|
1 |
|
2 theory SizeBoundStrong |
|
3 imports "Lexer" |
|
4 begin |
|
5 |
|
6 section \<open>Bit-Encodings\<close> |
|
7 |
|
8 datatype bit = Z | S |
|
9 |
|
10 fun code :: "val \<Rightarrow> bit list" |
|
11 where |
|
12 "code Void = []" |
|
13 | "code (Char c) = []" |
|
14 | "code (Left v) = Z # (code v)" |
|
15 | "code (Right v) = S # (code v)" |
|
16 | "code (Seq v1 v2) = (code v1) @ (code v2)" |
|
17 | "code (Stars []) = [S]" |
|
18 | "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)" |
|
19 |
|
20 |
|
21 fun |
|
22 Stars_add :: "val \<Rightarrow> val \<Rightarrow> val" |
|
23 where |
|
24 "Stars_add v (Stars vs) = Stars (v # vs)" |
|
25 |
|
26 function |
|
27 decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)" |
|
28 where |
|
29 "decode' ds ZERO = (Void, [])" |
|
30 | "decode' ds ONE = (Void, ds)" |
|
31 | "decode' ds (CH d) = (Char d, ds)" |
|
32 | "decode' [] (ALT r1 r2) = (Void, [])" |
|
33 | "decode' (Z # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))" |
|
34 | "decode' (S # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))" |
|
35 | "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in |
|
36 let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))" |
|
37 | "decode' [] (STAR r) = (Void, [])" |
|
38 | "decode' (S # ds) (STAR r) = (Stars [], ds)" |
|
39 | "decode' (Z # ds) (STAR r) = (let (v, ds') = decode' ds r in |
|
40 let (vs, ds'') = decode' ds' (STAR r) |
|
41 in (Stars_add v vs, ds''))" |
|
42 by pat_completeness auto |
|
43 |
|
44 lemma decode'_smaller: |
|
45 assumes "decode'_dom (ds, r)" |
|
46 shows "length (snd (decode' ds r)) \<le> length ds" |
|
47 using assms |
|
48 apply(induct ds r) |
|
49 apply(auto simp add: decode'.psimps split: prod.split) |
|
50 using dual_order.trans apply blast |
|
51 by (meson dual_order.trans le_SucI) |
|
52 |
|
53 termination "decode'" |
|
54 apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))") |
|
55 apply(auto dest!: decode'_smaller) |
|
56 by (metis less_Suc_eq_le snd_conv) |
|
57 |
|
58 definition |
|
59 decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option" |
|
60 where |
|
61 "decode ds r \<equiv> (let (v, ds') = decode' ds r |
|
62 in (if ds' = [] then Some v else None))" |
|
63 |
|
64 lemma decode'_code_Stars: |
|
65 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []" |
|
66 shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)" |
|
67 using assms |
|
68 apply(induct vs) |
|
69 apply(auto) |
|
70 done |
|
71 |
|
72 lemma decode'_code: |
|
73 assumes "\<Turnstile> v : r" |
|
74 shows "decode' ((code v) @ ds) r = (v, ds)" |
|
75 using assms |
|
76 apply(induct v r arbitrary: ds) |
|
77 apply(auto) |
|
78 using decode'_code_Stars by blast |
|
79 |
|
80 lemma decode_code: |
|
81 assumes "\<Turnstile> v : r" |
|
82 shows "decode (code v) r = Some v" |
|
83 using assms unfolding decode_def |
|
84 by (smt append_Nil2 decode'_code old.prod.case) |
|
85 |
|
86 |
|
87 section {* Annotated Regular Expressions *} |
|
88 |
|
89 datatype arexp = |
|
90 AZERO |
|
91 | AONE "bit list" |
|
92 | ACHAR "bit list" char |
|
93 | ASEQ "bit list" arexp arexp |
|
94 | AALTs "bit list" "arexp list" |
|
95 | ASTAR "bit list" arexp |
|
96 |
|
97 abbreviation |
|
98 "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]" |
|
99 |
|
100 fun asize :: "arexp \<Rightarrow> nat" where |
|
101 "asize AZERO = 1" |
|
102 | "asize (AONE cs) = 1" |
|
103 | "asize (ACHAR cs c) = 1" |
|
104 | "asize (AALTs cs rs) = Suc (sum_list (map asize rs))" |
|
105 | "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)" |
|
106 | "asize (ASTAR cs r) = Suc (asize r)" |
|
107 |
|
108 fun |
|
109 erase :: "arexp \<Rightarrow> rexp" |
|
110 where |
|
111 "erase AZERO = ZERO" |
|
112 | "erase (AONE _) = ONE" |
|
113 | "erase (ACHAR _ c) = CH c" |
|
114 | "erase (AALTs _ []) = ZERO" |
|
115 | "erase (AALTs _ [r]) = (erase r)" |
|
116 | "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))" |
|
117 | "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)" |
|
118 | "erase (ASTAR _ r) = STAR (erase r)" |
|
119 |
|
120 |
|
121 fun nonalt :: "arexp \<Rightarrow> bool" |
|
122 where |
|
123 "nonalt (AALTs bs2 rs) = False" |
|
124 | "nonalt r = True" |
|
125 |
|
126 |
|
127 fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where |
|
128 "fuse bs AZERO = AZERO" |
|
129 | "fuse bs (AONE cs) = AONE (bs @ cs)" |
|
130 | "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c" |
|
131 | "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs" |
|
132 | "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2" |
|
133 | "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r" |
|
134 |
|
135 lemma fuse_append: |
|
136 shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)" |
|
137 apply(induct r) |
|
138 apply(auto) |
|
139 done |
|
140 |
|
141 lemma fuse_Nil: |
|
142 shows "fuse [] r = r" |
|
143 by (induct r)(simp_all) |
|
144 |
|
145 lemma map_fuse_Nil: |
|
146 shows "map (fuse []) rs = rs" |
|
147 by (induct rs)(simp_all add: fuse_Nil) |
|
148 |
|
149 |
|
150 fun intern :: "rexp \<Rightarrow> arexp" where |
|
151 "intern ZERO = AZERO" |
|
152 | "intern ONE = AONE []" |
|
153 | "intern (CH c) = ACHAR [] c" |
|
154 | "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1)) |
|
155 (fuse [S] (intern r2))" |
|
156 | "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)" |
|
157 | "intern (STAR r) = ASTAR [] (intern r)" |
|
158 |
|
159 |
|
160 fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where |
|
161 "retrieve (AONE bs) Void = bs" |
|
162 | "retrieve (ACHAR bs c) (Char d) = bs" |
|
163 | "retrieve (AALTs bs [r]) v = bs @ retrieve r v" |
|
164 | "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v" |
|
165 | "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v" |
|
166 | "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2" |
|
167 | "retrieve (ASTAR bs r) (Stars []) = bs @ [S]" |
|
168 | "retrieve (ASTAR bs r) (Stars (v#vs)) = |
|
169 bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)" |
|
170 |
|
171 |
|
172 |
|
173 fun |
|
174 bnullable :: "arexp \<Rightarrow> bool" |
|
175 where |
|
176 "bnullable (AZERO) = False" |
|
177 | "bnullable (AONE bs) = True" |
|
178 | "bnullable (ACHAR bs c) = False" |
|
179 | "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)" |
|
180 | "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)" |
|
181 | "bnullable (ASTAR bs r) = True" |
|
182 |
|
183 fun |
|
184 bmkeps :: "arexp \<Rightarrow> bit list" |
|
185 where |
|
186 "bmkeps(AONE bs) = bs" |
|
187 | "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)" |
|
188 | "bmkeps(AALTs bs [r]) = bs @ (bmkeps r)" |
|
189 | "bmkeps(AALTs bs (r#rs)) = (if bnullable(r) then bs @ (bmkeps r) else (bmkeps (AALTs bs rs)))" |
|
190 | "bmkeps(ASTAR bs r) = bs @ [S]" |
|
191 |
|
192 |
|
193 fun |
|
194 bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp" |
|
195 where |
|
196 "bder c (AZERO) = AZERO" |
|
197 | "bder c (AONE bs) = AZERO" |
|
198 | "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)" |
|
199 | "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)" |
|
200 | "bder c (ASEQ bs r1 r2) = |
|
201 (if bnullable r1 |
|
202 then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2)) |
|
203 else ASEQ bs (bder c r1) r2)" |
|
204 | "bder c (ASTAR bs r) = ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)" |
|
205 |
|
206 |
|
207 fun |
|
208 bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
209 where |
|
210 "bders r [] = r" |
|
211 | "bders r (c#s) = bders (bder c r) s" |
|
212 |
|
213 lemma bders_append: |
|
214 "bders r (s1 @ s2) = bders (bders r s1) s2" |
|
215 apply(induct s1 arbitrary: r s2) |
|
216 apply(simp_all) |
|
217 done |
|
218 |
|
219 lemma bnullable_correctness: |
|
220 shows "nullable (erase r) = bnullable r" |
|
221 apply(induct r rule: erase.induct) |
|
222 apply(simp_all) |
|
223 done |
|
224 |
|
225 lemma erase_fuse: |
|
226 shows "erase (fuse bs r) = erase r" |
|
227 apply(induct r rule: erase.induct) |
|
228 apply(simp_all) |
|
229 done |
|
230 |
|
231 lemma erase_intern [simp]: |
|
232 shows "erase (intern r) = r" |
|
233 apply(induct r) |
|
234 apply(simp_all add: erase_fuse) |
|
235 done |
|
236 |
|
237 lemma erase_bder [simp]: |
|
238 shows "erase (bder a r) = der a (erase r)" |
|
239 apply(induct r rule: erase.induct) |
|
240 apply(simp_all add: erase_fuse bnullable_correctness) |
|
241 done |
|
242 |
|
243 lemma erase_bders [simp]: |
|
244 shows "erase (bders r s) = ders s (erase r)" |
|
245 apply(induct s arbitrary: r ) |
|
246 apply(simp_all) |
|
247 done |
|
248 |
|
249 lemma bnullable_fuse: |
|
250 shows "bnullable (fuse bs r) = bnullable r" |
|
251 apply(induct r arbitrary: bs) |
|
252 apply(auto) |
|
253 done |
|
254 |
|
255 lemma retrieve_encode_STARS: |
|
256 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v" |
|
257 shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)" |
|
258 using assms |
|
259 apply(induct vs) |
|
260 apply(simp_all) |
|
261 done |
|
262 |
|
263 |
|
264 lemma retrieve_fuse2: |
|
265 assumes "\<Turnstile> v : (erase r)" |
|
266 shows "retrieve (fuse bs r) v = bs @ retrieve r v" |
|
267 using assms |
|
268 apply(induct r arbitrary: v bs) |
|
269 apply(auto elim: Prf_elims)[4] |
|
270 defer |
|
271 using retrieve_encode_STARS |
|
272 apply(auto elim!: Prf_elims)[1] |
|
273 apply(case_tac vs) |
|
274 apply(simp) |
|
275 apply(simp) |
|
276 (* AALTs case *) |
|
277 apply(simp) |
|
278 apply(case_tac x2a) |
|
279 apply(simp) |
|
280 apply(auto elim!: Prf_elims)[1] |
|
281 apply(simp) |
|
282 apply(case_tac list) |
|
283 apply(simp) |
|
284 apply(auto) |
|
285 apply(auto elim!: Prf_elims)[1] |
|
286 done |
|
287 |
|
288 lemma retrieve_fuse: |
|
289 assumes "\<Turnstile> v : r" |
|
290 shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v" |
|
291 using assms |
|
292 by (simp_all add: retrieve_fuse2) |
|
293 |
|
294 |
|
295 lemma retrieve_code: |
|
296 assumes "\<Turnstile> v : r" |
|
297 shows "code v = retrieve (intern r) v" |
|
298 using assms |
|
299 apply(induct v r ) |
|
300 apply(simp_all add: retrieve_fuse retrieve_encode_STARS) |
|
301 done |
|
302 |
|
303 |
|
304 lemma bnullable_Hdbmkeps_Hd: |
|
305 assumes "bnullable a" |
|
306 shows "bmkeps (AALTs bs (a # rs)) = bs @ (bmkeps a)" |
|
307 using assms |
|
308 by (metis bmkeps.simps(3) bmkeps.simps(4) list.exhaust) |
|
309 |
|
310 lemma r1: |
|
311 assumes "\<not> bnullable a" "bnullable (AALTs bs rs)" |
|
312 shows "bmkeps (AALTs bs (a # rs)) = bmkeps (AALTs bs rs)" |
|
313 using assms |
|
314 apply(induct rs) |
|
315 apply(auto) |
|
316 done |
|
317 |
|
318 lemma r2: |
|
319 assumes "x \<in> set rs" "bnullable x" |
|
320 shows "bnullable (AALTs bs rs)" |
|
321 using assms |
|
322 apply(induct rs) |
|
323 apply(auto) |
|
324 done |
|
325 |
|
326 lemma r3: |
|
327 assumes "\<not> bnullable r" |
|
328 " \<exists> x \<in> set rs. bnullable x" |
|
329 shows "retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs))) = |
|
330 retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))" |
|
331 using assms |
|
332 apply(induct rs arbitrary: r bs) |
|
333 apply(auto)[1] |
|
334 apply(auto) |
|
335 using bnullable_correctness apply blast |
|
336 apply(auto simp add: bnullable_correctness mkeps_nullable retrieve_fuse2) |
|
337 apply(subst retrieve_fuse2[symmetric]) |
|
338 apply (smt bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable) |
|
339 apply(simp) |
|
340 apply(case_tac "bnullable a") |
|
341 apply (smt append_Nil2 bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) fuse.simps(4) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable retrieve_fuse2) |
|
342 apply(drule_tac x="a" in meta_spec) |
|
343 apply(drule_tac x="bs" in meta_spec) |
|
344 apply(drule meta_mp) |
|
345 apply(simp) |
|
346 apply(drule meta_mp) |
|
347 apply(auto) |
|
348 apply(subst retrieve_fuse2[symmetric]) |
|
349 apply(case_tac rs) |
|
350 apply(simp) |
|
351 apply(auto)[1] |
|
352 apply (simp add: bnullable_correctness) |
|
353 apply (metis append_Nil2 bnullable_correctness erase_fuse fuse.simps(4) list.set_intros(1) mkeps.simps(3) mkeps_nullable nullable.simps(4) r2) |
|
354 apply (simp add: bnullable_correctness) |
|
355 apply (metis append_Nil2 bnullable_correctness erase.simps(6) erase_fuse fuse.simps(4) list.set_intros(2) mkeps.simps(3) mkeps_nullable r2) |
|
356 apply(simp) |
|
357 done |
|
358 |
|
359 |
|
360 lemma t: |
|
361 assumes "\<forall>r \<in> set rs. nullable (erase r) \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))" |
|
362 "nullable (erase (AALTs bs rs))" |
|
363 shows " bmkeps (AALTs bs rs) = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))" |
|
364 using assms |
|
365 apply(induct rs arbitrary: bs) |
|
366 apply(simp) |
|
367 apply(auto simp add: bnullable_correctness) |
|
368 apply(case_tac rs) |
|
369 apply(auto simp add: bnullable_correctness)[2] |
|
370 apply(subst r1) |
|
371 apply(simp) |
|
372 apply(rule r2) |
|
373 apply(assumption) |
|
374 apply(simp) |
|
375 apply(drule_tac x="bs" in meta_spec) |
|
376 apply(drule meta_mp) |
|
377 apply(auto)[1] |
|
378 prefer 2 |
|
379 apply(case_tac "bnullable a") |
|
380 apply(subst bnullable_Hdbmkeps_Hd) |
|
381 apply blast |
|
382 apply(subgoal_tac "nullable (erase a)") |
|
383 prefer 2 |
|
384 using bnullable_correctness apply blast |
|
385 apply (metis (no_types, lifting) erase.simps(5) erase.simps(6) list.exhaust mkeps.simps(3) retrieve.simps(3) retrieve.simps(4)) |
|
386 apply(subst r1) |
|
387 apply(simp) |
|
388 using r2 apply blast |
|
389 apply(drule_tac x="bs" in meta_spec) |
|
390 apply(drule meta_mp) |
|
391 apply(auto)[1] |
|
392 apply(simp) |
|
393 using r3 apply blast |
|
394 apply(auto) |
|
395 using r3 by blast |
|
396 |
|
397 lemma bmkeps_retrieve: |
|
398 assumes "nullable (erase r)" |
|
399 shows "bmkeps r = retrieve r (mkeps (erase r))" |
|
400 using assms |
|
401 apply(induct r) |
|
402 apply(simp) |
|
403 apply(simp) |
|
404 apply(simp) |
|
405 apply(simp) |
|
406 defer |
|
407 apply(simp) |
|
408 apply(rule t) |
|
409 apply(auto) |
|
410 done |
|
411 |
|
412 lemma bder_retrieve: |
|
413 assumes "\<Turnstile> v : der c (erase r)" |
|
414 shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)" |
|
415 using assms |
|
416 apply(induct r arbitrary: v rule: erase.induct) |
|
417 apply(simp) |
|
418 apply(erule Prf_elims) |
|
419 apply(simp) |
|
420 apply(erule Prf_elims) |
|
421 apply(simp) |
|
422 apply(case_tac "c = ca") |
|
423 apply(simp) |
|
424 apply(erule Prf_elims) |
|
425 apply(simp) |
|
426 apply(simp) |
|
427 apply(erule Prf_elims) |
|
428 apply(simp) |
|
429 apply(erule Prf_elims) |
|
430 apply(simp) |
|
431 apply(simp) |
|
432 apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v) |
|
433 apply(erule Prf_elims) |
|
434 apply(simp) |
|
435 apply(simp) |
|
436 apply(case_tac rs) |
|
437 apply(simp) |
|
438 apply(simp) |
|
439 apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) retrieve.simps(4) retrieve.simps(5) same_append_eq) |
|
440 apply(simp) |
|
441 apply(case_tac "nullable (erase r1)") |
|
442 apply(simp) |
|
443 apply(erule Prf_elims) |
|
444 apply(subgoal_tac "bnullable r1") |
|
445 prefer 2 |
|
446 using bnullable_correctness apply blast |
|
447 apply(simp) |
|
448 apply(erule Prf_elims) |
|
449 apply(simp) |
|
450 apply(subgoal_tac "bnullable r1") |
|
451 prefer 2 |
|
452 using bnullable_correctness apply blast |
|
453 apply(simp) |
|
454 apply(simp add: retrieve_fuse2) |
|
455 apply(simp add: bmkeps_retrieve) |
|
456 apply(simp) |
|
457 apply(erule Prf_elims) |
|
458 apply(simp) |
|
459 using bnullable_correctness apply blast |
|
460 apply(rename_tac bs r v) |
|
461 apply(simp) |
|
462 apply(erule Prf_elims) |
|
463 apply(clarify) |
|
464 apply(erule Prf_elims) |
|
465 apply(clarify) |
|
466 apply(subst injval.simps) |
|
467 apply(simp del: retrieve.simps) |
|
468 apply(subst retrieve.simps) |
|
469 apply(subst retrieve.simps) |
|
470 apply(simp) |
|
471 apply(simp add: retrieve_fuse2) |
|
472 done |
|
473 |
|
474 |
|
475 |
|
476 lemma MAIN_decode: |
|
477 assumes "\<Turnstile> v : ders s r" |
|
478 shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" |
|
479 using assms |
|
480 proof (induct s arbitrary: v rule: rev_induct) |
|
481 case Nil |
|
482 have "\<Turnstile> v : ders [] r" by fact |
|
483 then have "\<Turnstile> v : r" by simp |
|
484 then have "Some v = decode (retrieve (intern r) v) r" |
|
485 using decode_code retrieve_code by auto |
|
486 then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r" |
|
487 by simp |
|
488 next |
|
489 case (snoc c s v) |
|
490 have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow> |
|
491 Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact |
|
492 have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact |
|
493 then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r" |
|
494 by (simp add: Prf_injval ders_append) |
|
495 have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))" |
|
496 by (simp add: flex_append) |
|
497 also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r" |
|
498 using asm2 IH by simp |
|
499 also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r" |
|
500 using asm by (simp_all add: bder_retrieve ders_append) |
|
501 finally show "Some (flex r id (s @ [c]) v) = |
|
502 decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append) |
|
503 qed |
|
504 |
|
505 |
|
506 definition blex where |
|
507 "blex a s \<equiv> if bnullable (bders a s) then Some (bmkeps (bders a s)) else None" |
|
508 |
|
509 |
|
510 |
|
511 definition blexer where |
|
512 "blexer r s \<equiv> if bnullable (bders (intern r) s) then |
|
513 decode (bmkeps (bders (intern r) s)) r else None" |
|
514 |
|
515 lemma blexer_correctness: |
|
516 shows "blexer r s = lexer r s" |
|
517 proof - |
|
518 { define bds where "bds \<equiv> bders (intern r) s" |
|
519 define ds where "ds \<equiv> ders s r" |
|
520 assume asm: "nullable ds" |
|
521 have era: "erase bds = ds" |
|
522 unfolding ds_def bds_def by simp |
|
523 have mke: "\<Turnstile> mkeps ds : ds" |
|
524 using asm by (simp add: mkeps_nullable) |
|
525 have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r" |
|
526 using bmkeps_retrieve |
|
527 using asm era by (simp add: bmkeps_retrieve) |
|
528 also have "... = Some (flex r id s (mkeps ds))" |
|
529 using mke by (simp_all add: MAIN_decode ds_def bds_def) |
|
530 finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))" |
|
531 unfolding bds_def ds_def . |
|
532 } |
|
533 then show "blexer r s = lexer r s" |
|
534 unfolding blexer_def lexer_flex |
|
535 apply(subst bnullable_correctness[symmetric]) |
|
536 apply(simp) |
|
537 done |
|
538 qed |
|
539 |
|
540 |
|
541 fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list" |
|
542 where |
|
543 "distinctBy [] f acc = []" |
|
544 | "distinctBy (x#xs) f acc = |
|
545 (if (f x) \<in> acc then distinctBy xs f acc |
|
546 else x # (distinctBy xs f ({f x} \<union> acc)))" |
|
547 |
|
548 (*filter (\<lambda>rt. case rt of |
|
549 SEQ r1p r2p \<Rightarrow> r2p = (erase r2) |
|
550 r \<Rightarrow> False ) allowableTerms*) |
|
551 |
|
552 |
|
553 lemma dB_single_step: |
|
554 shows "distinctBy (a#rs) f {} = a # distinctBy rs f {f a}" |
|
555 by simp |
|
556 |
|
557 fun flts :: "arexp list \<Rightarrow> arexp list" |
|
558 where |
|
559 "flts [] = []" |
|
560 | "flts (AZERO # rs) = flts rs" |
|
561 | "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs" |
|
562 | "flts (r1 # rs) = r1 # flts rs" |
|
563 |
|
564 |
|
565 |
|
566 fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp" |
|
567 where |
|
568 "bsimp_ASEQ _ AZERO _ = AZERO" |
|
569 | "bsimp_ASEQ _ _ AZERO = AZERO" |
|
570 | "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2" |
|
571 | "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2" |
|
572 |
|
573 |
|
574 fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp" |
|
575 where |
|
576 "bsimp_AALTs _ [] = AZERO" |
|
577 | "bsimp_AALTs bs1 [r] = fuse bs1 r" |
|
578 | "bsimp_AALTs bs1 rs = AALTs bs1 rs" |
|
579 |
|
580 |
|
581 fun bsimp_ASEQ1 :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp" |
|
582 where |
|
583 "bsimp_ASEQ1 _ AZERO _ = AZERO" |
|
584 | "bsimp_ASEQ1 bs (AONE bs1) r2 = fuse (bs @ bs1) r2" |
|
585 | "bsimp_ASEQ1 bs r1 r2 = ASEQ bs r1 r2" |
|
586 |
|
587 |
|
588 fun collect where |
|
589 \<open>collect _ [] = []\<close> |
|
590 | \<open>collect erasedR2 ((SEQ r1 r2) # rs) = (if r2 = erasedR2 then r1 # (collect erasedR2 rs) |
|
591 else collect erasedR2 rs)\<close> |
|
592 | \<open>collect erasedR2 (r # rs) = collect erasedR2 rs\<close> |
|
593 |
|
594 |
|
595 fun pruneRexp where |
|
596 \<open>pruneRexp (ASEQ bs r1 r2) allowableTerms = |
|
597 ( let termsTruncated = (collect (erase r2) allowableTerms) in (let pruned = pruneRexp r1 termsTruncated in (bsimp_ASEQ1 bs pruned r2)) )\<close> |
|
598 | \<open>pruneRexp (AALTs bs rs) allowableTerms = (let rsp = (filter (\<lambda>r. r \<noteq> AZERO) (map (\<lambda>r. pruneRexp r allowableTerms) rs) ) in bsimp_AALTs bs rsp ) |
|
599 \<close> |
|
600 | \<open>pruneRexp r allowableTerms = (if (erase r) \<in> (set allowableTerms) then r else AZERO)\<close> |
|
601 |
|
602 |
|
603 fun oneSimp :: \<open>rexp \<Rightarrow> rexp\<close> where |
|
604 \<open> oneSimp (SEQ ONE r) = r \<close> |
|
605 | \<open> oneSimp (SEQ r1 r2) = SEQ (oneSimp r1) r2 \<close> |
|
606 | \<open> oneSimp r = r \<close> |
|
607 |
|
608 fun breakIntoTerms where |
|
609 \<open>breakIntoTerms (SEQ r1 r2) = map (\<lambda>r1p. SEQ r1p r2) (breakIntoTerms r1)\<close> |
|
610 | \<open>breakIntoTerms (ALT r1 r2) = (breakIntoTerms r1) @ (breakIntoTerms r2)\<close> |
|
611 | \<open>breakIntoTerms r = r # [] \<close> |
|
612 |
|
613 fun addToAcc :: "arexp \<Rightarrow> rexp list \<Rightarrow> rexp list" |
|
614 where |
|
615 \<open>addToAcc r acc = filter (\<lambda>r1. oneSimp r1 \<notin> set acc) (breakIntoTerms (erase r)) \<close> |
|
616 |
|
617 fun dBStrong :: "arexp list \<Rightarrow> rexp list \<Rightarrow> arexp list" |
|
618 where |
|
619 "dBStrong [] acc = []" |
|
620 | "dBStrong (r # rs) acc = (if (erase r) \<in> (set acc) then dBStrong rs acc |
|
621 else (case (pruneRexp r (addToAcc r acc)) of |
|
622 AZERO \<Rightarrow> dBStrong rs ((addToAcc r acc) @ acc) | |
|
623 r1 \<Rightarrow> r1 # (dBStrong rs ((addToAcc r acc) @ acc)) |
|
624 ) |
|
625 ) |
|
626 " |
|
627 fun bsimpStrong :: "arexp \<Rightarrow> arexp " |
|
628 where |
|
629 "bsimpStrong (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimpStrong r1) (bsimpStrong r2)" |
|
630 | "bsimpStrong (AALTs bs1 rs) = bsimp_AALTs bs1 (dBStrong (flts (map bsimpStrong rs)) []) " |
|
631 | "bsimpStrong r = r" |
|
632 |
|
633 |
|
634 fun bdersStrong :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
635 where |
|
636 "bdersStrong r [] = r" |
|
637 | "bdersStrong r (c # s) = bdersStrong (bsimpStrong (bder c r)) s" |
|
638 |
|
639 |
|
640 definition blexerStrong where |
|
641 "blexerStrong r s \<equiv> if bnullable (bdersStrong (intern r) s) then |
|
642 decode (bmkeps (bdersStrong (intern r) s)) r else None" |
|
643 |
|
644 |
|
645 |
|
646 fun bsimp :: "arexp \<Rightarrow> arexp" |
|
647 where |
|
648 "bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" |
|
649 | "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {}) " |
|
650 | "bsimp r = r" |
|
651 |
|
652 |
|
653 fun |
|
654 bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
655 where |
|
656 "bders_simp r [] = r" |
|
657 | "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s" |
|
658 |
|
659 definition blexer_simp where |
|
660 "blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then |
|
661 decode (bmkeps (bders_simp (intern r) s)) r else None" |
|
662 |
|
663 export_code bders_simp in Scala module_name Example |
|
664 |
|
665 lemma bders_simp_append: |
|
666 shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2" |
|
667 apply(induct s1 arbitrary: r s2) |
|
668 apply(simp_all) |
|
669 done |
|
670 |
|
671 lemma L_bsimp_ASEQ: |
|
672 "L (SEQ (erase r1) (erase r2)) = L (erase (bsimp_ASEQ bs r1 r2))" |
|
673 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
674 apply(simp_all) |
|
675 by (metis erase_fuse fuse.simps(4)) |
|
676 |
|
677 lemma L_bsimp_AALTs: |
|
678 "L (erase (AALTs bs rs)) = L (erase (bsimp_AALTs bs rs))" |
|
679 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
680 apply(simp_all add: erase_fuse) |
|
681 done |
|
682 |
|
683 lemma L_erase_AALTs: |
|
684 shows "L (erase (AALTs bs rs)) = \<Union> (L ` erase ` (set rs))" |
|
685 apply(induct rs) |
|
686 apply(simp) |
|
687 apply(simp) |
|
688 apply(case_tac rs) |
|
689 apply(simp) |
|
690 apply(simp) |
|
691 done |
|
692 |
|
693 lemma L_erase_flts: |
|
694 shows "\<Union> (L ` erase ` (set (flts rs))) = \<Union> (L ` erase ` (set rs))" |
|
695 apply(induct rs rule: flts.induct) |
|
696 apply(simp_all) |
|
697 apply(auto) |
|
698 using L_erase_AALTs erase_fuse apply auto[1] |
|
699 by (simp add: L_erase_AALTs erase_fuse) |
|
700 |
|
701 lemma L_erase_dB_acc: |
|
702 shows "( \<Union>(L ` acc) \<union> ( \<Union> (L ` erase ` (set (distinctBy rs erase acc) ) ) )) = \<Union>(L ` acc) \<union> \<Union> (L ` erase ` (set rs))" |
|
703 apply(induction rs arbitrary: acc) |
|
704 apply simp |
|
705 apply simp |
|
706 by (smt (z3) SUP_absorb UN_insert sup_assoc sup_commute) |
|
707 |
|
708 lemma L_erase_dB: |
|
709 shows " ( \<Union> (L ` erase ` (set (distinctBy rs erase {}) ) ) ) = \<Union> (L ` erase ` (set rs))" |
|
710 by (metis L_erase_dB_acc Un_commute Union_image_empty) |
|
711 |
|
712 lemma L_bsimp_erase: |
|
713 shows "L (erase r) = L (erase (bsimp r))" |
|
714 apply(induct r) |
|
715 apply(simp) |
|
716 apply(simp) |
|
717 apply(simp) |
|
718 apply(auto simp add: Sequ_def)[1] |
|
719 apply(subst L_bsimp_ASEQ[symmetric]) |
|
720 apply(auto simp add: Sequ_def)[1] |
|
721 apply(subst (asm) L_bsimp_ASEQ[symmetric]) |
|
722 apply(auto simp add: Sequ_def)[1] |
|
723 apply(simp) |
|
724 apply(subst L_bsimp_AALTs[symmetric]) |
|
725 defer |
|
726 apply(simp) |
|
727 apply(subst (2)L_erase_AALTs) |
|
728 apply(subst L_erase_dB) |
|
729 apply(subst L_erase_flts) |
|
730 apply(auto) |
|
731 apply (simp add: L_erase_AALTs) |
|
732 using L_erase_AALTs by blast |
|
733 |
|
734 |
|
735 |
|
736 lemma bsimp_ASEQ0: |
|
737 shows "bsimp_ASEQ bs r1 AZERO = AZERO" |
|
738 apply(induct r1) |
|
739 apply(auto) |
|
740 done |
|
741 |
|
742 lemma bsimp_ASEQ1: |
|
743 assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs" |
|
744 shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2" |
|
745 using assms |
|
746 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
747 apply(auto) |
|
748 done |
|
749 |
|
750 lemma bsimp_ASEQ2: |
|
751 shows "bsimp_ASEQ bs (AONE bs1) r2 = fuse (bs @ bs1) r2" |
|
752 apply(induct r2) |
|
753 apply(auto) |
|
754 done |
|
755 |
|
756 |
|
757 lemma L_bders_simp: |
|
758 shows "L (erase (bders_simp r s)) = L (erase (bders r s))" |
|
759 apply(induct s arbitrary: r rule: rev_induct) |
|
760 apply(simp) |
|
761 apply(simp) |
|
762 apply(simp add: ders_append) |
|
763 apply(simp add: bders_simp_append) |
|
764 apply(simp add: L_bsimp_erase[symmetric]) |
|
765 by (simp add: der_correctness) |
|
766 |
|
767 |
|
768 lemma b2: |
|
769 assumes "bnullable r" |
|
770 shows "bmkeps (fuse bs r) = bs @ bmkeps r" |
|
771 by (simp add: assms bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2) |
|
772 |
|
773 |
|
774 lemma b4: |
|
775 shows "bnullable (bders_simp r s) = bnullable (bders r s)" |
|
776 by (metis L_bders_simp bnullable_correctness lexer.simps(1) lexer_correct_None option.distinct(1)) |
|
777 |
|
778 lemma qq1: |
|
779 assumes "\<exists>r \<in> set rs. bnullable r" |
|
780 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs)" |
|
781 using assms |
|
782 apply(induct rs arbitrary: rs1 bs) |
|
783 apply(simp) |
|
784 apply(simp) |
|
785 by (metis Nil_is_append_conv bmkeps.simps(4) neq_Nil_conv bnullable_Hdbmkeps_Hd split_list_last) |
|
786 |
|
787 lemma qq2: |
|
788 assumes "\<forall>r \<in> set rs. \<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r" |
|
789 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs1)" |
|
790 using assms |
|
791 apply(induct rs arbitrary: rs1 bs) |
|
792 apply(simp) |
|
793 apply(simp) |
|
794 by (metis append_assoc in_set_conv_decomp r1 r2) |
|
795 |
|
796 lemma qq3: |
|
797 assumes "bnullable (AALTs bs (rs @ rs1))" |
|
798 "bnullable (AALTs bs (rs @ rs2))" |
|
799 "\<lbrakk>bnullable (AALTs bs rs1); bnullable (AALTs bs rs2); \<forall>r\<in>set rs. \<not>bnullable r\<rbrakk> \<Longrightarrow> |
|
800 bmkeps (AALTs bs rs1) = bmkeps (AALTs bs rs2)" |
|
801 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs (rs @ rs2))" |
|
802 using assms |
|
803 apply(case_tac "\<exists>r \<in> set rs. bnullable r") |
|
804 using qq1 apply auto[1] |
|
805 by (metis UnE bnullable.simps(4) qq2 set_append) |
|
806 |
|
807 |
|
808 lemma flts_append: |
|
809 shows "flts (xs1 @ xs2) = flts xs1 @ flts xs2" |
|
810 by (induct xs1 arbitrary: xs2 rule: flts.induct)(auto) |
|
811 |
|
812 lemma k0a: |
|
813 shows "flts [AALTs bs rs] = map (fuse bs) rs" |
|
814 apply(simp) |
|
815 done |
|
816 |
|
817 |
|
818 lemma bbbbs1: |
|
819 shows "nonalt r \<or> (\<exists>bs rs. r = AALTs bs rs)" |
|
820 using nonalt.elims(3) by auto |
|
821 |
|
822 |
|
823 |
|
824 fun nonazero :: "arexp \<Rightarrow> bool" |
|
825 where |
|
826 "nonazero AZERO = False" |
|
827 | "nonazero r = True" |
|
828 |
|
829 |
|
830 lemma flts_single1: |
|
831 assumes "nonalt r" "nonazero r" |
|
832 shows "flts [r] = [r]" |
|
833 using assms |
|
834 apply(induct r) |
|
835 apply(auto) |
|
836 done |
|
837 |
|
838 |
|
839 |
|
840 lemma q3a: |
|
841 assumes "\<exists>r \<in> set rs. bnullable r" |
|
842 shows "bmkeps (AALTs bs (map (fuse bs1) rs)) = bmkeps (AALTs (bs@bs1) rs)" |
|
843 using assms |
|
844 apply(induct rs arbitrary: bs bs1) |
|
845 apply(simp) |
|
846 apply(simp) |
|
847 apply(auto) |
|
848 apply (metis append_assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd) |
|
849 apply(case_tac "bnullable a") |
|
850 apply (metis append.assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd) |
|
851 apply(case_tac rs) |
|
852 apply(simp) |
|
853 apply(simp) |
|
854 apply(auto)[1] |
|
855 apply (metis bnullable_correctness erase_fuse)+ |
|
856 done |
|
857 |
|
858 lemma qq4: |
|
859 assumes "\<exists>x\<in>set list. bnullable x" |
|
860 shows "\<exists>x\<in>set (flts list). bnullable x" |
|
861 using assms |
|
862 apply(induct list rule: flts.induct) |
|
863 apply(auto) |
|
864 by (metis UnCI bnullable_correctness erase_fuse imageI) |
|
865 |
|
866 |
|
867 lemma qs3: |
|
868 assumes "\<exists>r \<in> set rs. bnullable r" |
|
869 shows "bmkeps (AALTs bs rs) = bmkeps (AALTs bs (flts rs))" |
|
870 using assms |
|
871 apply(induct rs arbitrary: bs taking: size rule: measure_induct) |
|
872 apply(case_tac x) |
|
873 apply(simp) |
|
874 apply(simp) |
|
875 apply(case_tac a) |
|
876 apply(simp) |
|
877 apply (simp add: r1) |
|
878 apply(simp) |
|
879 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
880 apply(simp) |
|
881 apply(case_tac "flts list") |
|
882 apply(simp) |
|
883 apply (metis L_erase_AALTs L_erase_flts L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(4) mkeps_nullable r2) |
|
884 apply(simp) |
|
885 apply (simp add: r1) |
|
886 prefer 3 |
|
887 apply(simp) |
|
888 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
889 prefer 2 |
|
890 apply(simp) |
|
891 apply(case_tac "\<exists>x\<in>set x52. bnullable x") |
|
892 apply(case_tac "list") |
|
893 apply(simp) |
|
894 apply (metis b2 fuse.simps(4) q3a r2) |
|
895 apply(erule disjE) |
|
896 apply(subst qq1) |
|
897 apply(auto)[1] |
|
898 apply (metis bnullable_correctness erase_fuse) |
|
899 apply(simp) |
|
900 apply (metis b2 fuse.simps(4) q3a r2) |
|
901 apply(simp) |
|
902 apply(auto)[1] |
|
903 apply(subst qq1) |
|
904 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
905 apply (metis b2 fuse.simps(4) q3a r2) |
|
906 apply(subst qq1) |
|
907 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
908 apply (metis b2 fuse.simps(4) q3a r2) |
|
909 apply(simp) |
|
910 apply(subst qq2) |
|
911 apply (metis bnullable_correctness erase_fuse imageE set_map) |
|
912 prefer 2 |
|
913 apply(case_tac "list") |
|
914 apply(simp) |
|
915 apply(simp) |
|
916 apply (simp add: qq4) |
|
917 apply(simp) |
|
918 apply(auto) |
|
919 apply(case_tac list) |
|
920 apply(simp) |
|
921 apply(simp) |
|
922 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
923 apply(case_tac "bnullable (ASEQ x41 x42 x43)") |
|
924 apply(case_tac list) |
|
925 apply(simp) |
|
926 apply(simp) |
|
927 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
928 apply(simp) |
|
929 using qq4 r1 r2 by auto |
|
930 |
|
931 lemma bder_fuse: |
|
932 shows "bder c (fuse bs a) = fuse bs (bder c a)" |
|
933 apply(induct a arbitrary: bs c) |
|
934 apply(simp_all) |
|
935 done |
|
936 |
|
937 |
|
938 |
|
939 |
|
940 inductive |
|
941 rrewrite:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99) |
|
942 where |
|
943 "ASEQ bs AZERO r2 \<leadsto> AZERO" |
|
944 | "ASEQ bs r1 AZERO \<leadsto> AZERO" |
|
945 | "ASEQ bs1 (AONE bs2) r \<leadsto> fuse (bs1@bs2) r" |
|
946 | "r1 \<leadsto> r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r2 r3" |
|
947 | "r3 \<leadsto> r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r1 r4" |
|
948 | "r \<leadsto> r' \<Longrightarrow> (AALTs bs (rs1 @ [r] @ rs2)) \<leadsto> (AALTs bs (rs1 @ [r'] @ rs2))" |
|
949 (*context rule for eliminating 0, alts--corresponds to the recursive call flts r::rs = r::(flts rs)*) |
|
950 | "AALTs bs (rsa@ [AZERO] @ rsb) \<leadsto> AALTs bs (rsa @ rsb)" |
|
951 | "AALTs bs (rsa@ [AALTs bs1 rs1] @ rsb) \<leadsto> AALTs bs (rsa@(map (fuse bs1) rs1)@rsb)" |
|
952 | "AALTs bs [] \<leadsto> AZERO" |
|
953 | "AALTs bs [r] \<leadsto> fuse bs r" |
|
954 | "erase a1 = erase a2 \<Longrightarrow> AALTs bs (rsa@[a1]@rsb@[a2]@rsc) \<leadsto> AALTs bs (rsa@[a1]@rsb@rsc)" |
|
955 |
|
956 |
|
957 inductive |
|
958 rrewrites:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100) |
|
959 where |
|
960 rs1[intro, simp]:"r \<leadsto>* r" |
|
961 | rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3" |
|
962 |
|
963 |
|
964 inductive |
|
965 srewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ s\<leadsto>* _" [100, 100] 100) |
|
966 where |
|
967 ss1: "[] s\<leadsto>* []" |
|
968 | ss2: "\<lbrakk>r \<leadsto>* r'; rs s\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (r#rs) s\<leadsto>* (r'#rs')" |
|
969 |
|
970 |
|
971 (* rewrites for lists *) |
|
972 inductive |
|
973 frewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ f\<leadsto>* _" [100, 100] 100) |
|
974 where |
|
975 fs1: "[] f\<leadsto>* []" |
|
976 | fs2: "\<lbrakk>rs f\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (AZERO#rs) f\<leadsto>* rs'" |
|
977 | fs3: "\<lbrakk>rs f\<leadsto>* rs'\<rbrakk> \<Longrightarrow> ((AALTs bs rs1) # rs) f\<leadsto>* ((map (fuse bs) rs1) @ rs')" |
|
978 | fs4: "\<lbrakk>rs f\<leadsto>* rs'; nonalt r; nonazero r\<rbrakk> \<Longrightarrow> (r#rs) f\<leadsto>* (r#rs')" |
|
979 |
|
980 |
|
981 lemma r_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2" |
|
982 using rrewrites.intros(1) rrewrites.intros(2) by blast |
|
983 |
|
984 lemma real_trans[trans]: |
|
985 assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3" |
|
986 shows "r1 \<leadsto>* r3" |
|
987 using a2 a1 |
|
988 apply(induct r2 r3 arbitrary: r1 rule: rrewrites.induct) |
|
989 apply(auto) |
|
990 done |
|
991 |
|
992 |
|
993 lemma many_steps_later: "\<lbrakk>r1 \<leadsto> r2; r2 \<leadsto>* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3" |
|
994 by (meson r_in_rstar real_trans) |
|
995 |
|
996 |
|
997 lemma contextrewrites1: "r \<leadsto>* r' \<Longrightarrow> (AALTs bs (r#rs)) \<leadsto>* (AALTs bs (r'#rs))" |
|
998 apply(induct r r' rule: rrewrites.induct) |
|
999 apply simp |
|
1000 by (metis append_Cons append_Nil rrewrite.intros(6) rs2) |
|
1001 |
|
1002 |
|
1003 lemma contextrewrites2: "r \<leadsto>* r' \<Longrightarrow> (AALTs bs (rs1@[r]@rs)) \<leadsto>* (AALTs bs (rs1@[r']@rs))" |
|
1004 apply(induct r r' rule: rrewrites.induct) |
|
1005 apply simp |
|
1006 using rrewrite.intros(6) by blast |
|
1007 |
|
1008 |
|
1009 |
|
1010 lemma srewrites_alt: "rs1 s\<leadsto>* rs2 \<Longrightarrow> (AALTs bs (rs@rs1)) \<leadsto>* (AALTs bs (rs@rs2))" |
|
1011 |
|
1012 apply(induct rs1 rs2 arbitrary: bs rs rule: srewrites.induct) |
|
1013 apply(rule rs1) |
|
1014 apply(drule_tac x = "bs" in meta_spec) |
|
1015 apply(drule_tac x = "rsa@[r']" in meta_spec) |
|
1016 apply simp |
|
1017 apply(rule real_trans) |
|
1018 prefer 2 |
|
1019 apply(assumption) |
|
1020 apply(drule contextrewrites2) |
|
1021 apply auto |
|
1022 done |
|
1023 |
|
1024 corollary srewrites_alt1: |
|
1025 assumes "rs1 s\<leadsto>* rs2" |
|
1026 shows "AALTs bs rs1 \<leadsto>* AALTs bs rs2" |
|
1027 using assms |
|
1028 by (metis append.left_neutral srewrites_alt) |
|
1029 |
|
1030 |
|
1031 lemma star_seq: |
|
1032 assumes "r1 \<leadsto>* r2" |
|
1033 shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r2 r3" |
|
1034 using assms |
|
1035 apply(induct r1 r2 arbitrary: r3 rule: rrewrites.induct) |
|
1036 apply(auto intro: rrewrite.intros) |
|
1037 done |
|
1038 |
|
1039 lemma star_seq2: |
|
1040 assumes "r3 \<leadsto>* r4" |
|
1041 shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r1 r4" |
|
1042 using assms |
|
1043 apply(induct r3 r4 arbitrary: r1 rule: rrewrites.induct) |
|
1044 apply(auto intro: rrewrite.intros) |
|
1045 done |
|
1046 |
|
1047 lemma continuous_rewrite: |
|
1048 assumes "r1 \<leadsto>* AZERO" |
|
1049 shows "ASEQ bs1 r1 r2 \<leadsto>* AZERO" |
|
1050 using assms |
|
1051 apply(induction ra\<equiv>"r1" rb\<equiv>"AZERO" arbitrary: bs1 r1 r2 rule: rrewrites.induct) |
|
1052 apply(auto intro: rrewrite.intros r_in_rstar star_seq) |
|
1053 by (meson rrewrite.intros(1) rs2 star_seq) |
|
1054 |
|
1055 |
|
1056 |
|
1057 lemma bsimp_aalts_simpcases: |
|
1058 shows "AONE bs \<leadsto>* bsimp (AONE bs)" |
|
1059 and "AZERO \<leadsto>* bsimp AZERO" |
|
1060 and "ACHAR bs c \<leadsto>* bsimp (ACHAR bs c)" |
|
1061 by (simp_all) |
|
1062 |
|
1063 |
|
1064 lemma trivialbsimp_srewrites: |
|
1065 "\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x \<rbrakk> \<Longrightarrow> rs s\<leadsto>* (map f rs)" |
|
1066 |
|
1067 apply(induction rs) |
|
1068 apply simp |
|
1069 apply(rule ss1) |
|
1070 by (metis insert_iff list.simps(15) list.simps(9) srewrites.simps) |
|
1071 |
|
1072 |
|
1073 lemma bsimp_AALTs_rewrites: |
|
1074 "AALTs bs1 rs \<leadsto>* bsimp_AALTs bs1 rs" |
|
1075 apply(induction rs) |
|
1076 apply simp |
|
1077 apply(rule r_in_rstar) |
|
1078 using rrewrite.intros(9) apply blast |
|
1079 by (metis bsimp_AALTs.elims list.discI rrewrite.intros(10) rrewrites.simps) |
|
1080 |
|
1081 |
|
1082 |
|
1083 lemma flts_prepend: "\<lbrakk>nonalt a; nonazero a\<rbrakk> \<Longrightarrow> flts (a#rs) = a # (flts rs)" |
|
1084 by (metis append_Cons append_Nil flts_single1 flts_append) |
|
1085 |
|
1086 lemma fltsfrewrites: "rs f\<leadsto>* (flts rs)" |
|
1087 apply(induction rs) |
|
1088 apply simp |
|
1089 apply(rule fs1) |
|
1090 |
|
1091 apply(case_tac "a = AZERO") |
|
1092 |
|
1093 |
|
1094 using fs2 apply auto[1] |
|
1095 apply(case_tac "\<exists>bs rs. a = AALTs bs rs") |
|
1096 apply(erule exE)+ |
|
1097 |
|
1098 apply (simp add: fs3) |
|
1099 apply(subst flts_prepend) |
|
1100 apply(rule nonalt.elims(2)) |
|
1101 prefer 2 |
|
1102 thm nonalt.elims |
|
1103 |
|
1104 apply blast |
|
1105 |
|
1106 using bbbbs1 apply blast |
|
1107 apply(simp)+ |
|
1108 |
|
1109 apply (meson nonazero.elims(3)) |
|
1110 |
|
1111 by (meson fs4 nonalt.elims(3) nonazero.elims(3)) |
|
1112 |
|
1113 |
|
1114 lemma rrewrite0away: "AALTs bs (AZERO # rsb) \<leadsto> AALTs bs rsb" |
|
1115 by (metis append_Cons append_Nil rrewrite.intros(7)) |
|
1116 |
|
1117 |
|
1118 lemma frewritesaalts:"rs f\<leadsto>* rs' \<Longrightarrow> (AALTs bs (rs1@rs)) \<leadsto>* (AALTs bs (rs1@rs'))" |
|
1119 apply(induct rs rs' arbitrary: bs rs1 rule:frewrites.induct) |
|
1120 apply(rule rs1) |
|
1121 apply(drule_tac x = "bs" in meta_spec) |
|
1122 apply(drule_tac x = "rs1 @ [AZERO]" in meta_spec) |
|
1123 apply(rule real_trans) |
|
1124 apply simp |
|
1125 using rrewrite.intros(7) apply auto[1] |
|
1126 apply(drule_tac x = "bsa" in meta_spec) |
|
1127 apply(drule_tac x = "rs1a @ [AALTs bs rs1]" in meta_spec) |
|
1128 apply(rule real_trans) |
|
1129 apply simp |
|
1130 using r_in_rstar rrewrite.intros(8) apply auto[1] |
|
1131 apply(drule_tac x = "bs" in meta_spec) |
|
1132 apply(drule_tac x = "rs1@[r]" in meta_spec) |
|
1133 apply(rule real_trans) |
|
1134 apply simp |
|
1135 apply auto |
|
1136 done |
|
1137 |
|
1138 lemma flts_rewrites: " AALTs bs1 rs \<leadsto>* AALTs bs1 (flts rs)" |
|
1139 apply(induction rs) |
|
1140 apply simp |
|
1141 apply(case_tac "a = AZERO") |
|
1142 apply (metis flts.simps(2) many_steps_later rrewrite0away) |
|
1143 |
|
1144 apply(case_tac "\<exists>bs2 rs2. a = AALTs bs2 rs2") |
|
1145 apply(erule exE)+ |
|
1146 apply(simp) |
|
1147 prefer 2 |
|
1148 |
|
1149 apply(subst flts_prepend) |
|
1150 |
|
1151 apply (meson nonalt.elims(3)) |
|
1152 |
|
1153 apply (meson nonazero.elims(3)) |
|
1154 apply(subgoal_tac "(a#rs) f\<leadsto>* (a#flts rs)") |
|
1155 apply (metis append_Nil frewritesaalts) |
|
1156 apply (meson fltsfrewrites fs4 nonalt.elims(3) nonazero.elims(3)) |
|
1157 by (metis append_Cons append_Nil fltsfrewrites frewritesaalts flts_append k0a) |
|
1158 |
|
1159 (* TEST *) |
|
1160 lemma r: |
|
1161 assumes "AALTs bs rs1 \<leadsto> AALTs bs rs2" |
|
1162 shows "AALTs bs (x # rs1) \<leadsto>* AALTs bs (x # rs2)" |
|
1163 using assms |
|
1164 apply(erule_tac rrewrite.cases) |
|
1165 apply(auto) |
|
1166 apply (metis append_Cons append_Nil rrewrite.intros(6) r_in_rstar) |
|
1167 apply (metis append_Cons append_self_conv2 rrewrite.intros(7) r_in_rstar) |
|
1168 apply (metis Cons_eq_appendI append_eq_append_conv2 rrewrite.intros(8) self_append_conv r_in_rstar) |
|
1169 apply(case_tac rs2) |
|
1170 apply(auto) |
|
1171 apply(case_tac r) |
|
1172 apply(auto) |
|
1173 apply (metis append_Nil2 append_butlast_last_id butlast.simps(2) last.simps list.distinct(1) list.map_disc_iff r_in_rstar rrewrite.intros(8)) |
|
1174 apply(case_tac r) |
|
1175 apply(auto) |
|
1176 defer |
|
1177 apply(rule r_in_rstar) |
|
1178 apply (metis append_Cons append_Nil rrewrite.intros(11)) |
|
1179 apply(rule real_trans) |
|
1180 apply(rule r_in_rstar) |
|
1181 using rrewrite.intros(8)[where ?rsb = "[]", of "bs" "[x]" "[]" , simplified] |
|
1182 apply(rule_tac rrewrite.intros(8)[where ?rsb = "[]", of "bs" "[x]" "[]" , simplified]) |
|
1183 apply(simp add: map_fuse_Nil fuse_Nil) |
|
1184 done |
|
1185 |
|
1186 lemma alts_simpalts: |
|
1187 "(\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* bsimp x) \<Longrightarrow> |
|
1188 AALTs bs1 rs \<leadsto>* AALTs bs1 (map bsimp rs)" |
|
1189 apply(induct rs) |
|
1190 apply(auto)[1] |
|
1191 using trivialbsimp_srewrites apply auto[1] |
|
1192 by (simp add: srewrites_alt1 ss2) |
|
1193 |
|
1194 lemma threelistsappend: "rsa@a#rsb = (rsa@[a])@rsb" |
|
1195 apply auto |
|
1196 done |
|
1197 |
|
1198 |
|
1199 lemma somewhereInside: "r \<in> set rs \<Longrightarrow> \<exists>rs1 rs2. rs = rs1@[r]@rs2" |
|
1200 using split_list by fastforce |
|
1201 |
|
1202 lemma somewhereMapInside: "f r \<in> f ` set rs \<Longrightarrow> \<exists>rs1 rs2 a. rs = rs1@[a]@rs2 \<and> f a = f r" |
|
1203 apply auto |
|
1204 by (metis split_list) |
|
1205 |
|
1206 lemma alts_dBrewrites_withFront: |
|
1207 "AALTs bs (rsa @ rs) \<leadsto>* AALTs bs (rsa @ distinctBy rs erase (erase ` set rsa))" |
|
1208 apply(induction rs arbitrary: rsa) |
|
1209 apply simp |
|
1210 apply(drule_tac x = "rsa@[a]" in meta_spec) |
|
1211 apply(subst threelistsappend) |
|
1212 apply(rule real_trans) |
|
1213 apply simp |
|
1214 apply(case_tac "a \<in> set rsa") |
|
1215 apply simp |
|
1216 apply(drule somewhereInside) |
|
1217 apply(erule exE)+ |
|
1218 apply simp |
|
1219 apply(subgoal_tac " AALTs bs |
|
1220 (rs1 @ |
|
1221 a # |
|
1222 rs2 @ |
|
1223 a # |
|
1224 distinctBy rs erase |
|
1225 (insert (erase a) |
|
1226 (erase ` |
|
1227 (set rs1 \<union> set rs2)))) \<leadsto> AALTs bs (rs1@ a # rs2 @ distinctBy rs erase |
|
1228 (insert (erase a) |
|
1229 (erase ` |
|
1230 (set rs1 \<union> set rs2)))) ") |
|
1231 prefer 2 |
|
1232 using rrewrite.intros(11) apply force |
|
1233 using r_in_rstar apply force |
|
1234 apply(subgoal_tac "erase ` set (rsa @ [a]) = insert (erase a) (erase ` set rsa)") |
|
1235 prefer 2 |
|
1236 |
|
1237 apply auto[1] |
|
1238 apply(case_tac "erase a \<in> erase `set rsa") |
|
1239 |
|
1240 apply simp |
|
1241 apply(subgoal_tac "AALTs bs (rsa @ a # distinctBy rs erase (insert (erase a) (erase ` set rsa))) \<leadsto> |
|
1242 AALTs bs (rsa @ distinctBy rs erase (insert (erase a) (erase ` set rsa)))") |
|
1243 apply force |
|
1244 apply (smt (verit, ccfv_threshold) append_Cons append_assoc append_self_conv2 r_in_rstar rrewrite.intros(11) same_append_eq somewhereMapInside) |
|
1245 by force |
|
1246 |
|
1247 |
|
1248 |
|
1249 lemma alts_dBrewrites: "AALTs bs rs \<leadsto>* AALTs bs (distinctBy rs erase {})" |
|
1250 apply(induction rs) |
|
1251 apply simp |
|
1252 apply simp |
|
1253 using alts_dBrewrites_withFront |
|
1254 by (metis append_Nil dB_single_step empty_set image_empty) |
|
1255 |
|
1256 lemma bsimp_rewrite: |
|
1257 shows "r \<leadsto>* bsimp r" |
|
1258 proof (induction r rule: bsimp.induct) |
|
1259 case (1 bs1 r1 r2) |
|
1260 then show "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" |
|
1261 apply(simp) |
|
1262 apply(case_tac "bsimp r1 = AZERO") |
|
1263 apply simp |
|
1264 using continuous_rewrite apply blast |
|
1265 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
1266 apply(erule exE) |
|
1267 apply simp |
|
1268 apply(subst bsimp_ASEQ2) |
|
1269 apply (meson real_trans rrewrite.intros(3) rrewrites.intros(2) star_seq star_seq2) |
|
1270 apply (smt (verit, best) bsimp_ASEQ0 bsimp_ASEQ1 real_trans rrewrite.intros(2) rs2 star_seq star_seq2) |
|
1271 done |
|
1272 next |
|
1273 case (2 bs1 rs) |
|
1274 then show "AALTs bs1 rs \<leadsto>* bsimp (AALTs bs1 rs)" |
|
1275 by (metis alts_dBrewrites alts_simpalts bsimp.simps(2) bsimp_AALTs_rewrites flts_rewrites real_trans) |
|
1276 next |
|
1277 case "3_1" |
|
1278 then show "AZERO \<leadsto>* bsimp AZERO" |
|
1279 by simp |
|
1280 next |
|
1281 case ("3_2" v) |
|
1282 then show "AONE v \<leadsto>* bsimp (AONE v)" |
|
1283 by simp |
|
1284 next |
|
1285 case ("3_3" v va) |
|
1286 then show "ACHAR v va \<leadsto>* bsimp (ACHAR v va)" |
|
1287 by simp |
|
1288 next |
|
1289 case ("3_4" v va) |
|
1290 then show "ASTAR v va \<leadsto>* bsimp (ASTAR v va)" |
|
1291 by simp |
|
1292 qed |
|
1293 |
|
1294 lemma rewrite_non_nullable_strong: |
|
1295 assumes "r1 \<leadsto> r2" |
|
1296 shows "bnullable r1 = bnullable r2" |
|
1297 using assms |
|
1298 apply(induction r1 r2 rule: rrewrite.induct) |
|
1299 apply(auto) |
|
1300 apply(metis bnullable_correctness erase_fuse)+ |
|
1301 apply(metis UnCI bnullable_correctness erase_fuse imageI) |
|
1302 apply(metis bnullable_correctness erase_fuse)+ |
|
1303 done |
|
1304 |
|
1305 lemma rewrite_nullable: |
|
1306 assumes "r1 \<leadsto> r2" "bnullable r1" |
|
1307 shows "bnullable r2" |
|
1308 using assms rewrite_non_nullable_strong |
|
1309 by auto |
|
1310 |
|
1311 lemma rewritesnullable: |
|
1312 assumes "r1 \<leadsto>* r2" "bnullable r1" |
|
1313 shows "bnullable r2" |
|
1314 using assms |
|
1315 apply(induction r1 r2 rule: rrewrites.induct) |
|
1316 apply simp |
|
1317 using rewrite_non_nullable_strong by blast |
|
1318 |
|
1319 |
|
1320 lemma bnullable_segment: |
|
1321 "bnullable (AALTs bs (rs1@[r]@rs2)) \<Longrightarrow> bnullable (AALTs bs rs1) \<or> bnullable (AALTs bs rs2) \<or> bnullable r" |
|
1322 by auto |
|
1323 |
|
1324 lemma bnullablewhichbmkeps: "\<lbrakk>bnullable (AALTs bs (rs1@[r]@rs2)); \<not> bnullable (AALTs bs rs1); bnullable r \<rbrakk> |
|
1325 \<Longrightarrow> bmkeps (AALTs bs (rs1@[r]@rs2)) = bs @ (bmkeps r)" |
|
1326 |
|
1327 using qq2 bnullable_Hdbmkeps_Hd by force |
|
1328 |
|
1329 lemma spillbmkepslistr: "bnullable (AALTs bs1 rs1) |
|
1330 \<Longrightarrow> bmkeps (AALTs bs (AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs ( map (fuse bs1) rs1 @ rsb))" |
|
1331 apply(subst bnullable_Hdbmkeps_Hd) |
|
1332 |
|
1333 apply simp |
|
1334 by (metis bmkeps.simps(3) k0a list.set_intros(1) qq1 qq4 qs3) |
|
1335 |
|
1336 lemma third_segment_bnullable: |
|
1337 "\<lbrakk>bnullable (AALTs bs (rs1@rs2@rs3)); \<not>bnullable (AALTs bs rs1); \<not>bnullable (AALTs bs rs2)\<rbrakk> \<Longrightarrow> |
|
1338 bnullable (AALTs bs rs3)" |
|
1339 apply(auto) |
|
1340 done |
|
1341 |
|
1342 lemma third_segment_bmkeps: |
|
1343 "\<lbrakk>bnullable (AALTs bs (rs1@rs2@rs3)); \<not>bnullable (AALTs bs rs1); \<not>bnullable (AALTs bs rs2)\<rbrakk> \<Longrightarrow> |
|
1344 bmkeps (AALTs bs (rs1@rs2@rs3) ) = bmkeps (AALTs bs rs3)" |
|
1345 by (metis bnullable.simps(1) bnullable.simps(4) bsimp_AALTs.simps(1) bsimp_AALTs_rewrites qq2 rewritesnullable self_append_conv third_segment_bnullable) |
|
1346 |
|
1347 lemma rewrite_bmkepsalt: |
|
1348 "\<lbrakk>bnullable (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)); bnullable (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))\<rbrakk> |
|
1349 \<Longrightarrow> bmkeps (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) = bmkeps (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))" |
|
1350 apply(rule qq3) |
|
1351 apply(simp) |
|
1352 apply(simp) |
|
1353 apply(case_tac "bnullable (AALTs bs1 rs1)") |
|
1354 using spillbmkepslistr apply blast |
|
1355 apply(subst qq2) |
|
1356 apply(auto simp add: bnullable_fuse r1) |
|
1357 done |
|
1358 |
|
1359 lemma rewrite_bmkeps_aux: |
|
1360 assumes "r1 \<leadsto> r2" "bnullable r1" "bnullable r2" |
|
1361 shows "bmkeps r1 = bmkeps r2" |
|
1362 using assms |
|
1363 proof (induction r1 r2 rule: rrewrite.induct) |
|
1364 case (1 bs r2) |
|
1365 then show ?case by simp |
|
1366 next |
|
1367 case (2 bs r1) |
|
1368 then show ?case by simp |
|
1369 next |
|
1370 case (3 bs bs1 r) |
|
1371 then show ?case by (simp add: b2) |
|
1372 next |
|
1373 case (4 r1 r2 bs r3) |
|
1374 then show ?case by simp |
|
1375 next |
|
1376 case (5 r3 r4 bs r1) |
|
1377 then show ?case by simp |
|
1378 next |
|
1379 case (6 r r' bs rs1 rs2) |
|
1380 then show ?case |
|
1381 by (metis append_Cons append_Nil bnullable.simps(4) bnullable_segment bnullablewhichbmkeps qq3 r1 rewrite_non_nullable_strong) |
|
1382 next |
|
1383 case (7 bs rsa rsb) |
|
1384 then show ?case |
|
1385 by (metis bnullable.simps(1) bnullable.simps(4) bnullable_segment qq1 qq2 rewrite_nullable rrewrite.intros(9) rrewrite0away third_segment_bmkeps) |
|
1386 next |
|
1387 case (8 bs rsa bs1 rs1 rsb) |
|
1388 then show ?case |
|
1389 by (simp add: rewrite_bmkepsalt) |
|
1390 next |
|
1391 case (9 bs) |
|
1392 then show ?case |
|
1393 by fastforce |
|
1394 next |
|
1395 case (10 bs r) |
|
1396 then show ?case |
|
1397 by (simp add: b2) |
|
1398 next |
|
1399 case (11 a1 a2 bs rsa rsb rsc) |
|
1400 then show ?case |
|
1401 by (smt (verit, ccfv_threshold) append_Cons append_eq_appendI append_self_conv2 bnullable_correctness list.set_intros(1) qq3 r1) |
|
1402 qed |
|
1403 |
|
1404 |
|
1405 lemma rewrite_bmkeps: |
|
1406 assumes "r1 \<leadsto> r2" "bnullable r1" |
|
1407 shows "bmkeps r1 = bmkeps r2" |
|
1408 using assms(1) assms(2) rewrite_bmkeps_aux rewrite_nullable by blast |
|
1409 |
|
1410 |
|
1411 lemma rewrites_bmkeps: |
|
1412 assumes "r1 \<leadsto>* r2" "bnullable r1" |
|
1413 shows "bmkeps r1 = bmkeps r2" |
|
1414 using assms |
|
1415 proof(induction r1 r2 rule: rrewrites.induct) |
|
1416 case (rs1 r) |
|
1417 then show "bmkeps r = bmkeps r" by simp |
|
1418 next |
|
1419 case (rs2 r1 r2 r3) |
|
1420 then have IH: "bmkeps r1 = bmkeps r2" by simp |
|
1421 have a1: "bnullable r1" by fact |
|
1422 have a2: "r1 \<leadsto>* r2" by fact |
|
1423 have a3: "r2 \<leadsto> r3" by fact |
|
1424 have a4: "bnullable r2" using a1 a2 by (simp add: rewritesnullable) |
|
1425 then have "bmkeps r2 = bmkeps r3" using rewrite_bmkeps a3 a4 by simp |
|
1426 then show "bmkeps r1 = bmkeps r3" using IH by simp |
|
1427 qed |
|
1428 |
|
1429 lemma alts_rewrite_front: "r \<leadsto> r' \<Longrightarrow> AALTs bs (r # rs) \<leadsto> AALTs bs (r' # rs)" |
|
1430 by (metis append_Cons append_Nil rrewrite.intros(6)) |
|
1431 |
|
1432 lemma to_zero_in_alt: " AALT bs (ASEQ [] AZERO r) r2 \<leadsto> AALT bs AZERO r2" |
|
1433 by (simp add: alts_rewrite_front rrewrite.intros(1)) |
|
1434 |
|
1435 lemma rewrite_fuse: |
|
1436 assumes "r2 \<leadsto> r3" |
|
1437 shows "fuse bs r2 \<leadsto>* fuse bs r3" |
|
1438 using assms |
|
1439 proof(induction r2 r3 arbitrary: bs rule: rrewrite.induct) |
|
1440 case (1 bs r2) |
|
1441 then show ?case |
|
1442 by (simp add: continuous_rewrite) |
|
1443 next |
|
1444 case (2 bs r1) |
|
1445 then show ?case |
|
1446 using rrewrite.intros(2) by force |
|
1447 next |
|
1448 case (3 bs bs1 r) |
|
1449 then show ?case |
|
1450 by (metis fuse.simps(5) fuse_append r_in_rstar rrewrite.intros(3)) |
|
1451 next |
|
1452 case (4 r1 r2 bs r3) |
|
1453 then show ?case |
|
1454 by (simp add: r_in_rstar star_seq) |
|
1455 next |
|
1456 case (5 r3 r4 bs r1) |
|
1457 then show ?case |
|
1458 using fuse.simps(5) r_in_rstar star_seq2 by auto |
|
1459 next |
|
1460 case (6 r r' bs rs1 rs2) |
|
1461 then show ?case |
|
1462 using contextrewrites2 r_in_rstar by force |
|
1463 next |
|
1464 case (7 bs rsa rsb) |
|
1465 then show ?case |
|
1466 using rrewrite.intros(7) by force |
|
1467 next |
|
1468 case (8 bs rsa bs1 rs1 rsb) |
|
1469 then show ?case |
|
1470 using rrewrite.intros(8) by force |
|
1471 next |
|
1472 case (9 bs) |
|
1473 then show ?case |
|
1474 by (simp add: r_in_rstar rrewrite.intros(9)) |
|
1475 next |
|
1476 case (10 bs r) |
|
1477 then show ?case |
|
1478 by (metis fuse.simps(4) fuse_append r_in_rstar rrewrite.intros(10)) |
|
1479 next |
|
1480 case (11 a1 a2 bs rsa rsb rsc) |
|
1481 then show ?case |
|
1482 using fuse.simps(4) r_in_rstar rrewrite.intros(11) by auto |
|
1483 qed |
|
1484 |
|
1485 lemma rewrites_fuse: |
|
1486 assumes "r1 \<leadsto>* r2" |
|
1487 shows "fuse bs r1 \<leadsto>* fuse bs r2" |
|
1488 using assms |
|
1489 apply(induction r1 r2 arbitrary: bs rule: rrewrites.induct) |
|
1490 apply(auto intro: rewrite_fuse real_trans) |
|
1491 done |
|
1492 |
|
1493 lemma bder_fuse_list: |
|
1494 shows "map (bder c \<circ> fuse bs1) rs1 = map (fuse bs1 \<circ> bder c) rs1" |
|
1495 apply(induction rs1) |
|
1496 apply(simp_all add: bder_fuse) |
|
1497 done |
|
1498 |
|
1499 |
|
1500 lemma rewrite_der_altmiddle: |
|
1501 "bder c (AALTs bs (rsa @ AALTs bs1 rs1 # rsb)) \<leadsto>* bder c (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))" |
|
1502 apply simp |
|
1503 apply(simp add: bder_fuse_list del: append.simps) |
|
1504 by (metis append.assoc map_map r_in_rstar rrewrite.intros(8) threelistsappend) |
|
1505 |
|
1506 lemma lock_step_der_removal: |
|
1507 shows " erase a1 = erase a2 \<Longrightarrow> |
|
1508 bder c (AALTs bs (rsa @ [a1] @ rsb @ [a2] @ rsc)) \<leadsto>* |
|
1509 bder c (AALTs bs (rsa @ [a1] @ rsb @ rsc))" |
|
1510 apply(simp) |
|
1511 |
|
1512 using rrewrite.intros(11) by auto |
|
1513 |
|
1514 lemma rewrite_after_der: |
|
1515 assumes "r1 \<leadsto> r2" |
|
1516 shows "(bder c r1) \<leadsto>* (bder c r2)" |
|
1517 using assms |
|
1518 proof(induction r1 r2 rule: rrewrite.induct) |
|
1519 case (1 bs r2) |
|
1520 then show "bder c (ASEQ bs AZERO r2) \<leadsto>* bder c AZERO" |
|
1521 by (simp add: continuous_rewrite) |
|
1522 next |
|
1523 case (2 bs r1) |
|
1524 then show "bder c (ASEQ bs r1 AZERO) \<leadsto>* bder c AZERO" |
|
1525 apply(simp) |
|
1526 by (meson contextrewrites1 r_in_rstar real_trans rrewrite.intros(9) rrewrite.intros(2) rrewrite0away) |
|
1527 next |
|
1528 case (3 bs bs1 r) |
|
1529 then show "bder c (ASEQ bs (AONE bs1) r) \<leadsto>* bder c (fuse (bs @ bs1) r)" |
|
1530 apply(simp) |
|
1531 by (metis bder_fuse fuse_append rrewrite.intros(10) rrewrite0away rrewrites.simps to_zero_in_alt) |
|
1532 next |
|
1533 case (4 r1 r2 bs r3) |
|
1534 have as: "r1 \<leadsto> r2" by fact |
|
1535 have IH: "bder c r1 \<leadsto>* bder c r2" by fact |
|
1536 from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r2 r3)" |
|
1537 by (simp add: contextrewrites1 rewrite_bmkeps rewrite_non_nullable_strong star_seq) |
|
1538 next |
|
1539 case (5 r3 r4 bs r1) |
|
1540 have as: "r3 \<leadsto> r4" by fact |
|
1541 have IH: "bder c r3 \<leadsto>* bder c r4" by fact |
|
1542 from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r1 r4)" |
|
1543 using bder.simps(5) r_in_rstar rewrites_fuse srewrites_alt1 ss1 ss2 star_seq2 by presburger |
|
1544 next |
|
1545 case (6 r r' bs rs1 rs2) |
|
1546 have as: "r \<leadsto> r'" by fact |
|
1547 have IH: "bder c r \<leadsto>* bder c r'" by fact |
|
1548 from as IH show "bder c (AALTs bs (rs1 @ [r] @ rs2)) \<leadsto>* bder c (AALTs bs (rs1 @ [r'] @ rs2))" |
|
1549 apply(simp) |
|
1550 using contextrewrites2 by force |
|
1551 next |
|
1552 case (7 bs rsa rsb) |
|
1553 then show "bder c (AALTs bs (rsa @ [AZERO] @ rsb)) \<leadsto>* bder c (AALTs bs (rsa @ rsb))" |
|
1554 apply(simp) |
|
1555 using rrewrite.intros(7) by auto |
|
1556 next |
|
1557 case (8 bs rsa bs1 rs1 rsb) |
|
1558 then show |
|
1559 "bder c (AALTs bs (rsa @ [AALTs bs1 rs1] @ rsb)) \<leadsto>* bder c (AALTs bs (rsa @ map (fuse bs1) rs1 @ rsb))" |
|
1560 using rewrite_der_altmiddle by auto |
|
1561 next |
|
1562 case (9 bs) |
|
1563 then show "bder c (AALTs bs []) \<leadsto>* bder c AZERO" |
|
1564 by (simp add: r_in_rstar rrewrite.intros(9)) |
|
1565 next |
|
1566 case (10 bs r) |
|
1567 then show "bder c (AALTs bs [r]) \<leadsto>* bder c (fuse bs r)" |
|
1568 by (simp add: bder_fuse r_in_rstar rrewrite.intros(10)) |
|
1569 next |
|
1570 case (11 a1 a2 bs rsa rsb rsc) |
|
1571 have as: "erase a1 = erase a2" by fact |
|
1572 then show "bder c (AALTs bs (rsa @ [a1] @ rsb @ [a2] @ rsc)) \<leadsto>* bder c (AALTs bs (rsa @ [a1] @ rsb @ rsc))" |
|
1573 using lock_step_der_removal by force |
|
1574 qed |
|
1575 |
|
1576 |
|
1577 lemma rewrites_after_der: |
|
1578 assumes "r1 \<leadsto>* r2" |
|
1579 shows "bder c r1 \<leadsto>* bder c r2" |
|
1580 using assms |
|
1581 apply(induction r1 r2 rule: rrewrites.induct) |
|
1582 apply(simp_all add: rewrite_after_der real_trans) |
|
1583 done |
|
1584 |
|
1585 |
|
1586 lemma central: |
|
1587 shows "bders r s \<leadsto>* bders_simp r s" |
|
1588 proof(induct s arbitrary: r rule: rev_induct) |
|
1589 case Nil |
|
1590 then show "bders r [] \<leadsto>* bders_simp r []" by simp |
|
1591 next |
|
1592 case (snoc x xs) |
|
1593 have IH: "\<And>r. bders r xs \<leadsto>* bders_simp r xs" by fact |
|
1594 have "bders r (xs @ [x]) = bders (bders r xs) [x]" by (simp add: bders_append) |
|
1595 also have "... \<leadsto>* bders (bders_simp r xs) [x]" using IH |
|
1596 by (simp add: rewrites_after_der) |
|
1597 also have "... \<leadsto>* bders_simp (bders_simp r xs) [x]" using IH |
|
1598 by (simp add: bsimp_rewrite) |
|
1599 finally show "bders r (xs @ [x]) \<leadsto>* bders_simp r (xs @ [x])" |
|
1600 by (simp add: bders_simp_append) |
|
1601 qed |
|
1602 |
|
1603 |
|
1604 |
|
1605 |
|
1606 |
|
1607 lemma quasi_main: |
|
1608 assumes "bnullable (bders r s)" |
|
1609 shows "bmkeps (bders r s) = bmkeps (bders_simp r s)" |
|
1610 proof - |
|
1611 have "bders r s \<leadsto>* bders_simp r s" by (rule central) |
|
1612 then |
|
1613 show "bmkeps (bders r s) = bmkeps (bders_simp r s)" using assms |
|
1614 by (rule rewrites_bmkeps) |
|
1615 qed |
|
1616 |
|
1617 |
|
1618 |
|
1619 |
|
1620 theorem main_main: |
|
1621 shows "blexer r s = blexer_simp r s" |
|
1622 unfolding blexer_def blexer_simp_def |
|
1623 using b4 quasi_main by simp |
|
1624 |
|
1625 |
|
1626 theorem blexersimp_correctness: |
|
1627 shows "lexer r s = blexer_simp r s" |
|
1628 using blexer_correctness main_main by simp |
|
1629 |
|
1630 |
|
1631 |
|
1632 export_code blexer_simp blexer lexer bders bders_simp in Scala module_name VerifiedLexers |
|
1633 |
|
1634 |
|
1635 unused_thms |
|
1636 |
|
1637 |
|
1638 inductive aggressive:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>? _" [99, 99] 99) |
|
1639 where |
|
1640 "ASEQ bs (AALTs bs1 rs) r \<leadsto>? AALTs (bs@bs1) (map (\<lambda>r'. ASEQ [] r' r) rs) " |
|
1641 |
|
1642 |
|
1643 |
|
1644 end |