1 theory MyFirst |
|
2 imports Main |
|
3 begin |
|
4 |
|
5 datatype 'a list = Nil | Cons 'a "'a list" |
|
6 |
|
7 fun app :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
8 "app Nil ys = ys" | |
|
9 "app (Cons x xs) ys = Cons x (app xs ys)" |
|
10 |
|
11 fun rev :: "'a list \<Rightarrow> 'a list" where |
|
12 "rev Nil = Nil" | |
|
13 "rev (Cons x xs) = app (rev xs) (Cons x Nil)" |
|
14 |
|
15 value "rev(Cons True (Cons False Nil))" |
|
16 |
|
17 value "1 + (2::nat)" |
|
18 value "1 + (2::int)" |
|
19 value "1 - (2::nat)" |
|
20 value "1 - (2::int)" |
|
21 |
|
22 lemma app_Nil2 [simp]: "app xs Nil = xs" |
|
23 apply(induction xs) |
|
24 apply(auto) |
|
25 done |
|
26 |
|
27 lemma app_assoc [simp]: "app (app xs ys) zs = app xs (app ys zs)" |
|
28 apply(induction xs) |
|
29 apply(auto) |
|
30 done |
|
31 |
|
32 lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)" |
|
33 apply (induction xs) |
|
34 apply (auto) |
|
35 done |
|
36 |
|
37 theorem rev_rev [simp]: "rev(rev xs) = xs" |
|
38 apply (induction xs) |
|
39 apply (auto) |
|
40 done |
|
41 |
|
42 fun add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
43 "add 0 n = n" | |
|
44 "add (Suc m) n = Suc(add m n)" |
|
45 |
|
46 lemma add_02: "add m 0 = m" |
|
47 apply(induction m) |
|
48 apply(auto) |
|
49 done |
|
50 |
|
51 value "add 2 3" |
|
52 |
|
53 |
|
54 (**commutative-associative**) |
|
55 lemma add_04: "add m (add n k) = add (add m n) k" |
|
56 apply(induct m) |
|
57 apply(simp_all) |
|
58 done |
|
59 |
|
60 lemma add_zero: "add n 0 = n" |
|
61 apply(induct n) |
|
62 apply(auto) |
|
63 done |
|
64 |
|
65 lemma add_Suc: "add m (Suc n) = Suc (add m n)" |
|
66 apply(induct m) |
|
67 apply(metis add.simps(1)) |
|
68 apply(auto) |
|
69 done |
|
70 |
|
71 lemma add_comm: "add m n = add n m" |
|
72 apply(induct m) |
|
73 apply(simp add: add_zero) |
|
74 apply(simp add: add_Suc) |
|
75 done |
|
76 |
|
77 lemma add_odd: "add m (add n k) = add k (add m n)" |
|
78 apply(subst add_04) |
|
79 apply(subst (2) add_comm) |
|
80 apply(simp) |
|
81 done |
|
82 |
|
83 |
|
84 fun dub :: "nat \<Rightarrow> nat" where |
|
85 "dub 0 = 0" | |
|
86 "dub m = add m m" |
|
87 |
|
88 lemma dub_01: "dub 0 = 0" |
|
89 apply(induct) |
|
90 apply(auto) |
|
91 done |
|
92 |
|
93 lemma dub_02: "dub m = add m m" |
|
94 apply(induction m) |
|
95 apply(auto) |
|
96 done |
|
97 |
|
98 value "dub 2" |
|
99 |
|
100 fun trip :: "nat \<Rightarrow> nat" where |
|
101 "trip 0 = 0" | |
|
102 "trip m = add m (add m m)" |
|
103 |
|
104 lemma trip_01: "trip 0 = 0" |
|
105 apply(induct) |
|
106 apply(auto) |
|
107 done |
|
108 |
|
109 lemma trip_02: "trip m = add m (add m m)" |
|
110 apply(induction m) |
|
111 apply(auto) |
|
112 done |
|
113 |
|
114 value "trip 1" |
|
115 value "trip 2" |
|
116 |
|
117 fun sum :: "nat \<Rightarrow> nat" where |
|
118 "sum 0 = 0" |
|
119 | "sum (Suc n) = (Suc n) + sum n" |
|
120 |
|
121 function sum1 :: "nat \<Rightarrow> nat" where |
|
122 "sum1 0 = 0" |
|
123 | "n \<noteq> 0 \<Longrightarrow> sum1 n = n + sum1 (n - 1)" |
|
124 apply(auto) |
|
125 done |
|
126 |
|
127 termination sum1 |
|
128 by (smt2 "termination" diff_less less_than_iff not_gr0 wf_less_than zero_neq_one) |
|
129 |
|
130 lemma "sum n = sum1 n" |
|
131 apply(induct n) |
|
132 apply(auto) |
|
133 done |
|
134 |
|
135 lemma "sum n = (\<Sum>i \<le> n. i)" |
|
136 apply(induct n) |
|
137 apply(simp_all) |
|
138 done |
|
139 |
|
140 fun mull :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
141 "mull 0 0 = 0" | |
|
142 "mull m 0 = 0" | |
|
143 "mull m 1 = m" | |
|
144 (**"mull m (1::nat) = m" | **) |
|
145 (**"mull m (suc(0)) = m" | **) |
|
146 "mull m n = mull m (n-(1::nat))" |
|
147 apply(pat_completeness) |
|
148 apply(auto) |
|
149 |
|
150 done |
|
151 |
|
152 "mull 0 n = 0" |
|
153 | "mull (Suc m) n = add n (mull m n)" |
|
154 |
|
155 lemma test: "mull m n = m * n" |
|
156 sorry |
|
157 |
|
158 fun poww :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
159 "poww 0 n = 1" |
|
160 | "poww (Suc m) n = mull n (poww m n)" |
|
161 |
|
162 |
|
163 "mull 0 0 = 0" | |
|
164 "mull m 0 = 0" | |
|
165 (**"mull m 1 = m" | **) |
|
166 (**"mull m (1::nat) = m" | **) |
|
167 (**"mull m (suc(0)) = m" | **) |
|
168 "mull m n = mull m (n-(1::nat))" |
|
169 |
|
170 (**Define a function that counts the |
|
171 number of occurrences of an element in a list **) |
|
172 (** |
|
173 fun count :: "'a\<Rightarrow>'a list\<Rightarrow>nat" where |
|
174 "count " |
|
175 **) |
|
176 |
|
177 |
|
178 (* prove n = n * (n + 1) div 2 *) |
|
179 |
|
180 |
|
181 |
|
182 |
|
183 |
|
184 |
|
185 |
|
186 |
|
187 |
|
188 |
|
189 |
|