" |
|
71 | "rsimp_ALTs [r] = r" |
|
72 | "rsimp_ALTs rs = RALTS rs" |
|
73 |
|
74 fun rsimp_SEQ :: " rrexp \<Rightarrow> rrexp \<Rightarrow> rrexp" |
|
75 where |
|
76 "rsimp_SEQ RZERO _ = RZERO" |
|
77 | "rsimp_SEQ _ RZERO = RZERO" |
|
78 | "rsimp_SEQ RONE r2 = r2" |
|
79 | "rsimp_SEQ r1 r2 = RSEQ r1 r2" |
|
80 |
|
81 |
|
82 fun rsimp :: "rrexp \<Rightarrow> rrexp" |
|
83 where |
|
84 "rsimp (RSEQ r1 r2) = rsimp_SEQ (rsimp r1) (rsimp r2)" |
|
85 | "rsimp (RALTS rs) = rsimp_ALTs (rdistinct (rflts (map rsimp rs)) {}) " |
|
86 | "rsimp r = r" |
|
87 |
|
88 |
|
89 fun |
|
90 rders_simp :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp" |
|
91 where |
|
92 "rders_simp r [] = r" |
|
93 | "rders_simp r (c#s) = rders_simp (rsimp (rder c r)) s" |
|
94 |
|
95 fun rsize :: "rrexp \<Rightarrow> nat" where |
|
96 "rsize RZERO = 1" |
|
97 | "rsize (RONE) = 1" |
|
98 | "rsize (RCHAR c) = 1" |
|
99 | "rsize (RALTS rs) = Suc (sum_list (map rsize rs))" |
|
100 | "rsize (RSEQ r1 r2) = Suc (rsize r1 + rsize r2)" |
|
101 | "rsize (RSTAR r) = Suc (rsize r)" |
|
102 |
|
103 |
|
104 lemma rder_rsimp_ALTs_commute: |
|
105 shows " (rder x (rsimp_ALTs rs)) = rsimp_ALTs (map (rder x) rs)" |
|
106 apply(induct rs) |
|
107 apply simp |
|
108 apply(case_tac rs) |
|
109 apply simp |
|
110 apply auto |
|
111 done |
|
112 |
|
113 |
|
114 lemma rsimp_aalts_smaller: |
|
115 shows "rsize (rsimp_ALTs rs) \<le> rsize (RALTS rs)" |
|
116 apply(induct rs) |
|
117 apply simp |
|
118 apply simp |
|
119 apply(case_tac "rs = []") |
|
120 apply simp |
|
121 apply(subgoal_tac "\<exists>rsp ap. rs = ap # rsp") |
|
122 apply(erule exE)+ |
|
123 apply simp |
|
124 apply simp |
|
125 by(meson neq_Nil_conv) |
|
126 |
|
127 |
|
128 |
|
129 |
|
130 |
|
131 lemma rSEQ_mono: |
|
132 shows "rsize (rsimp_SEQ r1 r2) \<le>rsize ( RSEQ r1 r2)" |
|
133 apply auto |
|
134 apply(induct r1) |
|
135 apply auto |
|
136 apply(case_tac "r2") |
|
137 apply simp_all |
|
138 apply(case_tac r2) |
|
139 apply simp_all |
|
140 apply(case_tac r2) |
|
141 apply simp_all |
|
142 apply(case_tac r2) |
|
143 apply simp_all |
|
144 apply(case_tac r2) |
|
145 apply simp_all |
|
146 done |
|
147 |
|
148 lemma ralts_cap_mono: |
|
149 shows "rsize (RALTS rs) \<le> Suc ( sum_list (map rsize rs)) " |
|
150 by simp |
|
151 |
|
152 lemma rflts_def_idiot: |
|
153 shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> |
|
154 \<Longrightarrow> rflts (a # rs) = a # rflts rs" |
|
155 apply(case_tac a) |
|
156 apply simp_all |
|
157 done |
|
158 |
|
159 |
|
160 lemma rflts_mono: |
|
161 shows "sum_list (map rsize (rflts rs))\<le> sum_list (map rsize rs)" |
|
162 apply(induct rs) |
|
163 apply simp |
|
164 apply(case_tac "a = RZERO") |
|
165 apply simp |
|
166 apply(case_tac "\<exists>rs1. a = RALTS rs1") |
|
167 apply(erule exE) |
|
168 apply simp |
|
169 apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)") |
|
170 prefer 2 |
|
171 using rflts_def_idiot apply blast |
|
172 apply simp |
|
173 done |
|
174 |
|
175 lemma rdistinct_smaller: shows "sum_list (map rsize (rdistinct rs ss)) \<le> |
|
176 sum_list (map rsize rs )" |
|
177 apply (induct rs arbitrary: ss) |
|
178 apply simp |
|
179 by (simp add: trans_le_add2) |
|
180 |
|
181 lemma rdistinct_phi_smaller: "sum_list (map rsize (rdistinct rs {})) \<le> sum_list (map rsize rs)" |
|
182 by (simp add: rdistinct_smaller) |
|
183 |
|
184 |
|
185 lemma rsimp_alts_mono : |
|
186 shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa) \<Longrightarrow> |
|
187 rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (sum_list (map rsize x))" |
|
188 apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} )) |
|
189 \<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))") |
|
190 prefer 2 |
|
191 using rsimp_aalts_smaller apply auto[1] |
|
192 apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc( sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})))") |
|
193 prefer 2 |
|
194 using ralts_cap_mono apply blast |
|
195 apply(subgoal_tac "sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})) \<le> |
|
196 sum_list (map rsize ( (rflts (map rsimp x))))") |
|
197 prefer 2 |
|
198 using rdistinct_smaller apply presburger |
|
199 apply(subgoal_tac "sum_list (map rsize (rflts (map rsimp x))) \<le> |
|
200 sum_list (map rsize (map rsimp x))") |
|
201 prefer 2 |
|
202 using rflts_mono apply blast |
|
203 apply(subgoal_tac "sum_list (map rsize (map rsimp x)) \<le> sum_list (map rsize x)") |
|
204 prefer 2 |
|
205 |
|
206 apply (simp add: sum_list_mono) |
|
207 by linarith |
|
208 |
|
209 |
|
210 |
|
211 |
|
212 |
|
213 lemma rsimp_mono: |
|
214 shows "rsize (rsimp r) \<le> rsize r" |
|
215 apply(induct r) |
|
216 apply simp_all |
|
217 apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))") |
|
218 apply force |
|
219 using rSEQ_mono |
|
220 apply presburger |
|
221 using rsimp_alts_mono by auto |
|
222 |
|
223 lemma idiot: |
|
224 shows "rsimp_SEQ RONE r = r" |
|
225 apply(case_tac r) |
|
226 apply simp_all |
|
227 done |
|
228 |
|
229 lemma no_alt_short_list_after_simp: |
|
230 shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs" |
|
231 sorry |
|
232 |
|
233 lemma no_further_dB_after_simp: |
|
234 shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs" |
|
235 sorry |
|
236 |
|
237 |
|
238 lemma idiot2: |
|
239 shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk> |
|
240 \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2" |
|
241 apply(case_tac r1) |
|
242 apply(case_tac r2) |
|
243 apply simp_all |
|
244 apply(case_tac r2) |
|
245 apply simp_all |
|
246 apply(case_tac r2) |
|
247 apply simp_all |
|
248 apply(case_tac r2) |
|
249 apply simp_all |
|
250 apply(case_tac r2) |
|
251 apply simp_all |
|
252 done |
|
253 |
|
254 lemma rders__onechar: |
|
255 shows " (rders_simp r [c]) = (rsimp (rders r [c]))" |
|
256 by simp |
|
257 |
|
258 lemma rders_append: |
|
259 "rders c (s1 @ s2) = rders (rders c s1) s2" |
|
260 apply(induct s1 arbitrary: c s2) |
|
261 apply(simp_all) |
|
262 done |
|
263 |
|
264 lemma rders_simp_append: |
|
265 "rders_simp c (s1 @ s2) = rders_simp (rders_simp c s1) s2" |
|
266 apply(induct s1 arbitrary: c s2) |
|
267 apply(simp_all) |
|
268 done |
|
269 |
|
270 lemma inside_simp_removal: |
|
271 shows " rsimp (rder x (rsimp r)) = rsimp (rder x r)" |
|
272 sorry |
|
273 |
|
274 lemma set_related_list: |
|
275 shows "distinct rs \<Longrightarrow> length rs = card (set rs)" |
|
276 by (simp add: distinct_card) |
|
277 (*this section deals with the property of distinctBy: creates a list without duplicates*) |
|
278 lemma rdistinct_never_added_twice: |
|
279 shows "rdistinct (a # rs) {a} = rdistinct rs {a}" |
|
280 by force |
|
281 |
|
282 |
|
283 lemma rdistinct_does_the_job: |
|
284 shows "distinct (rdistinct rs s)" |
|
285 apply(induct rs arbitrary: s) |
|
286 apply simp |
|
287 apply simp |
|
288 sorry |
|
289 |
|
290 lemma rders_simp_same_simpders: |
|
291 shows "s \<noteq> [] \<Longrightarrow> rders_simp r s = rsimp (rders r s)" |
|
292 apply(induct s rule: rev_induct) |
|
293 apply simp |
|
294 apply(case_tac "xs = []") |
|
295 apply simp |
|
296 apply(simp add: rders_append rders_simp_append) |
|
297 using inside_simp_removal by blast |
|
298 |
|
299 lemma simp_helps_der_pierce: |
|
300 shows " rsimp |
|
301 (rder x |
|
302 (rsimp_ALTs rs)) = |
|
303 rsimp |
|
304 (rsimp_ALTs |
|
305 (map (rder x ) |
|
306 rs |
|
307 ) |
|
308 )" |
|
309 sorry |
|
310 |
|
311 |
|
312 lemma rders_simp_one_char: |
|
313 shows "rders_simp r [c] = rsimp (rder c r)" |
|
314 apply auto |
|
315 done |
|
316 |
|
317 lemma rsimp_idem: |
|
318 shows "rsimp (rsimp r) = rsimp r" |
|
319 sorry |
|
320 |
|
321 corollary rsimp_inner_idem1: |
|
322 shows "rsimp r = RSEQ r1 r2 \<Longrightarrow> rsimp r1 = r1 \<and> rsimp r2 = r2" |
|
323 |
|
324 sorry |
|
325 |
|
326 corollary rsimp_inner_idem2: |
|
327 shows "rsimp r = RALTS rs \<Longrightarrow> \<forall>r' \<in> (set rs). rsimp r' = r'" |
|
328 sorry |
|
329 |
|
330 corollary rsimp_inner_idem3: |
|
331 shows "rsimp r = RALTS rs \<Longrightarrow> map rsimp rs = rs" |
|
332 by (meson map_idI rsimp_inner_idem2) |
|
333 |
|
334 corollary rsimp_inner_idem4: |
|
335 shows "rsimp r = RALTS rs \<Longrightarrow> flts rs = rs" |
|
336 sorry |
|
337 |
|
338 |
|
339 lemma head_one_more_simp: |
|
340 shows "map rsimp (r # rs) = map rsimp (( rsimp r) # rs)" |
|
341 by (simp add: rsimp_idem) |
|
342 |
|
343 lemma head_one_more_dersimp: |
|
344 shows "map rsimp ((rder x (rders_simp r s) # rs)) = map rsimp ((rders_simp r (s@[x]) ) # rs)" |
|
345 using head_one_more_simp rders_simp_append rders_simp_one_char by presburger |
|
346 |
|
347 |
|
348 |
|
349 |
|
350 lemma ders_simp_nullability: |
|
351 shows "rnullable (rders r s) = rnullable (rders_simp r s)" |
|
352 sorry |
|
353 |
|
354 lemma first_elem_seqder: |
|
355 shows "\<not>rnullable r1p \<Longrightarrow> map rsimp (rder x (RSEQ r1p r2) |
|
356 # rs) = map rsimp ((RSEQ (rder x r1p) r2) # rs) " |
|
357 by auto |
|
358 |
|
359 lemma first_elem_seqder1: |
|
360 shows "\<not>rnullable (rders_simp r xs) \<Longrightarrow> map rsimp ( (rder x (RSEQ (rders_simp r xs) r2)) # rs) = |
|
361 map rsimp ( (RSEQ (rsimp (rder x (rders_simp r xs))) r2) # rs)" |
|
362 by (simp add: rsimp_idem) |
|
363 |
|
364 lemma first_elem_seqdersimps: |
|
365 shows "\<not>rnullable (rders_simp r xs) \<Longrightarrow> map rsimp ( (rder x (RSEQ (rders_simp r xs) r2)) # rs) = |
|
366 map rsimp ( (RSEQ (rders_simp r (xs @ [x])) r2) # rs)" |
|
367 using first_elem_seqder1 rders_simp_append by auto |
|
368 |
|
369 |
|
370 |
|
371 |
|
372 |
|
373 |
|
374 lemma seq_ders_closed_form1: |
|
375 shows "\<exists>Ss. rders_simp (RSEQ r1 r2) [c] = rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # |
|
376 (map ( rders_simp r2 ) Ss)))" |
|
377 apply(case_tac "rnullable r1") |
|
378 apply(subgoal_tac " rders_simp (RSEQ r1 r2) [c] = |
|
379 rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [[c]])))") |
|
380 prefer 2 |
|
381 apply (simp add: rsimp_idem) |
|
382 apply(rule_tac x = "[[c]]" in exI) |
|
383 apply simp |
|
384 apply(subgoal_tac " rders_simp (RSEQ r1 r2) [c] = |
|
385 rsimp (RALTS ((RSEQ (rders_simp r1 [c]) r2) # (map (rders_simp r2) [])))") |
|
386 apply blast |
|
387 apply(simp add: rsimp_idem) |
|
388 sorry |
|
389 |
|
390 |
|
391 |
|
392 |
|
393 |
|
394 |
|
395 |
|
396 |
|
397 lemma simp_flatten2: |
|
398 shows "rsimp (RALTS (r # [RALTS rs])) = rsimp (RALTS (r # rs))" |
|
399 sorry |
|
400 |
|
401 |
|
402 lemma simp_flatten: |
|
403 shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))" |
|
404 |
|
405 sorry |
|
406 |
|
407 |
|
408 |
|
409 fun vsuf :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list" where |
|
410 "vsuf [] _ = []" |
|
411 |"vsuf (c#cs) r1 = (if (rnullable r1) then (vsuf cs (rder c r1)) @ [c # cs] |
|
412 else (vsuf cs (rder c r1)) |
|
413 ) " |
|
414 |
|
415 |
|
416 |
|
417 |
|
418 |
|
419 |
|
420 fun star_update :: "char \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list" where |
|
421 "star_update c r [] = []" |
|
422 |"star_update c r (s # Ss) = (if (rnullable (rders_simp r s)) |
|
423 then (s@[c]) # [c] # (star_update c r Ss) |
|
424 else (s@[c]) # (star_update c r Ss) )" |
|
425 |
|
426 fun star_updates :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list" |
|
427 where |
|
428 "star_updates [] r Ss = Ss" |
|
429 | "star_updates (c # cs) r Ss = star_updates cs r (star_update c r Ss)" |
|
430 |
|
431 |
|
432 |
|
433 |
|
434 |
|
435 |
|
436 (*some basic facts about rsimp*) |
|
437 |
|
438 |
|
439 |
|
440 |
|
441 end |