|
1 |
|
2 theory Re |
|
3 imports "Main" |
|
4 begin |
|
5 |
|
6 |
|
7 section {* Sequential Composition of Sets *} |
|
8 |
|
9 definition |
|
10 Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
11 where |
|
12 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
13 |
|
14 fun spow where |
|
15 "spow s 0 = []" |
|
16 | "spow s (Suc n) = s @ spow s n" |
|
17 |
|
18 text {* Two Simple Properties about Sequential Composition *} |
|
19 |
|
20 lemma seq_empty [simp]: |
|
21 shows "A ;; {[]} = A" |
|
22 and "{[]} ;; A = A" |
|
23 by (simp_all add: Sequ_def) |
|
24 |
|
25 lemma seq_null [simp]: |
|
26 shows "A ;; {} = {}" |
|
27 and "{} ;; A = {}" |
|
28 by (simp_all add: Sequ_def) |
|
29 |
|
30 lemma seq_image: |
|
31 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
32 shows "f ` (A ;; B) = (f ` A) ;; (f ` B)" |
|
33 apply(auto simp add: Sequ_def image_def) |
|
34 apply(rule_tac x="f s1" in exI) |
|
35 apply(rule_tac x="f s2" in exI) |
|
36 using assms |
|
37 apply(auto) |
|
38 apply(rule_tac x="xa @ xb" in exI) |
|
39 using assms |
|
40 apply(auto) |
|
41 done |
|
42 |
|
43 section {* Kleene Star for Sets *} |
|
44 |
|
45 inductive_set |
|
46 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
47 for A :: "string set" |
|
48 where |
|
49 start[intro]: "[] \<in> A\<star>" |
|
50 | step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>" |
|
51 |
|
52 fun |
|
53 pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [100,100] 100) |
|
54 where |
|
55 "A \<up> 0 = {[]}" |
|
56 | "A \<up> (Suc n) = A ;; (A \<up> n)" |
|
57 |
|
58 lemma star1: |
|
59 shows "s \<in> A\<star> \<Longrightarrow> \<exists>n. s \<in> A \<up> n" |
|
60 apply(induct rule: Star.induct) |
|
61 apply (metis Re.pow.simps(1) insertI1) |
|
62 apply(auto) |
|
63 apply(rule_tac x="Suc n" in exI) |
|
64 apply(auto simp add: Sequ_def) |
|
65 done |
|
66 |
|
67 lemma star2: |
|
68 shows "s \<in> A \<up> n \<Longrightarrow> s \<in> A\<star>" |
|
69 apply(induct n arbitrary: s) |
|
70 apply (metis Re.pow.simps(1) Star.simps empty_iff insertE) |
|
71 apply(auto simp add: Sequ_def) |
|
72 done |
|
73 |
|
74 lemma star3: |
|
75 shows "A\<star> = (\<Union>i. A \<up> i)" |
|
76 using star1 star2 |
|
77 apply(auto) |
|
78 done |
|
79 |
|
80 lemma star4: |
|
81 shows "s \<in> A \<up> n \<Longrightarrow> \<exists>ss. s = concat ss \<and> (\<forall>s' \<in> set ss. s' \<in> A)" |
|
82 apply(induct n arbitrary: s) |
|
83 apply(auto simp add: Sequ_def) |
|
84 apply(rule_tac x="[]" in exI) |
|
85 apply(auto) |
|
86 apply(drule_tac x="s2" in meta_spec) |
|
87 apply(auto) |
|
88 by (metis concat.simps(2) insertE set_simps(2)) |
|
89 |
|
90 lemma star5: |
|
91 assumes "f [] = []" |
|
92 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
93 shows "(f ` A) \<up> n = f ` (A \<up> n)" |
|
94 apply(induct n) |
|
95 apply(simp add: assms) |
|
96 apply(simp) |
|
97 apply(subst seq_image[OF assms(2)]) |
|
98 apply(simp) |
|
99 done |
|
100 |
|
101 lemma star6: |
|
102 assumes "f [] = []" |
|
103 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
104 shows "(f ` A)\<star> = f ` (A\<star>)" |
|
105 apply(simp add: star3) |
|
106 apply(simp add: image_UN) |
|
107 apply(subst star5[OF assms]) |
|
108 apply(simp) |
|
109 done |
|
110 |
|
111 |
|
112 lemma star_decomp: |
|
113 assumes a: "c # x \<in> A\<star>" |
|
114 shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>" |
|
115 using a |
|
116 by (induct x\<equiv>"c # x" rule: Star.induct) |
|
117 (auto simp add: append_eq_Cons_conv) |
|
118 |
|
119 section {* Regular Expressions *} |
|
120 |
|
121 datatype rexp = |
|
122 NULL |
|
123 | EMPTY |
|
124 | CHAR char |
|
125 | SEQ rexp rexp |
|
126 | ALT rexp rexp |
|
127 | STAR rexp |
|
128 |
|
129 section {* Semantics of Regular Expressions *} |
|
130 |
|
131 fun |
|
132 L :: "rexp \<Rightarrow> string set" |
|
133 where |
|
134 "L (NULL) = {}" |
|
135 | "L (EMPTY) = {[]}" |
|
136 | "L (CHAR c) = {[c]}" |
|
137 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
138 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
139 | "L (STAR r) = (L r)\<star>" |
|
140 |
|
141 fun |
|
142 nullable :: "rexp \<Rightarrow> bool" |
|
143 where |
|
144 "nullable (NULL) = False" |
|
145 | "nullable (EMPTY) = True" |
|
146 | "nullable (CHAR c) = False" |
|
147 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
148 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
149 | "nullable (STAR r1) = True" |
|
150 |
|
151 lemma nullable_correctness: |
|
152 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
153 apply (induct r) |
|
154 apply(auto simp add: Sequ_def) |
|
155 done |
|
156 |
|
157 section {* Values *} |
|
158 |
|
159 datatype val = |
|
160 Void |
|
161 | Char char |
|
162 | Seq val val |
|
163 | Right val |
|
164 | Left val |
|
165 | Star "val list" |
|
166 |
|
167 section {* The string behind a value *} |
|
168 |
|
169 fun |
|
170 flat :: "val \<Rightarrow> string" |
|
171 where |
|
172 "flat (Void) = []" |
|
173 | "flat (Char c) = [c]" |
|
174 | "flat (Left v) = flat v" |
|
175 | "flat (Right v) = flat v" |
|
176 | "flat (Seq v1 v2) = (flat v1) @ (flat v2)" |
|
177 | "flat (Star []) = []" |
|
178 | "flat (Star (v#vs)) = (flat v) @ (flat (Star vs))" |
|
179 |
|
180 section {* Relation between values and regular expressions *} |
|
181 |
|
182 inductive |
|
183 Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100) |
|
184 where |
|
185 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2" |
|
186 | "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2" |
|
187 | "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2" |
|
188 | "\<turnstile> Void : EMPTY" |
|
189 | "\<turnstile> Char c : CHAR c" |
|
190 | "\<turnstile> Star [] : STAR r" |
|
191 | "\<lbrakk>\<turnstile> v : r; \<turnstile> Star vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Star (v#vs) : STAR r" |
|
192 |
|
193 lemma not_nullable_flat: |
|
194 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
195 shows "flat v \<noteq> []" |
|
196 using assms |
|
197 apply(induct) |
|
198 apply(auto) |
|
199 done |
|
200 |
|
201 lemma Prf_flat_L: |
|
202 assumes "\<turnstile> v : r" shows "flat v \<in> L r" |
|
203 using assms |
|
204 apply(induct v r rule: Prf.induct) |
|
205 apply(auto simp add: Sequ_def) |
|
206 done |
|
207 |
|
208 |
|
209 lemma Prf_Star_flat_L: |
|
210 assumes "\<turnstile> v : STAR r" shows "flat v \<in> (L r)\<star>" |
|
211 using assms |
|
212 apply(induct v r\<equiv>"STAR r" arbitrary: r rule: Prf.induct) |
|
213 apply(auto) |
|
214 apply(simp add: star3) |
|
215 apply(auto) |
|
216 apply(rule_tac x="Suc x" in exI) |
|
217 apply(auto simp add: Sequ_def) |
|
218 apply(rule_tac x="flat v" in exI) |
|
219 apply(rule_tac x="flat (Star vs)" in exI) |
|
220 apply(auto) |
|
221 by (metis Prf_flat_L) |
|
222 |
|
223 lemma L_flat_Prf: |
|
224 "L(r) = {flat v | v. \<turnstile> v : r}" |
|
225 apply(induct r) |
|
226 apply(auto dest: Prf_flat_L simp add: Sequ_def) |
|
227 apply (metis Prf.intros(4) flat.simps(1)) |
|
228 apply (metis Prf.intros(5) flat.simps(2)) |
|
229 apply (metis Prf.intros(1) flat.simps(5)) |
|
230 apply (metis Prf.intros(2) flat.simps(3)) |
|
231 apply (metis Prf.intros(3) flat.simps(4)) |
|
232 apply(erule Prf.cases) |
|
233 apply(auto) |
|
234 apply(simp add: star3) |
|
235 apply(auto) |
|
236 sorry |
|
237 |
|
238 section {* Greedy Ordering according to Frisch/Cardelli *} |
|
239 |
|
240 inductive |
|
241 GrOrd :: "val \<Rightarrow> val \<Rightarrow> bool" ("_ gr\<succ> _") |
|
242 where |
|
243 "v1 gr\<succ> v1' \<Longrightarrow> (Seq v1 v2) gr\<succ> (Seq v1' v2')" |
|
244 | "v2 gr\<succ> v2' \<Longrightarrow> (Seq v1 v2) gr\<succ> (Seq v1 v2')" |
|
245 | "v1 gr\<succ> v2 \<Longrightarrow> (Left v1) gr\<succ> (Left v2)" |
|
246 | "v1 gr\<succ> v2 \<Longrightarrow> (Right v1) gr\<succ> (Right v2)" |
|
247 | "(Left v2) gr\<succ>(Right v1)" |
|
248 | "(Char c) gr\<succ> (Char c)" |
|
249 | "(Void) gr\<succ> (Void)" |
|
250 |
|
251 lemma Gr_refl: |
|
252 assumes "\<turnstile> v : r" |
|
253 shows "v gr\<succ> v" |
|
254 using assms |
|
255 apply(induct) |
|
256 apply(auto intro: GrOrd.intros) |
|
257 done |
|
258 |
|
259 lemma Gr_total: |
|
260 assumes "\<turnstile> v1 : r" "\<turnstile> v2 : r" |
|
261 shows "v1 gr\<succ> v2 \<or> v2 gr\<succ> v1" |
|
262 using assms |
|
263 apply(induct v1 r arbitrary: v2 rule: Prf.induct) |
|
264 apply(rotate_tac 4) |
|
265 apply(erule Prf.cases) |
|
266 apply(simp_all)[5] |
|
267 apply(clarify) |
|
268 apply (metis GrOrd.intros(1) GrOrd.intros(2)) |
|
269 apply(rotate_tac 2) |
|
270 apply(erule Prf.cases) |
|
271 apply(simp_all) |
|
272 apply(clarify) |
|
273 apply (metis GrOrd.intros(3)) |
|
274 apply(clarify) |
|
275 apply (metis GrOrd.intros(5)) |
|
276 apply(rotate_tac 2) |
|
277 apply(erule Prf.cases) |
|
278 apply(simp_all) |
|
279 apply(clarify) |
|
280 apply (metis GrOrd.intros(5)) |
|
281 apply(clarify) |
|
282 apply (metis GrOrd.intros(4)) |
|
283 apply(erule Prf.cases) |
|
284 apply(simp_all) |
|
285 apply (metis GrOrd.intros(7)) |
|
286 apply(erule Prf.cases) |
|
287 apply(simp_all) |
|
288 apply (metis GrOrd.intros(6)) |
|
289 done |
|
290 |
|
291 lemma Gr_trans: |
|
292 assumes "v1 gr\<succ> v2" "v2 gr\<succ> v3" |
|
293 and "\<turnstile> v1 : r" "\<turnstile> v2 : r" "\<turnstile> v3 : r" |
|
294 shows "v1 gr\<succ> v3" |
|
295 using assms |
|
296 apply(induct r arbitrary: v1 v2 v3) |
|
297 apply(erule Prf.cases) |
|
298 apply(simp_all)[5] |
|
299 apply(erule Prf.cases) |
|
300 apply(simp_all)[5] |
|
301 apply(erule Prf.cases) |
|
302 apply(simp_all)[5] |
|
303 apply(erule Prf.cases) |
|
304 apply(simp_all)[5] |
|
305 apply(erule Prf.cases) |
|
306 apply(simp_all)[5] |
|
307 defer |
|
308 (* ALT case *) |
|
309 apply(erule Prf.cases) |
|
310 apply(simp_all (no_asm_use))[5] |
|
311 apply(erule Prf.cases) |
|
312 apply(simp_all (no_asm_use))[5] |
|
313 apply(erule Prf.cases) |
|
314 apply(simp_all (no_asm_use))[5] |
|
315 apply(clarify) |
|
316 apply(erule GrOrd.cases) |
|
317 apply(simp_all (no_asm_use))[7] |
|
318 apply(erule GrOrd.cases) |
|
319 apply(simp_all (no_asm_use))[7] |
|
320 apply (metis GrOrd.intros(3)) |
|
321 apply(clarify) |
|
322 apply(erule GrOrd.cases) |
|
323 apply(simp_all (no_asm_use))[7] |
|
324 apply(erule GrOrd.cases) |
|
325 apply(simp_all (no_asm_use))[7] |
|
326 apply (metis GrOrd.intros(5)) |
|
327 apply(erule Prf.cases) |
|
328 apply(simp_all (no_asm_use))[5] |
|
329 apply(clarify) |
|
330 apply(erule GrOrd.cases) |
|
331 apply(simp_all (no_asm_use))[7] |
|
332 apply(erule GrOrd.cases) |
|
333 apply(simp_all (no_asm_use))[7] |
|
334 apply (metis GrOrd.intros(5)) |
|
335 apply(erule Prf.cases) |
|
336 apply(simp_all (no_asm_use))[5] |
|
337 apply(erule Prf.cases) |
|
338 apply(simp_all (no_asm_use))[5] |
|
339 apply(clarify) |
|
340 apply(erule GrOrd.cases) |
|
341 apply(simp_all (no_asm_use))[7] |
|
342 apply(clarify) |
|
343 apply(erule GrOrd.cases) |
|
344 apply(simp_all (no_asm_use))[7] |
|
345 apply(erule Prf.cases) |
|
346 apply(simp_all (no_asm_use))[5] |
|
347 apply(clarify) |
|
348 apply(erule GrOrd.cases) |
|
349 apply(simp_all (no_asm_use))[7] |
|
350 apply(erule GrOrd.cases) |
|
351 apply(simp_all (no_asm_use))[7] |
|
352 apply(clarify) |
|
353 apply(erule GrOrd.cases) |
|
354 apply(simp_all (no_asm_use))[7] |
|
355 apply(erule GrOrd.cases) |
|
356 apply(simp_all (no_asm_use))[7] |
|
357 apply (metis GrOrd.intros(4)) |
|
358 (* SEQ case *) |
|
359 apply(erule Prf.cases) |
|
360 apply(simp_all (no_asm_use))[5] |
|
361 apply(erule Prf.cases) |
|
362 apply(simp_all (no_asm_use))[5] |
|
363 apply(erule Prf.cases) |
|
364 apply(simp_all (no_asm_use))[5] |
|
365 apply(clarify) |
|
366 apply(erule GrOrd.cases) |
|
367 apply(simp_all (no_asm_use))[7] |
|
368 apply(erule GrOrd.cases) |
|
369 apply(simp_all (no_asm_use))[7] |
|
370 apply(clarify) |
|
371 apply (metis GrOrd.intros(1)) |
|
372 apply (metis GrOrd.intros(1)) |
|
373 apply(erule GrOrd.cases) |
|
374 apply(simp_all (no_asm_use))[7] |
|
375 apply (metis GrOrd.intros(1)) |
|
376 by (metis GrOrd.intros(1) Gr_refl) |
|
377 |
|
378 |
|
379 section {* Values Sets *} |
|
380 |
|
381 definition prefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubseteq> _" [100, 100] 100) |
|
382 where |
|
383 "s1 \<sqsubseteq> s2 \<equiv> \<exists>s3. s1 @ s3 = s2" |
|
384 |
|
385 definition sprefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubset> _" [100, 100] 100) |
|
386 where |
|
387 "s1 \<sqsubset> s2 \<equiv> (s1 \<sqsubseteq> s2 \<and> s1 \<noteq> s2)" |
|
388 |
|
389 lemma length_sprefix: |
|
390 "s1 \<sqsubset> s2 \<Longrightarrow> length s1 < length s2" |
|
391 unfolding sprefix_def prefix_def |
|
392 by (auto) |
|
393 |
|
394 definition Prefixes :: "string \<Rightarrow> string set" where |
|
395 "Prefixes s \<equiv> {sp. sp \<sqsubseteq> s}" |
|
396 |
|
397 definition Suffixes :: "string \<Rightarrow> string set" where |
|
398 "Suffixes s \<equiv> rev ` (Prefixes (rev s))" |
|
399 |
|
400 lemma Suffixes_in: |
|
401 "\<exists>s1. s1 @ s2 = s3 \<Longrightarrow> s2 \<in> Suffixes s3" |
|
402 unfolding Suffixes_def Prefixes_def prefix_def image_def |
|
403 apply(auto) |
|
404 by (metis rev_rev_ident) |
|
405 |
|
406 lemma Prefixes_Cons: |
|
407 "Prefixes (c # s) = {[]} \<union> {c # sp | sp. sp \<in> Prefixes s}" |
|
408 unfolding Prefixes_def prefix_def |
|
409 apply(auto simp add: append_eq_Cons_conv) |
|
410 done |
|
411 |
|
412 lemma finite_Prefixes: |
|
413 "finite (Prefixes s)" |
|
414 apply(induct s) |
|
415 apply(auto simp add: Prefixes_def prefix_def)[1] |
|
416 apply(simp add: Prefixes_Cons) |
|
417 done |
|
418 |
|
419 lemma finite_Suffixes: |
|
420 "finite (Suffixes s)" |
|
421 unfolding Suffixes_def |
|
422 apply(rule finite_imageI) |
|
423 apply(rule finite_Prefixes) |
|
424 done |
|
425 |
|
426 lemma prefix_Cons: |
|
427 "((c # s1) \<sqsubseteq> (c # s2)) = (s1 \<sqsubseteq> s2)" |
|
428 apply(auto simp add: prefix_def) |
|
429 done |
|
430 |
|
431 lemma prefix_append: |
|
432 "((s @ s1) \<sqsubseteq> (s @ s2)) = (s1 \<sqsubseteq> s2)" |
|
433 apply(induct s) |
|
434 apply(simp) |
|
435 apply(simp add: prefix_Cons) |
|
436 done |
|
437 |
|
438 |
|
439 definition Values :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
440 "Values r s \<equiv> {v. \<turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
|
441 |
|
442 definition rest :: "val \<Rightarrow> string \<Rightarrow> string" where |
|
443 "rest v s \<equiv> drop (length (flat v)) s" |
|
444 |
|
445 lemma rest_Suffixes: |
|
446 "rest v s \<in> Suffixes s" |
|
447 unfolding rest_def |
|
448 by (metis Suffixes_in append_take_drop_id) |
|
449 |
|
450 |
|
451 lemma Values_recs: |
|
452 "Values (NULL) s = {}" |
|
453 "Values (EMPTY) s = {Void}" |
|
454 "Values (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
|
455 "Values (ALT r1 r2) s = {Left v | v. v \<in> Values r1 s} \<union> {Right v | v. v \<in> Values r2 s}" |
|
456 "Values (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" |
|
457 unfolding Values_def |
|
458 apply(auto) |
|
459 (*NULL*) |
|
460 apply(erule Prf.cases) |
|
461 apply(simp_all)[5] |
|
462 (*EMPTY*) |
|
463 apply(erule Prf.cases) |
|
464 apply(simp_all)[5] |
|
465 apply(rule Prf.intros) |
|
466 apply (metis append_Nil prefix_def) |
|
467 (*CHAR*) |
|
468 apply(erule Prf.cases) |
|
469 apply(simp_all)[5] |
|
470 apply(rule Prf.intros) |
|
471 apply(erule Prf.cases) |
|
472 apply(simp_all)[5] |
|
473 (*ALT*) |
|
474 apply(erule Prf.cases) |
|
475 apply(simp_all)[5] |
|
476 apply (metis Prf.intros(2)) |
|
477 apply (metis Prf.intros(3)) |
|
478 (*SEQ*) |
|
479 apply(erule Prf.cases) |
|
480 apply(simp_all)[5] |
|
481 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
482 apply (metis Prf.intros(1)) |
|
483 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
484 done |
|
485 |
|
486 lemma Values_finite: |
|
487 "finite (Values r s)" |
|
488 apply(induct r arbitrary: s) |
|
489 apply(simp_all add: Values_recs) |
|
490 thm finite_surj |
|
491 apply(rule_tac f="\<lambda>(x, y). Seq x y" and |
|
492 A="{(v1, v2) | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" in finite_surj) |
|
493 prefer 2 |
|
494 apply(auto)[1] |
|
495 apply(rule_tac B="\<Union>sp \<in> Suffixes s. {(v1, v2). v1 \<in> Values r1 s \<and> v2 \<in> Values r2 sp}" in finite_subset) |
|
496 apply(auto)[1] |
|
497 apply (metis rest_Suffixes) |
|
498 apply(rule finite_UN_I) |
|
499 apply(rule finite_Suffixes) |
|
500 apply(simp) |
|
501 done |
|
502 |
|
503 section {* Sulzmann functions *} |
|
504 |
|
505 fun |
|
506 mkeps :: "rexp \<Rightarrow> val" |
|
507 where |
|
508 "mkeps(EMPTY) = Void" |
|
509 | "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" |
|
510 | "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" |
|
511 |
|
512 section {* Derivatives *} |
|
513 |
|
514 fun |
|
515 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
516 where |
|
517 "der c (NULL) = NULL" |
|
518 | "der c (EMPTY) = NULL" |
|
519 | "der c (CHAR c') = (if c = c' then EMPTY else NULL)" |
|
520 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
521 | "der c (SEQ r1 r2) = |
|
522 (if nullable r1 |
|
523 then ALT (SEQ (der c r1) r2) (der c r2) |
|
524 else SEQ (der c r1) r2)" |
|
525 |
|
526 fun |
|
527 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
528 where |
|
529 "ders [] r = r" |
|
530 | "ders (c # s) r = ders s (der c r)" |
|
531 |
|
532 |
|
533 section {* Injection function *} |
|
534 |
|
535 fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
536 where |
|
537 "injval (EMPTY) c Void = Char c" |
|
538 | "injval (CHAR d) c Void = Char d" |
|
539 | "injval (CHAR d) c (Char c') = Seq (Char d) (Char c')" |
|
540 | "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" |
|
541 | "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" |
|
542 | "injval (SEQ r1 r2) c (Char c') = Seq (Char c) (Char c')" |
|
543 | "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" |
|
544 | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" |
|
545 | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" |
|
546 |
|
547 fun |
|
548 lex :: "rexp \<Rightarrow> string \<Rightarrow> val option" |
|
549 where |
|
550 "lex r [] = (if nullable r then Some(mkeps r) else None)" |
|
551 | "lex r (c#s) = (case (lex (der c r) s) of |
|
552 None \<Rightarrow> None |
|
553 | Some(v) \<Rightarrow> Some(injval r c v))" |
|
554 |
|
555 fun |
|
556 lex2 :: "rexp \<Rightarrow> string \<Rightarrow> val" |
|
557 where |
|
558 "lex2 r [] = mkeps r" |
|
559 | "lex2 r (c#s) = injval r c (lex2 (der c r) s)" |
|
560 |
|
561 |
|
562 section {* Projection function *} |
|
563 |
|
564 fun projval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
565 where |
|
566 "projval (CHAR d) c _ = Void" |
|
567 | "projval (ALT r1 r2) c (Left v1) = Left (projval r1 c v1)" |
|
568 | "projval (ALT r1 r2) c (Right v2) = Right (projval r2 c v2)" |
|
569 | "projval (SEQ r1 r2) c (Seq v1 v2) = |
|
570 (if flat v1 = [] then Right(projval r2 c v2) |
|
571 else if nullable r1 then Left (Seq (projval r1 c v1) v2) |
|
572 else Seq (projval r1 c v1) v2)" |
|
573 |
|
574 |
|
575 |
|
576 lemma mkeps_nullable: |
|
577 assumes "nullable(r)" |
|
578 shows "\<turnstile> mkeps r : r" |
|
579 using assms |
|
580 apply(induct rule: nullable.induct) |
|
581 apply(auto intro: Prf.intros) |
|
582 done |
|
583 |
|
584 lemma mkeps_flat: |
|
585 assumes "nullable(r)" |
|
586 shows "flat (mkeps r) = []" |
|
587 using assms |
|
588 apply(induct rule: nullable.induct) |
|
589 apply(auto) |
|
590 done |
|
591 |
|
592 lemma v3: |
|
593 assumes "\<turnstile> v : der c r" |
|
594 shows "\<turnstile> (injval r c v) : r" |
|
595 using assms |
|
596 apply(induct arbitrary: v rule: der.induct) |
|
597 apply(simp) |
|
598 apply(erule Prf.cases) |
|
599 apply(simp_all)[5] |
|
600 apply(simp) |
|
601 apply(erule Prf.cases) |
|
602 apply(simp_all)[5] |
|
603 apply(case_tac "c = c'") |
|
604 apply(simp) |
|
605 apply(erule Prf.cases) |
|
606 apply(simp_all)[5] |
|
607 apply (metis Prf.intros(5)) |
|
608 apply(simp) |
|
609 apply(erule Prf.cases) |
|
610 apply(simp_all)[5] |
|
611 apply(simp) |
|
612 apply(erule Prf.cases) |
|
613 apply(simp_all)[5] |
|
614 apply (metis Prf.intros(2)) |
|
615 apply (metis Prf.intros(3)) |
|
616 apply(simp) |
|
617 apply(case_tac "nullable r1") |
|
618 apply(simp) |
|
619 apply(erule Prf.cases) |
|
620 apply(simp_all)[5] |
|
621 apply(auto)[1] |
|
622 apply(erule Prf.cases) |
|
623 apply(simp_all)[5] |
|
624 apply(auto)[1] |
|
625 apply (metis Prf.intros(1)) |
|
626 apply(auto)[1] |
|
627 apply (metis Prf.intros(1) mkeps_nullable) |
|
628 apply(simp) |
|
629 apply(erule Prf.cases) |
|
630 apply(simp_all)[5] |
|
631 apply(auto)[1] |
|
632 apply(rule Prf.intros) |
|
633 apply(auto)[2] |
|
634 done |
|
635 |
|
636 lemma v3_proj: |
|
637 assumes "\<turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
638 shows "\<turnstile> (projval r c v) : der c r" |
|
639 using assms |
|
640 apply(induct rule: Prf.induct) |
|
641 prefer 4 |
|
642 apply(simp) |
|
643 prefer 4 |
|
644 apply(simp) |
|
645 apply (metis Prf.intros(4)) |
|
646 prefer 2 |
|
647 apply(simp) |
|
648 apply (metis Prf.intros(2)) |
|
649 prefer 2 |
|
650 apply(simp) |
|
651 apply (metis Prf.intros(3)) |
|
652 apply(auto) |
|
653 apply(rule Prf.intros) |
|
654 apply(simp) |
|
655 apply (metis Prf_flat_L nullable_correctness) |
|
656 apply(rule Prf.intros) |
|
657 apply(rule Prf.intros) |
|
658 apply (metis Cons_eq_append_conv) |
|
659 apply(simp) |
|
660 apply(rule Prf.intros) |
|
661 apply (metis Cons_eq_append_conv) |
|
662 apply(simp) |
|
663 done |
|
664 |
|
665 lemma v4: |
|
666 assumes "\<turnstile> v : der c r" |
|
667 shows "flat (injval r c v) = c # (flat v)" |
|
668 using assms |
|
669 apply(induct arbitrary: v rule: der.induct) |
|
670 apply(simp) |
|
671 apply(erule Prf.cases) |
|
672 apply(simp_all)[5] |
|
673 apply(simp) |
|
674 apply(erule Prf.cases) |
|
675 apply(simp_all)[5] |
|
676 apply(simp) |
|
677 apply(case_tac "c = c'") |
|
678 apply(simp) |
|
679 apply(auto)[1] |
|
680 apply(erule Prf.cases) |
|
681 apply(simp_all)[5] |
|
682 apply(simp) |
|
683 apply(erule Prf.cases) |
|
684 apply(simp_all)[5] |
|
685 apply(simp) |
|
686 apply(erule Prf.cases) |
|
687 apply(simp_all)[5] |
|
688 apply(simp) |
|
689 apply(case_tac "nullable r1") |
|
690 apply(simp) |
|
691 apply(erule Prf.cases) |
|
692 apply(simp_all (no_asm_use))[5] |
|
693 apply(auto)[1] |
|
694 apply(erule Prf.cases) |
|
695 apply(simp_all)[5] |
|
696 apply(clarify) |
|
697 apply(simp only: injval.simps flat.simps) |
|
698 apply(auto)[1] |
|
699 apply (metis mkeps_flat) |
|
700 apply(simp) |
|
701 apply(erule Prf.cases) |
|
702 apply(simp_all)[5] |
|
703 done |
|
704 |
|
705 lemma v4_proj: |
|
706 assumes "\<turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
707 shows "c # flat (projval r c v) = flat v" |
|
708 using assms |
|
709 apply(induct rule: Prf.induct) |
|
710 prefer 4 |
|
711 apply(simp) |
|
712 prefer 4 |
|
713 apply(simp) |
|
714 prefer 2 |
|
715 apply(simp) |
|
716 prefer 2 |
|
717 apply(simp) |
|
718 apply(auto) |
|
719 by (metis Cons_eq_append_conv) |
|
720 |
|
721 lemma v4_proj2: |
|
722 assumes "\<turnstile> v : r" and "(flat v) = c # s" |
|
723 shows "flat (projval r c v) = s" |
|
724 using assms |
|
725 by (metis list.inject v4_proj) |
|
726 |
|
727 |
|
728 section {* Alternative Posix definition *} |
|
729 |
|
730 inductive |
|
731 PMatch :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100) |
|
732 where |
|
733 "[] \<in> EMPTY \<rightarrow> Void" |
|
734 | "[c] \<in> (CHAR c) \<rightarrow> (Char c)" |
|
735 | "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)" |
|
736 | "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)" |
|
737 | "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2; |
|
738 \<not>(\<exists>s3 s4. s3 \<noteq> [] \<and> s3 @ s4 = s2 \<and> (s1 @ s3) \<in> L r1 \<and> s4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
739 (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)" |
|
740 |
|
741 |
|
742 lemma PMatch_mkeps: |
|
743 assumes "nullable r" |
|
744 shows "[] \<in> r \<rightarrow> mkeps r" |
|
745 using assms |
|
746 apply(induct r) |
|
747 apply(auto) |
|
748 apply (metis PMatch.intros(1)) |
|
749 apply(subst append.simps(1)[symmetric]) |
|
750 apply (rule PMatch.intros) |
|
751 apply(simp) |
|
752 apply(simp) |
|
753 apply(auto)[1] |
|
754 apply (rule PMatch.intros) |
|
755 apply(simp) |
|
756 apply (rule PMatch.intros) |
|
757 apply(simp) |
|
758 apply (rule PMatch.intros) |
|
759 apply(simp) |
|
760 by (metis nullable_correctness) |
|
761 |
|
762 |
|
763 lemma PMatch1: |
|
764 assumes "s \<in> r \<rightarrow> v" |
|
765 shows "\<turnstile> v : r" "flat v = s" |
|
766 using assms |
|
767 apply(induct s r v rule: PMatch.induct) |
|
768 apply(auto) |
|
769 apply (metis Prf.intros(4)) |
|
770 apply (metis Prf.intros(5)) |
|
771 apply (metis Prf.intros(2)) |
|
772 apply (metis Prf.intros(3)) |
|
773 apply (metis Prf.intros(1)) |
|
774 done |
|
775 |
|
776 lemma PMatch_Values: |
|
777 assumes "s \<in> r \<rightarrow> v" |
|
778 shows "v \<in> Values r s" |
|
779 using assms |
|
780 apply(simp add: Values_def PMatch1) |
|
781 by (metis append_Nil2 prefix_def) |
|
782 |
|
783 lemma PMatch2: |
|
784 assumes "s \<in> (der c r) \<rightarrow> v" |
|
785 shows "(c#s) \<in> r \<rightarrow> (injval r c v)" |
|
786 using assms |
|
787 apply(induct c r arbitrary: s v rule: der.induct) |
|
788 apply(auto) |
|
789 apply(erule PMatch.cases) |
|
790 apply(simp_all)[5] |
|
791 apply(erule PMatch.cases) |
|
792 apply(simp_all)[5] |
|
793 apply(case_tac "c = c'") |
|
794 apply(simp) |
|
795 apply(erule PMatch.cases) |
|
796 apply(simp_all)[5] |
|
797 apply (metis PMatch.intros(2)) |
|
798 apply(simp) |
|
799 apply(erule PMatch.cases) |
|
800 apply(simp_all)[5] |
|
801 apply(erule PMatch.cases) |
|
802 apply(simp_all)[5] |
|
803 apply (metis PMatch.intros(3)) |
|
804 apply(clarify) |
|
805 apply(rule PMatch.intros) |
|
806 apply metis |
|
807 apply(simp add: L_flat_Prf) |
|
808 apply(auto)[1] |
|
809 thm v3_proj |
|
810 apply(frule_tac c="c" in v3_proj) |
|
811 apply metis |
|
812 apply(drule_tac x="projval r1 c v" in spec) |
|
813 apply(drule mp) |
|
814 apply (metis v4_proj2) |
|
815 apply(simp) |
|
816 apply(case_tac "nullable r1") |
|
817 apply(simp) |
|
818 defer |
|
819 apply(simp) |
|
820 apply(erule PMatch.cases) |
|
821 apply(simp_all)[5] |
|
822 apply(clarify) |
|
823 apply(subst append.simps(2)[symmetric]) |
|
824 apply(rule PMatch.intros) |
|
825 apply metis |
|
826 apply metis |
|
827 apply(auto)[1] |
|
828 apply(simp add: L_flat_Prf) |
|
829 apply(auto)[1] |
|
830 apply(frule_tac c="c" in v3_proj) |
|
831 apply metis |
|
832 apply(drule_tac x="s3" in spec) |
|
833 apply(drule mp) |
|
834 apply(rule_tac x="projval r1 c v" in exI) |
|
835 apply(rule conjI) |
|
836 apply (metis v4_proj2) |
|
837 apply(simp) |
|
838 apply metis |
|
839 (* nullable case *) |
|
840 apply(erule PMatch.cases) |
|
841 apply(simp_all)[5] |
|
842 apply(clarify) |
|
843 apply(erule PMatch.cases) |
|
844 apply(simp_all)[5] |
|
845 apply(clarify) |
|
846 apply(subst append.simps(2)[symmetric]) |
|
847 apply(rule PMatch.intros) |
|
848 apply metis |
|
849 apply metis |
|
850 apply(auto)[1] |
|
851 apply(simp add: L_flat_Prf) |
|
852 apply(auto)[1] |
|
853 apply(frule_tac c="c" in v3_proj) |
|
854 apply metis |
|
855 apply(drule_tac x="s3" in spec) |
|
856 apply(drule mp) |
|
857 apply (metis v4_proj2) |
|
858 apply(simp) |
|
859 (* interesting case *) |
|
860 apply(clarify) |
|
861 apply(simp) |
|
862 thm L.simps |
|
863 apply(subst (asm) L.simps(4)[symmetric]) |
|
864 apply(simp only: L_flat_Prf) |
|
865 apply(simp) |
|
866 apply(subst append.simps(1)[symmetric]) |
|
867 apply(rule PMatch.intros) |
|
868 apply (metis PMatch_mkeps) |
|
869 apply metis |
|
870 apply(auto) |
|
871 apply(simp only: L_flat_Prf) |
|
872 apply(simp) |
|
873 apply(auto) |
|
874 apply(drule_tac x="Seq (projval r1 c v) vb" in spec) |
|
875 apply(drule mp) |
|
876 apply(simp) |
|
877 apply (metis append_Cons butlast_snoc last_snoc neq_Nil_conv rotate1.simps(2) v4_proj2) |
|
878 apply(subgoal_tac "\<turnstile> projval r1 c v : der c r1") |
|
879 apply (metis Prf.intros(1)) |
|
880 apply(rule v3_proj) |
|
881 apply(simp) |
|
882 by (metis Cons_eq_append_conv) |
|
883 |
|
884 lemma lex_correct1: |
|
885 assumes "s \<notin> L r" |
|
886 shows "lex r s = None" |
|
887 using assms |
|
888 apply(induct s arbitrary: r) |
|
889 apply(simp) |
|
890 apply (metis nullable_correctness) |
|
891 apply(auto) |
|
892 apply(drule_tac x="der a r" in meta_spec) |
|
893 apply(drule meta_mp) |
|
894 apply(auto) |
|
895 apply(simp add: L_flat_Prf) |
|
896 by (metis v3 v4) |
|
897 |
|
898 |
|
899 lemma lex_correct2: |
|
900 assumes "s \<in> L r" |
|
901 shows "\<exists>v. lex r s = Some(v) \<and> \<turnstile> v : r \<and> flat v = s" |
|
902 using assms |
|
903 apply(induct s arbitrary: r) |
|
904 apply(simp) |
|
905 apply (metis mkeps_flat mkeps_nullable nullable_correctness) |
|
906 apply(drule_tac x="der a r" in meta_spec) |
|
907 apply(drule meta_mp) |
|
908 apply(simp add: L_flat_Prf) |
|
909 apply(auto) |
|
910 apply (metis v3_proj v4_proj2) |
|
911 apply (metis v3) |
|
912 apply(rule v4) |
|
913 by metis |
|
914 |
|
915 lemma lex_correct3: |
|
916 assumes "s \<in> L r" |
|
917 shows "\<exists>v. lex r s = Some(v) \<and> s \<in> r \<rightarrow> v" |
|
918 using assms |
|
919 apply(induct s arbitrary: r) |
|
920 apply(simp) |
|
921 apply (metis PMatch_mkeps nullable_correctness) |
|
922 apply(drule_tac x="der a r" in meta_spec) |
|
923 apply(drule meta_mp) |
|
924 apply(simp add: L_flat_Prf) |
|
925 apply(auto) |
|
926 apply (metis v3_proj v4_proj2) |
|
927 apply(rule PMatch2) |
|
928 apply(simp) |
|
929 done |
|
930 |
|
931 lemma lex_correct4: |
|
932 assumes "s \<in> L r" |
|
933 shows "s \<in> r \<rightarrow> (lex2 r s)" |
|
934 using assms |
|
935 apply(induct s arbitrary: r) |
|
936 apply(simp) |
|
937 apply (metis PMatch_mkeps nullable_correctness) |
|
938 apply(simp) |
|
939 apply(rule PMatch2) |
|
940 apply(drule_tac x="der a r" in meta_spec) |
|
941 apply(drule meta_mp) |
|
942 apply(simp add: L_flat_Prf) |
|
943 apply(auto) |
|
944 apply (metis v3_proj v4_proj2) |
|
945 done |
|
946 |
|
947 lemma |
|
948 "lex2 (ALT (CHAR a) (ALT (CHAR b) (SEQ (CHAR a) (CHAR b)))) [a,b] = Right (Right (Seq (Char a) (Char b)))" |
|
949 apply(simp) |
|
950 done |
|
951 |
|
952 |
|
953 section {* Sulzmann's Ordering of values *} |
|
954 |
|
955 thm PMatch.intros |
|
956 |
|
957 inductive ValOrd :: "string \<Rightarrow> val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<turnstile> _ \<succ>_ _" [100, 100, 100, 100] 100) |
|
958 where |
|
959 "\<lbrakk>s2 \<turnstile> v2 \<succ>r2 v2'; flat v1 = s1\<rbrakk> \<Longrightarrow> (s1 @ s2) \<turnstile> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
960 | "\<lbrakk>s1 \<turnstile> v1 \<succ>r1 v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
961 | "\<lbrakk>flat v1 \<sqsubseteq> s; flat v2 \<sqsubseteq> flat v1\<rbrakk> \<Longrightarrow> s \<turnstile> (Left v1) \<succ>(ALT r1 r2) (Right v2)" |
|
962 | "\<lbrakk>flat v2 \<sqsubseteq> s; flat v1 \<sqsubset> flat v2\<rbrakk> \<Longrightarrow> s \<turnstile> (Right v2) \<succ>(ALT r1 r2) (Left v1)" |
|
963 | "s \<turnstile> v2 \<succ>r2 v2' \<Longrightarrow> s \<turnstile> (Right v2) \<succ>(ALT r1 r2) (Right v2')" |
|
964 | "s \<turnstile> v1 \<succ>r1 v1' \<Longrightarrow> s \<turnstile> (Left v1) \<succ>(ALT r1 r2) (Left v1')" |
|
965 | "s \<turnstile> Void \<succ>EMPTY Void" |
|
966 | "(c#s) \<turnstile> (Char c) \<succ>(CHAR c) (Char c)" |
|
967 |
|
968 |
|
969 inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<succ>_ _" [100, 100, 100] 100) |
|
970 where |
|
971 "v2 \<succ>r2 v2' \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
972 | "\<lbrakk>v1 \<succ>r1 v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
973 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Right v2)" |
|
974 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Left v1)" |
|
975 | "v2 \<succ>r2 v2' \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Right v2')" |
|
976 | "v1 \<succ>r1 v1' \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Left v1')" |
|
977 | "Void \<succ>EMPTY Void" |
|
978 | "(Char c) \<succ>(CHAR c) (Char c)" |
|
979 |
|
980 lemma ValOrd_PMatch: |
|
981 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 \<sqsubseteq> s" |
|
982 shows "v1 \<succ>r v2" |
|
983 using assms |
|
984 apply(induct r arbitrary: s v1 v2 rule: rexp.induct) |
|
985 apply(erule Prf.cases) |
|
986 apply(simp_all)[5] |
|
987 apply(erule Prf.cases) |
|
988 apply(simp_all)[5] |
|
989 apply(erule PMatch.cases) |
|
990 apply(simp_all)[5] |
|
991 apply (metis ValOrd.intros(7)) |
|
992 apply(erule Prf.cases) |
|
993 apply(simp_all)[5] |
|
994 apply(erule PMatch.cases) |
|
995 apply(simp_all)[5] |
|
996 apply (metis ValOrd.intros(8)) |
|
997 defer |
|
998 apply(erule Prf.cases) |
|
999 apply(simp_all)[5] |
|
1000 apply(erule PMatch.cases) |
|
1001 apply(simp_all)[5] |
|
1002 apply (metis ValOrd.intros(6)) |
|
1003 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
1004 apply(clarify) |
|
1005 apply(erule PMatch.cases) |
|
1006 apply(simp_all)[5] |
|
1007 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
1008 apply(clarify) |
|
1009 apply (metis ValOrd.intros(5)) |
|
1010 (* Seq case *) |
|
1011 apply(erule Prf.cases) |
|
1012 apply(simp_all)[5] |
|
1013 apply(auto) |
|
1014 apply(erule PMatch.cases) |
|
1015 apply(simp_all)[5] |
|
1016 apply(auto) |
|
1017 apply(case_tac "v1b = v1a") |
|
1018 apply(auto) |
|
1019 apply(simp add: prefix_def) |
|
1020 apply(auto)[1] |
|
1021 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
1022 apply(simp add: prefix_def) |
|
1023 apply(auto)[1] |
|
1024 apply(simp add: append_eq_append_conv2) |
|
1025 apply(auto) |
|
1026 prefer 2 |
|
1027 apply (metis ValOrd.intros(2)) |
|
1028 prefer 2 |
|
1029 apply (metis ValOrd.intros(2)) |
|
1030 apply(case_tac "us = []") |
|
1031 apply(simp) |
|
1032 apply (metis ValOrd.intros(2) append_Nil2) |
|
1033 apply(drule_tac x="us" in spec) |
|
1034 apply(simp) |
|
1035 apply(drule_tac mp) |
|
1036 apply (metis Prf_flat_L) |
|
1037 apply(drule_tac x="s1 @ us" in meta_spec) |
|
1038 apply(drule_tac x="v1b" in meta_spec) |
|
1039 apply(drule_tac x="v1a" in meta_spec) |
|
1040 apply(drule_tac meta_mp) |
|
1041 |
|
1042 apply(simp) |
|
1043 apply(drule_tac meta_mp) |
|
1044 apply(simp) |
|
1045 apply(simp) |
|
1046 apply(simp) |
|
1047 apply(clarify) |
|
1048 apply (metis ValOrd.intros(6)) |
|
1049 apply(clarify) |
|
1050 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
1051 apply(erule Prf.cases) |
|
1052 apply(simp_all)[5] |
|
1053 apply(clarify) |
|
1054 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
1055 apply (metis ValOrd.intros(5)) |
|
1056 (* Seq case *) |
|
1057 apply(erule Prf.cases) |
|
1058 apply(simp_all)[5] |
|
1059 apply(auto) |
|
1060 apply(case_tac "v1 = v1a") |
|
1061 apply(auto) |
|
1062 apply(simp add: prefix_def) |
|
1063 apply(auto)[1] |
|
1064 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
1065 apply(simp add: prefix_def) |
|
1066 apply(auto)[1] |
|
1067 apply(frule PMatch1) |
|
1068 apply(frule PMatch1(2)[symmetric]) |
|
1069 apply(clarify) |
|
1070 apply(simp add: append_eq_append_conv2) |
|
1071 apply(auto) |
|
1072 prefer 2 |
|
1073 apply (metis ValOrd.intros(2)) |
|
1074 prefer 2 |
|
1075 apply (metis ValOrd.intros(2)) |
|
1076 apply(case_tac "us = []") |
|
1077 apply(simp) |
|
1078 apply (metis ValOrd.intros(2) append_Nil2) |
|
1079 apply(drule_tac x="us" in spec) |
|
1080 apply(simp) |
|
1081 apply(drule mp) |
|
1082 apply (metis Prf_flat_L) |
|
1083 apply(drule_tac x="v1a" in meta_spec) |
|
1084 apply(drule_tac meta_mp) |
|
1085 apply(simp) |
|
1086 apply(drule_tac meta_mp) |
|
1087 apply(simp) |
|
1088 |
|
1089 lemma ValOrd_PMatch: |
|
1090 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 \<sqsubseteq> s" |
|
1091 shows "v1 \<succ>r v2" |
|
1092 using assms |
|
1093 apply(induct arbitrary: v2 rule: .induct) |
|
1094 apply(erule Prf.cases) |
|
1095 apply(simp_all)[5] |
|
1096 apply (metis ValOrd.intros(7)) |
|
1097 apply(erule Prf.cases) |
|
1098 apply(simp_all)[5] |
|
1099 apply (metis ValOrd.intros(8)) |
|
1100 apply(erule Prf.cases) |
|
1101 apply(simp_all)[5] |
|
1102 apply(clarify) |
|
1103 apply (metis ValOrd.intros(6)) |
|
1104 apply(clarify) |
|
1105 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
1106 apply(erule Prf.cases) |
|
1107 apply(simp_all)[5] |
|
1108 apply(clarify) |
|
1109 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
1110 apply (metis ValOrd.intros(5)) |
|
1111 (* Seq case *) |
|
1112 apply(erule Prf.cases) |
|
1113 apply(simp_all)[5] |
|
1114 apply(auto) |
|
1115 apply(case_tac "v1 = v1a") |
|
1116 apply(auto) |
|
1117 apply(simp add: prefix_def) |
|
1118 apply(auto)[1] |
|
1119 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
1120 apply(simp add: prefix_def) |
|
1121 apply(auto)[1] |
|
1122 apply(frule PMatch1) |
|
1123 apply(frule PMatch1(2)[symmetric]) |
|
1124 apply(clarify) |
|
1125 apply(simp add: append_eq_append_conv2) |
|
1126 apply(auto) |
|
1127 prefer 2 |
|
1128 apply (metis ValOrd.intros(2)) |
|
1129 prefer 2 |
|
1130 apply (metis ValOrd.intros(2)) |
|
1131 apply(case_tac "us = []") |
|
1132 apply(simp) |
|
1133 apply (metis ValOrd.intros(2) append_Nil2) |
|
1134 apply(drule_tac x="us" in spec) |
|
1135 apply(simp) |
|
1136 apply(drule mp) |
|
1137 apply (metis Prf_flat_L) |
|
1138 apply(drule_tac x="v1a" in meta_spec) |
|
1139 apply(drule_tac meta_mp) |
|
1140 apply(simp) |
|
1141 apply(drule_tac meta_mp) |
|
1142 apply(simp) |
|
1143 |
|
1144 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
1145 apply(rule ValOrd.intros(2)) |
|
1146 apply(auto) |
|
1147 apply(drule_tac x="v1a" in meta_spec) |
|
1148 apply(drule_tac meta_mp) |
|
1149 apply(simp) |
|
1150 apply(drule_tac meta_mp) |
|
1151 prefer 2 |
|
1152 apply(simp) |
|
1153 thm append_eq_append_conv |
|
1154 apply(simp add: append_eq_append_conv2) |
|
1155 apply(auto) |
|
1156 apply (metis Prf_flat_L) |
|
1157 apply(case_tac "us = []") |
|
1158 apply(simp) |
|
1159 apply(drule_tac x="us" in spec) |
|
1160 apply(drule mp) |
|
1161 |
|
1162 |
|
1163 inductive ValOrd2 :: "val \<Rightarrow> val \<Rightarrow> bool" ("_ 2\<succ> _" [100, 100] 100) |
|
1164 where |
|
1165 "v2 2\<succ> v2' \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1 v2')" |
|
1166 | "\<lbrakk>v1 2\<succ> v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1' v2')" |
|
1167 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) 2\<succ> (Right v2)" |
|
1168 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) 2\<succ> (Left v1)" |
|
1169 | "v2 2\<succ> v2' \<Longrightarrow> (Right v2) 2\<succ> (Right v2')" |
|
1170 | "v1 2\<succ> v1' \<Longrightarrow> (Left v1) 2\<succ> (Left v1')" |
|
1171 | "Void 2\<succ> Void" |
|
1172 | "(Char c) 2\<succ> (Char c)" |
|
1173 |
|
1174 lemma Ord1: |
|
1175 "v1 \<succ>r v2 \<Longrightarrow> v1 2\<succ> v2" |
|
1176 apply(induct rule: ValOrd.induct) |
|
1177 apply(auto intro: ValOrd2.intros) |
|
1178 done |
|
1179 |
|
1180 lemma Ord2: |
|
1181 "v1 2\<succ> v2 \<Longrightarrow> \<exists>r. v1 \<succ>r v2" |
|
1182 apply(induct v1 v2 rule: ValOrd2.induct) |
|
1183 apply(auto intro: ValOrd.intros) |
|
1184 done |
|
1185 |
|
1186 lemma Ord3: |
|
1187 "\<lbrakk>v1 2\<succ> v2; \<turnstile> v1 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2" |
|
1188 apply(induct v1 v2 arbitrary: r rule: ValOrd2.induct) |
|
1189 apply(auto intro: ValOrd.intros elim: Prf.cases) |
|
1190 done |
|
1191 |
|
1192 section {* Posix definition *} |
|
1193 |
|
1194 definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
1195 where |
|
1196 "POSIX v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v' \<sqsubseteq> flat v) \<longrightarrow> v \<succ>r v'))" |
|
1197 |
|
1198 lemma ValOrd_refl: |
|
1199 assumes "\<turnstile> v : r" |
|
1200 shows "v \<succ>r v" |
|
1201 using assms |
|
1202 apply(induct) |
|
1203 apply(auto intro: ValOrd.intros) |
|
1204 done |
|
1205 |
|
1206 lemma ValOrd_total: |
|
1207 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2 \<or> v2 \<succ>r v1" |
|
1208 apply(induct r arbitrary: v1 v2) |
|
1209 apply(auto) |
|
1210 apply(erule Prf.cases) |
|
1211 apply(simp_all)[5] |
|
1212 apply(erule Prf.cases) |
|
1213 apply(simp_all)[5] |
|
1214 apply(erule Prf.cases) |
|
1215 apply(simp_all)[5] |
|
1216 apply (metis ValOrd.intros(7)) |
|
1217 apply(erule Prf.cases) |
|
1218 apply(simp_all)[5] |
|
1219 apply(erule Prf.cases) |
|
1220 apply(simp_all)[5] |
|
1221 apply (metis ValOrd.intros(8)) |
|
1222 apply(erule Prf.cases) |
|
1223 apply(simp_all)[5] |
|
1224 apply(erule Prf.cases) |
|
1225 apply(simp_all)[5] |
|
1226 apply(clarify) |
|
1227 apply(case_tac "v1a = v1b") |
|
1228 apply(simp) |
|
1229 apply(rule ValOrd.intros(1)) |
|
1230 apply (metis ValOrd.intros(1)) |
|
1231 apply(rule ValOrd.intros(2)) |
|
1232 apply(auto)[2] |
|
1233 apply(erule contrapos_np) |
|
1234 apply(rule ValOrd.intros(2)) |
|
1235 apply(auto) |
|
1236 apply(erule Prf.cases) |
|
1237 apply(simp_all)[5] |
|
1238 apply(erule Prf.cases) |
|
1239 apply(simp_all)[5] |
|
1240 apply (metis Ord1 Ord3 Prf.intros(2) ValOrd2.intros(6)) |
|
1241 apply(rule ValOrd.intros) |
|
1242 apply(erule contrapos_np) |
|
1243 apply(rule ValOrd.intros) |
|
1244 apply (metis le_eq_less_or_eq neq_iff) |
|
1245 apply(erule Prf.cases) |
|
1246 apply(simp_all)[5] |
|
1247 apply(rule ValOrd.intros) |
|
1248 apply(erule contrapos_np) |
|
1249 apply(rule ValOrd.intros) |
|
1250 apply (metis le_eq_less_or_eq neq_iff) |
|
1251 apply(rule ValOrd.intros) |
|
1252 apply(erule contrapos_np) |
|
1253 apply(rule ValOrd.intros) |
|
1254 by metis |
|
1255 |
|
1256 lemma ValOrd_anti: |
|
1257 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r; v1 \<succ>r v2; v2 \<succ>r v1\<rbrakk> \<Longrightarrow> v1 = v2" |
|
1258 apply(induct r arbitrary: v1 v2) |
|
1259 apply(erule Prf.cases) |
|
1260 apply(simp_all)[5] |
|
1261 apply(erule Prf.cases) |
|
1262 apply(simp_all)[5] |
|
1263 apply(erule Prf.cases) |
|
1264 apply(simp_all)[5] |
|
1265 apply(erule Prf.cases) |
|
1266 apply(simp_all)[5] |
|
1267 apply(erule Prf.cases) |
|
1268 apply(simp_all)[5] |
|
1269 apply(erule Prf.cases) |
|
1270 apply(simp_all)[5] |
|
1271 apply(erule Prf.cases) |
|
1272 apply(simp_all)[5] |
|
1273 apply(erule ValOrd.cases) |
|
1274 apply(simp_all)[8] |
|
1275 apply(erule ValOrd.cases) |
|
1276 apply(simp_all)[8] |
|
1277 apply(erule ValOrd.cases) |
|
1278 apply(simp_all)[8] |
|
1279 apply(erule Prf.cases) |
|
1280 apply(simp_all)[5] |
|
1281 apply(erule Prf.cases) |
|
1282 apply(simp_all)[5] |
|
1283 apply(erule ValOrd.cases) |
|
1284 apply(simp_all)[8] |
|
1285 apply(erule ValOrd.cases) |
|
1286 apply(simp_all)[8] |
|
1287 apply(erule ValOrd.cases) |
|
1288 apply(simp_all)[8] |
|
1289 apply(erule ValOrd.cases) |
|
1290 apply(simp_all)[8] |
|
1291 apply(erule Prf.cases) |
|
1292 apply(simp_all)[5] |
|
1293 apply(erule ValOrd.cases) |
|
1294 apply(simp_all)[8] |
|
1295 apply(erule ValOrd.cases) |
|
1296 apply(simp_all)[8] |
|
1297 apply(erule ValOrd.cases) |
|
1298 apply(simp_all)[8] |
|
1299 apply(erule ValOrd.cases) |
|
1300 apply(simp_all)[8] |
|
1301 done |
|
1302 |
|
1303 lemma POSIX_ALT_I1: |
|
1304 assumes "POSIX v1 r1" |
|
1305 shows "POSIX (Left v1) (ALT r1 r2)" |
|
1306 using assms |
|
1307 unfolding POSIX_def |
|
1308 apply(auto) |
|
1309 apply (metis Prf.intros(2)) |
|
1310 apply(rotate_tac 2) |
|
1311 apply(erule Prf.cases) |
|
1312 apply(simp_all)[5] |
|
1313 apply(auto) |
|
1314 apply(rule ValOrd.intros) |
|
1315 apply(auto) |
|
1316 apply(rule ValOrd.intros) |
|
1317 by (metis le_eq_less_or_eq length_sprefix sprefix_def) |
|
1318 |
|
1319 lemma POSIX_ALT_I2: |
|
1320 assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')" |
|
1321 shows "POSIX (Right v2) (ALT r1 r2)" |
|
1322 using assms |
|
1323 unfolding POSIX_def |
|
1324 apply(auto) |
|
1325 apply (metis Prf.intros) |
|
1326 apply(rotate_tac 3) |
|
1327 apply(erule Prf.cases) |
|
1328 apply(simp_all)[5] |
|
1329 apply(auto) |
|
1330 apply(rule ValOrd.intros) |
|
1331 apply metis |
|
1332 apply(rule ValOrd.intros) |
|
1333 apply metis |
|
1334 done |
|
1335 |
|
1336 thm PMatch.intros[no_vars] |
|
1337 |
|
1338 lemma POSIX_PMatch: |
|
1339 assumes "s \<in> r \<rightarrow> v" "\<turnstile> v' : r" |
|
1340 shows "length (flat v') \<le> length (flat v)" |
|
1341 using assms |
|
1342 apply(induct arbitrary: s v v' rule: rexp.induct) |
|
1343 apply(erule Prf.cases) |
|
1344 apply(simp_all)[5] |
|
1345 apply(erule Prf.cases) |
|
1346 apply(simp_all)[5] |
|
1347 apply(erule Prf.cases) |
|
1348 apply(simp_all)[5] |
|
1349 apply(erule PMatch.cases) |
|
1350 apply(simp_all)[5] |
|
1351 defer |
|
1352 apply(erule Prf.cases) |
|
1353 apply(simp_all)[5] |
|
1354 apply(erule PMatch.cases) |
|
1355 apply(simp_all)[5] |
|
1356 apply(clarify) |
|
1357 apply(simp add: L_flat_Prf) |
|
1358 |
|
1359 apply(clarify) |
|
1360 apply (metis ValOrd.intros(8)) |
|
1361 apply (metis POSIX_ALT_I1) |
|
1362 apply(rule POSIX_ALT_I2) |
|
1363 apply(simp) |
|
1364 apply(auto)[1] |
|
1365 apply(simp add: POSIX_def) |
|
1366 apply(frule PMatch1(1)) |
|
1367 apply(frule PMatch1(2)) |
|
1368 apply(simp) |
|
1369 |
|
1370 |
|
1371 lemma POSIX_PMatch: |
|
1372 assumes "s \<in> r \<rightarrow> v" |
|
1373 shows "POSIX v r" |
|
1374 using assms |
|
1375 apply(induct arbitrary: rule: PMatch.induct) |
|
1376 apply(auto) |
|
1377 apply(simp add: POSIX_def) |
|
1378 apply(auto)[1] |
|
1379 apply (metis Prf.intros(4)) |
|
1380 apply(erule Prf.cases) |
|
1381 apply(simp_all)[5] |
|
1382 apply (metis ValOrd.intros(7)) |
|
1383 apply(simp add: POSIX_def) |
|
1384 apply(auto)[1] |
|
1385 apply (metis Prf.intros(5)) |
|
1386 apply(erule Prf.cases) |
|
1387 apply(simp_all)[5] |
|
1388 apply (metis ValOrd.intros(8)) |
|
1389 apply (metis POSIX_ALT_I1) |
|
1390 apply(rule POSIX_ALT_I2) |
|
1391 apply(simp) |
|
1392 apply(auto)[1] |
|
1393 apply(simp add: POSIX_def) |
|
1394 apply(frule PMatch1(1)) |
|
1395 apply(frule PMatch1(2)) |
|
1396 apply(simp) |
|
1397 |
|
1398 |
|
1399 |
|
1400 lemma ValOrd_PMatch: |
|
1401 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 = s" |
|
1402 shows "v1 \<succ>r v2" |
|
1403 using assms |
|
1404 apply(induct arbitrary: v2 rule: PMatch.induct) |
|
1405 apply(erule Prf.cases) |
|
1406 apply(simp_all)[5] |
|
1407 apply (metis ValOrd.intros(7)) |
|
1408 apply(erule Prf.cases) |
|
1409 apply(simp_all)[5] |
|
1410 apply (metis ValOrd.intros(8)) |
|
1411 apply(erule Prf.cases) |
|
1412 apply(simp_all)[5] |
|
1413 apply(clarify) |
|
1414 apply (metis ValOrd.intros(6)) |
|
1415 apply(clarify) |
|
1416 apply (metis PMatch1(2) ValOrd.intros(3) order_refl) |
|
1417 apply(erule Prf.cases) |
|
1418 apply(simp_all)[5] |
|
1419 apply(clarify) |
|
1420 apply (metis Prf_flat_L) |
|
1421 apply (metis ValOrd.intros(5)) |
|
1422 (* Seq case *) |
|
1423 apply(erule Prf.cases) |
|
1424 apply(simp_all)[5] |
|
1425 apply(auto) |
|
1426 apply(case_tac "v1 = v1a") |
|
1427 apply(auto) |
|
1428 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
1429 apply(rule ValOrd.intros(2)) |
|
1430 apply(auto) |
|
1431 apply(drule_tac x="v1a" in meta_spec) |
|
1432 apply(drule_tac meta_mp) |
|
1433 apply(simp) |
|
1434 apply(drule_tac meta_mp) |
|
1435 prefer 2 |
|
1436 apply(simp) |
|
1437 apply(simp add: append_eq_append_conv2) |
|
1438 apply(auto) |
|
1439 apply (metis Prf_flat_L) |
|
1440 apply(case_tac "us = []") |
|
1441 apply(simp) |
|
1442 apply(drule_tac x="us" in spec) |
|
1443 apply(drule mp) |
|
1444 |
|
1445 thm L_flat_Prf |
|
1446 apply(simp add: L_flat_Prf) |
|
1447 thm append_eq_append_conv2 |
|
1448 apply(simp add: append_eq_append_conv2) |
|
1449 apply(auto) |
|
1450 apply(drule_tac x="us" in spec) |
|
1451 apply(drule mp) |
|
1452 apply metis |
|
1453 apply (metis append_Nil2) |
|
1454 apply(case_tac "us = []") |
|
1455 apply(auto) |
|
1456 apply(drule_tac x="s2" in spec) |
|
1457 apply(drule mp) |
|
1458 |
|
1459 apply(auto)[1] |
|
1460 apply(drule_tac x="v1a" in meta_spec) |
|
1461 apply(simp) |
|
1462 |
|
1463 lemma refl_on_ValOrd: |
|
1464 "refl_on (Values r s) {(v1, v2). v1 \<succ>r v2 \<and> v1 \<in> Values r s \<and> v2 \<in> Values r s}" |
|
1465 unfolding refl_on_def |
|
1466 apply(auto) |
|
1467 apply(rule ValOrd_refl) |
|
1468 apply(simp add: Values_def) |
|
1469 done |
|
1470 |
|
1471 |
|
1472 section {* Posix definition *} |
|
1473 |
|
1474 definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
1475 where |
|
1476 "POSIX v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v \<succ>r v'))" |
|
1477 |
|
1478 definition POSIX2 :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
1479 where |
|
1480 "POSIX2 v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v 2\<succ> v'))" |
|
1481 |
|
1482 lemma "POSIX v r = POSIX2 v r" |
|
1483 unfolding POSIX_def POSIX2_def |
|
1484 apply(auto) |
|
1485 apply(rule Ord1) |
|
1486 apply(auto) |
|
1487 apply(rule Ord3) |
|
1488 apply(auto) |
|
1489 done |
|
1490 |
|
1491 section {* POSIX for some constructors *} |
|
1492 |
|
1493 lemma POSIX_SEQ1: |
|
1494 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
1495 shows "POSIX v1 r1" |
|
1496 using assms |
|
1497 unfolding POSIX_def |
|
1498 apply(auto) |
|
1499 apply(drule_tac x="Seq v' v2" in spec) |
|
1500 apply(simp) |
|
1501 apply(erule impE) |
|
1502 apply(rule Prf.intros) |
|
1503 apply(simp) |
|
1504 apply(simp) |
|
1505 apply(erule ValOrd.cases) |
|
1506 apply(simp_all) |
|
1507 apply(clarify) |
|
1508 by (metis ValOrd_refl) |
|
1509 |
|
1510 lemma POSIX_SEQ2: |
|
1511 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
1512 shows "POSIX v2 r2" |
|
1513 using assms |
|
1514 unfolding POSIX_def |
|
1515 apply(auto) |
|
1516 apply(drule_tac x="Seq v1 v'" in spec) |
|
1517 apply(simp) |
|
1518 apply(erule impE) |
|
1519 apply(rule Prf.intros) |
|
1520 apply(simp) |
|
1521 apply(simp) |
|
1522 apply(erule ValOrd.cases) |
|
1523 apply(simp_all) |
|
1524 done |
|
1525 |
|
1526 lemma POSIX_ALT2: |
|
1527 assumes "POSIX (Left v1) (ALT r1 r2)" |
|
1528 shows "POSIX v1 r1" |
|
1529 using assms |
|
1530 unfolding POSIX_def |
|
1531 apply(auto) |
|
1532 apply(erule Prf.cases) |
|
1533 apply(simp_all)[5] |
|
1534 apply(drule_tac x="Left v'" in spec) |
|
1535 apply(simp) |
|
1536 apply(drule mp) |
|
1537 apply(rule Prf.intros) |
|
1538 apply(auto) |
|
1539 apply(erule ValOrd.cases) |
|
1540 apply(simp_all) |
|
1541 done |
|
1542 |
|
1543 lemma POSIX_ALT1a: |
|
1544 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
1545 shows "POSIX v2 r2" |
|
1546 using assms |
|
1547 unfolding POSIX_def |
|
1548 apply(auto) |
|
1549 apply(erule Prf.cases) |
|
1550 apply(simp_all)[5] |
|
1551 apply(drule_tac x="Right v'" in spec) |
|
1552 apply(simp) |
|
1553 apply(drule mp) |
|
1554 apply(rule Prf.intros) |
|
1555 apply(auto) |
|
1556 apply(erule ValOrd.cases) |
|
1557 apply(simp_all) |
|
1558 done |
|
1559 |
|
1560 lemma POSIX_ALT1b: |
|
1561 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
1562 shows "(\<forall>v'. (\<turnstile> v' : r2 \<and> flat v' = flat v2) \<longrightarrow> v2 \<succ>r2 v')" |
|
1563 using assms |
|
1564 apply(drule_tac POSIX_ALT1a) |
|
1565 unfolding POSIX_def |
|
1566 apply(auto) |
|
1567 done |
|
1568 |
|
1569 lemma POSIX_ALT_I1: |
|
1570 assumes "POSIX v1 r1" |
|
1571 shows "POSIX (Left v1) (ALT r1 r2)" |
|
1572 using assms |
|
1573 unfolding POSIX_def |
|
1574 apply(auto) |
|
1575 apply (metis Prf.intros(2)) |
|
1576 apply(rotate_tac 2) |
|
1577 apply(erule Prf.cases) |
|
1578 apply(simp_all)[5] |
|
1579 apply(auto) |
|
1580 apply(rule ValOrd.intros) |
|
1581 apply(auto) |
|
1582 apply(rule ValOrd.intros) |
|
1583 by simp |
|
1584 |
|
1585 lemma POSIX_ALT_I2: |
|
1586 assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')" |
|
1587 shows "POSIX (Right v2) (ALT r1 r2)" |
|
1588 using assms |
|
1589 unfolding POSIX_def |
|
1590 apply(auto) |
|
1591 apply (metis Prf.intros) |
|
1592 apply(rotate_tac 3) |
|
1593 apply(erule Prf.cases) |
|
1594 apply(simp_all)[5] |
|
1595 apply(auto) |
|
1596 apply(rule ValOrd.intros) |
|
1597 apply metis |
|
1598 done |
|
1599 |
|
1600 lemma mkeps_POSIX: |
|
1601 assumes "nullable r" |
|
1602 shows "POSIX (mkeps r) r" |
|
1603 using assms |
|
1604 apply(induct r) |
|
1605 apply(auto)[1] |
|
1606 apply(simp add: POSIX_def) |
|
1607 apply(auto)[1] |
|
1608 apply (metis Prf.intros(4)) |
|
1609 apply(erule Prf.cases) |
|
1610 apply(simp_all)[5] |
|
1611 apply (metis ValOrd.intros) |
|
1612 apply(simp) |
|
1613 apply(auto)[1] |
|
1614 apply(simp add: POSIX_def) |
|
1615 apply(auto)[1] |
|
1616 apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) |
|
1617 apply(rotate_tac 6) |
|
1618 apply(erule Prf.cases) |
|
1619 apply(simp_all)[5] |
|
1620 apply (simp add: mkeps_flat) |
|
1621 apply(case_tac "mkeps r1a = v1") |
|
1622 apply(simp) |
|
1623 apply (metis ValOrd.intros(1)) |
|
1624 apply (rule ValOrd.intros(2)) |
|
1625 apply metis |
|
1626 apply(simp) |
|
1627 (* ALT case *) |
|
1628 thm mkeps.simps |
|
1629 apply(simp) |
|
1630 apply(erule disjE) |
|
1631 apply(simp) |
|
1632 apply (metis POSIX_ALT_I1) |
|
1633 (* *) |
|
1634 apply(auto)[1] |
|
1635 thm POSIX_ALT_I1 |
|
1636 apply (metis POSIX_ALT_I1) |
|
1637 apply(simp (no_asm) add: POSIX_def) |
|
1638 apply(auto)[1] |
|
1639 apply(rule Prf.intros(3)) |
|
1640 apply(simp only: POSIX_def) |
|
1641 apply(rotate_tac 4) |
|
1642 apply(erule Prf.cases) |
|
1643 apply(simp_all)[5] |
|
1644 thm mkeps_flat |
|
1645 apply(simp add: mkeps_flat) |
|
1646 apply(auto)[1] |
|
1647 thm Prf_flat_L nullable_correctness |
|
1648 apply (metis Prf_flat_L nullable_correctness) |
|
1649 apply(rule ValOrd.intros) |
|
1650 apply(subst (asm) POSIX_def) |
|
1651 apply(clarify) |
|
1652 apply(drule_tac x="v2" in spec) |
|
1653 by simp |
|
1654 |
|
1655 |
|
1656 |
|
1657 text {* |
|
1658 Injection value is related to r |
|
1659 *} |
|
1660 |
|
1661 |
|
1662 |
|
1663 text {* |
|
1664 The string behind the injection value is an added c |
|
1665 *} |
|
1666 |
|
1667 |
|
1668 lemma injval_inj: "inj_on (injval r c) {v. \<turnstile> v : der c r}" |
|
1669 apply(induct c r rule: der.induct) |
|
1670 unfolding inj_on_def |
|
1671 apply(auto)[1] |
|
1672 apply(erule Prf.cases) |
|
1673 apply(simp_all)[5] |
|
1674 apply(auto)[1] |
|
1675 apply(erule Prf.cases) |
|
1676 apply(simp_all)[5] |
|
1677 apply(auto)[1] |
|
1678 apply(erule Prf.cases) |
|
1679 apply(simp_all)[5] |
|
1680 apply(erule Prf.cases) |
|
1681 apply(simp_all)[5] |
|
1682 apply(erule Prf.cases) |
|
1683 apply(simp_all)[5] |
|
1684 apply(auto)[1] |
|
1685 apply(erule Prf.cases) |
|
1686 apply(simp_all)[5] |
|
1687 apply(erule Prf.cases) |
|
1688 apply(simp_all)[5] |
|
1689 apply(erule Prf.cases) |
|
1690 apply(simp_all)[5] |
|
1691 apply(auto)[1] |
|
1692 apply(erule Prf.cases) |
|
1693 apply(simp_all)[5] |
|
1694 apply(erule Prf.cases) |
|
1695 apply(simp_all)[5] |
|
1696 apply(clarify) |
|
1697 apply(erule Prf.cases) |
|
1698 apply(simp_all)[5] |
|
1699 apply(erule Prf.cases) |
|
1700 apply(simp_all)[5] |
|
1701 apply(clarify) |
|
1702 apply(erule Prf.cases) |
|
1703 apply(simp_all)[5] |
|
1704 apply(clarify) |
|
1705 apply (metis list.distinct(1) mkeps_flat v4) |
|
1706 apply(erule Prf.cases) |
|
1707 apply(simp_all)[5] |
|
1708 apply(clarify) |
|
1709 apply(rotate_tac 6) |
|
1710 apply(erule Prf.cases) |
|
1711 apply(simp_all)[5] |
|
1712 apply (metis list.distinct(1) mkeps_flat v4) |
|
1713 apply(erule Prf.cases) |
|
1714 apply(simp_all)[5] |
|
1715 apply(erule Prf.cases) |
|
1716 apply(simp_all)[5] |
|
1717 done |
|
1718 |
|
1719 lemma Values_nullable: |
|
1720 assumes "nullable r1" |
|
1721 shows "mkeps r1 \<in> Values r1 s" |
|
1722 using assms |
|
1723 apply(induct r1 arbitrary: s) |
|
1724 apply(simp_all) |
|
1725 apply(simp add: Values_recs) |
|
1726 apply(simp add: Values_recs) |
|
1727 apply(simp add: Values_recs) |
|
1728 apply(auto)[1] |
|
1729 done |
|
1730 |
|
1731 lemma Values_injval: |
|
1732 assumes "v \<in> Values (der c r) s" |
|
1733 shows "injval r c v \<in> Values r (c#s)" |
|
1734 using assms |
|
1735 apply(induct c r arbitrary: v s rule: der.induct) |
|
1736 apply(simp add: Values_recs) |
|
1737 apply(simp add: Values_recs) |
|
1738 apply(case_tac "c = c'") |
|
1739 apply(simp) |
|
1740 apply(simp add: Values_recs) |
|
1741 apply(simp add: prefix_def) |
|
1742 apply(simp) |
|
1743 apply(simp add: Values_recs) |
|
1744 apply(simp) |
|
1745 apply(simp add: Values_recs) |
|
1746 apply(auto)[1] |
|
1747 apply(case_tac "nullable r1") |
|
1748 apply(simp) |
|
1749 apply(simp add: Values_recs) |
|
1750 apply(auto)[1] |
|
1751 apply(simp add: rest_def) |
|
1752 apply(subst v4) |
|
1753 apply(simp add: Values_def) |
|
1754 apply(simp add: Values_def) |
|
1755 apply(rule Values_nullable) |
|
1756 apply(assumption) |
|
1757 apply(simp add: rest_def) |
|
1758 apply(subst mkeps_flat) |
|
1759 apply(assumption) |
|
1760 apply(simp) |
|
1761 apply(simp) |
|
1762 apply(simp add: Values_recs) |
|
1763 apply(auto)[1] |
|
1764 apply(simp add: rest_def) |
|
1765 apply(subst v4) |
|
1766 apply(simp add: Values_def) |
|
1767 apply(simp add: Values_def) |
|
1768 done |
|
1769 |
|
1770 lemma Values_projval: |
|
1771 assumes "v \<in> Values r (c#s)" "\<exists>s. flat v = c # s" |
|
1772 shows "projval r c v \<in> Values (der c r) s" |
|
1773 using assms |
|
1774 apply(induct r arbitrary: v s c rule: rexp.induct) |
|
1775 apply(simp add: Values_recs) |
|
1776 apply(simp add: Values_recs) |
|
1777 apply(case_tac "c = char") |
|
1778 apply(simp) |
|
1779 apply(simp add: Values_recs) |
|
1780 apply(simp) |
|
1781 apply(simp add: Values_recs) |
|
1782 apply(simp add: prefix_def) |
|
1783 apply(case_tac "nullable rexp1") |
|
1784 apply(simp) |
|
1785 apply(simp add: Values_recs) |
|
1786 apply(auto)[1] |
|
1787 apply(simp add: rest_def) |
|
1788 apply (metis hd_Cons_tl hd_append2 list.sel(1)) |
|
1789 apply(simp add: rest_def) |
|
1790 apply(simp add: append_eq_Cons_conv) |
|
1791 apply(auto)[1] |
|
1792 apply(subst v4_proj2) |
|
1793 apply(simp add: Values_def) |
|
1794 apply(assumption) |
|
1795 apply(simp) |
|
1796 apply(simp) |
|
1797 apply(simp add: Values_recs) |
|
1798 apply(auto)[1] |
|
1799 apply(auto simp add: Values_def not_nullable_flat)[1] |
|
1800 apply(simp add: append_eq_Cons_conv) |
|
1801 apply(auto)[1] |
|
1802 apply(simp add: append_eq_Cons_conv) |
|
1803 apply(auto)[1] |
|
1804 apply(simp add: rest_def) |
|
1805 apply(subst v4_proj2) |
|
1806 apply(simp add: Values_def) |
|
1807 apply(assumption) |
|
1808 apply(simp) |
|
1809 apply(simp add: Values_recs) |
|
1810 apply(auto)[1] |
|
1811 done |
|
1812 |
|
1813 |
|
1814 definition "MValue v r s \<equiv> (v \<in> Values r s \<and> (\<forall>v' \<in> Values r s. v 2\<succ> v'))" |
|
1815 |
|
1816 lemma MValue_ALTE: |
|
1817 assumes "MValue v (ALT r1 r2) s" |
|
1818 shows "(\<exists>vl. v = Left vl \<and> MValue vl r1 s \<and> (\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl))) \<or> |
|
1819 (\<exists>vr. v = Right vr \<and> MValue vr r2 s \<and> (\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)))" |
|
1820 using assms |
|
1821 apply(simp add: MValue_def) |
|
1822 apply(simp add: Values_recs) |
|
1823 apply(auto) |
|
1824 apply(drule_tac x="Left x" in bspec) |
|
1825 apply(simp) |
|
1826 apply(erule ValOrd2.cases) |
|
1827 apply(simp_all) |
|
1828 apply(drule_tac x="Right vr" in bspec) |
|
1829 apply(simp) |
|
1830 apply(erule ValOrd2.cases) |
|
1831 apply(simp_all) |
|
1832 apply(drule_tac x="Right x" in bspec) |
|
1833 apply(simp) |
|
1834 apply(erule ValOrd2.cases) |
|
1835 apply(simp_all) |
|
1836 apply(drule_tac x="Left vl" in bspec) |
|
1837 apply(simp) |
|
1838 apply(erule ValOrd2.cases) |
|
1839 apply(simp_all) |
|
1840 done |
|
1841 |
|
1842 lemma MValue_ALTI1: |
|
1843 assumes "MValue vl r1 s" "\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl)" |
|
1844 shows "MValue (Left vl) (ALT r1 r2) s" |
|
1845 using assms |
|
1846 apply(simp add: MValue_def) |
|
1847 apply(simp add: Values_recs) |
|
1848 apply(auto) |
|
1849 apply(rule ValOrd2.intros) |
|
1850 apply metis |
|
1851 apply(rule ValOrd2.intros) |
|
1852 apply metis |
|
1853 done |
|
1854 |
|
1855 lemma MValue_ALTI2: |
|
1856 assumes "MValue vr r2 s" "\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)" |
|
1857 shows "MValue (Right vr) (ALT r1 r2) s" |
|
1858 using assms |
|
1859 apply(simp add: MValue_def) |
|
1860 apply(simp add: Values_recs) |
|
1861 apply(auto) |
|
1862 apply(rule ValOrd2.intros) |
|
1863 apply metis |
|
1864 apply(rule ValOrd2.intros) |
|
1865 apply metis |
|
1866 done |
|
1867 |
|
1868 lemma t: "(c#xs = c#ys) \<Longrightarrow> xs = ys" |
|
1869 by (metis list.sel(3)) |
|
1870 |
|
1871 lemma t2: "(xs = ys) \<Longrightarrow> (c#xs) = (c#ys)" |
|
1872 by (metis) |
|
1873 |
|
1874 lemma "\<not>(nullable r) \<Longrightarrow> \<not>(\<exists>v. \<turnstile> v : r \<and> flat v = [])" |
|
1875 by (metis Prf_flat_L nullable_correctness) |
|
1876 |
|
1877 |
|
1878 lemma LeftRight: |
|
1879 assumes "(Left v1) \<succ>(der c (ALT r1 r2)) (Right v2)" |
|
1880 and "\<turnstile> v1 : der c r1" "\<turnstile> v2 : der c r2" |
|
1881 shows "(injval (ALT r1 r2) c (Left v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Right v2))" |
|
1882 using assms |
|
1883 apply(simp) |
|
1884 apply(erule ValOrd.cases) |
|
1885 apply(simp_all)[8] |
|
1886 apply(rule ValOrd.intros) |
|
1887 apply(clarify) |
|
1888 apply(subst v4) |
|
1889 apply(simp) |
|
1890 apply(subst v4) |
|
1891 apply(simp) |
|
1892 apply(simp) |
|
1893 done |
|
1894 |
|
1895 lemma RightLeft: |
|
1896 assumes "(Right v1) \<succ>(der c (ALT r1 r2)) (Left v2)" |
|
1897 and "\<turnstile> v1 : der c r2" "\<turnstile> v2 : der c r1" |
|
1898 shows "(injval (ALT r1 r2) c (Right v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Left v2))" |
|
1899 using assms |
|
1900 apply(simp) |
|
1901 apply(erule ValOrd.cases) |
|
1902 apply(simp_all)[8] |
|
1903 apply(rule ValOrd.intros) |
|
1904 apply(clarify) |
|
1905 apply(subst v4) |
|
1906 apply(simp) |
|
1907 apply(subst v4) |
|
1908 apply(simp) |
|
1909 apply(simp) |
|
1910 done |
|
1911 |
|
1912 lemma h: |
|
1913 assumes "nullable r1" "\<turnstile> v1 : der c r1" |
|
1914 shows "injval r1 c v1 \<succ>r1 mkeps r1" |
|
1915 using assms |
|
1916 apply(induct r1 arbitrary: v1 rule: der.induct) |
|
1917 apply(simp) |
|
1918 apply(simp) |
|
1919 apply(erule Prf.cases) |
|
1920 apply(simp_all)[5] |
|
1921 apply(simp) |
|
1922 apply(simp) |
|
1923 apply(erule Prf.cases) |
|
1924 apply(simp_all)[5] |
|
1925 apply(clarify) |
|
1926 apply(auto)[1] |
|
1927 apply (metis ValOrd.intros(6)) |
|
1928 apply (metis ValOrd.intros(6)) |
|
1929 apply (metis ValOrd.intros(3) le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral) |
|
1930 apply(auto)[1] |
|
1931 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
1932 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
1933 apply (metis ValOrd.intros(5)) |
|
1934 apply(simp) |
|
1935 apply(erule Prf.cases) |
|
1936 apply(simp_all)[5] |
|
1937 apply(clarify) |
|
1938 apply(erule Prf.cases) |
|
1939 apply(simp_all)[5] |
|
1940 apply(clarify) |
|
1941 apply (metis ValOrd.intros(2) list.distinct(1) mkeps_flat v4) |
|
1942 apply(clarify) |
|
1943 by (metis ValOrd.intros(1)) |
|
1944 |
|
1945 lemma LeftRightSeq: |
|
1946 assumes "(Left (Seq v1 v2)) \<succ>(der c (SEQ r1 r2)) (Right v3)" |
|
1947 and "nullable r1" "\<turnstile> v1 : der c r1" |
|
1948 shows "(injval (SEQ r1 r2) c (Seq v1 v2)) \<succ>(SEQ r1 r2) (injval (SEQ r1 r2) c (Right v2))" |
|
1949 using assms |
|
1950 apply(simp) |
|
1951 apply(erule ValOrd.cases) |
|
1952 apply(simp_all)[8] |
|
1953 apply(clarify) |
|
1954 apply(simp) |
|
1955 apply(rule ValOrd.intros(2)) |
|
1956 prefer 2 |
|
1957 apply (metis list.distinct(1) mkeps_flat v4) |
|
1958 by (metis h) |
|
1959 |
|
1960 lemma rr1: |
|
1961 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
1962 shows "flat v \<noteq> []" |
|
1963 using assms |
|
1964 by (metis Prf_flat_L nullable_correctness) |
|
1965 |
|
1966 (* HERE *) |
|
1967 |
|
1968 lemma Prf_inj_test: |
|
1969 assumes "v1 \<succ>(der c r) v2" |
|
1970 "v1 \<in> Values (der c r) s" |
|
1971 "v2 \<in> Values (der c r) s" |
|
1972 "injval r c v1 \<in> Values r (c#s)" |
|
1973 "injval r c v2 \<in> Values r (c#s)" |
|
1974 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
1975 using assms |
|
1976 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
1977 (* NULL case *) |
|
1978 apply(simp add: Values_recs) |
|
1979 (* EMPTY case *) |
|
1980 apply(simp add: Values_recs) |
|
1981 (* CHAR case *) |
|
1982 apply(case_tac "c = c'") |
|
1983 apply(simp) |
|
1984 apply(simp add: Values_recs) |
|
1985 apply (metis ValOrd2.intros(8)) |
|
1986 apply(simp add: Values_recs) |
|
1987 (* ALT case *) |
|
1988 apply(simp) |
|
1989 apply(simp add: Values_recs) |
|
1990 apply(auto)[1] |
|
1991 apply(erule ValOrd.cases) |
|
1992 apply(simp_all)[8] |
|
1993 apply (metis ValOrd2.intros(6)) |
|
1994 apply(erule ValOrd.cases) |
|
1995 apply(simp_all)[8] |
|
1996 apply(rule ValOrd2.intros) |
|
1997 apply(subst v4) |
|
1998 apply(simp add: Values_def) |
|
1999 apply(subst v4) |
|
2000 apply(simp add: Values_def) |
|
2001 apply(simp) |
|
2002 apply(erule ValOrd.cases) |
|
2003 apply(simp_all)[8] |
|
2004 apply(rule ValOrd2.intros) |
|
2005 apply(subst v4) |
|
2006 apply(simp add: Values_def) |
|
2007 apply(subst v4) |
|
2008 apply(simp add: Values_def) |
|
2009 apply(simp) |
|
2010 apply(erule ValOrd.cases) |
|
2011 apply(simp_all)[8] |
|
2012 apply (metis ValOrd2.intros(5)) |
|
2013 (* SEQ case*) |
|
2014 apply(simp) |
|
2015 apply(case_tac "nullable r1") |
|
2016 apply(simp) |
|
2017 defer |
|
2018 apply(simp) |
|
2019 apply(simp add: Values_recs) |
|
2020 apply(auto)[1] |
|
2021 apply(erule ValOrd.cases) |
|
2022 apply(simp_all)[8] |
|
2023 apply(clarify) |
|
2024 apply(rule ValOrd2.intros) |
|
2025 apply(simp) |
|
2026 apply (metis Ord1) |
|
2027 apply(clarify) |
|
2028 apply(rule ValOrd2.intros) |
|
2029 apply(subgoal_tac "rest v1 (flat v1 @ flat v2) = flat v2") |
|
2030 apply(simp) |
|
2031 apply(subgoal_tac "rest (injval r1 c v1) (c # flat v1 @ flat v2) = flat v2") |
|
2032 apply(simp) |
|
2033 oops |
|
2034 |
|
2035 lemma Prf_inj_test: |
|
2036 assumes "v1 \<succ>(der c r) v2" |
|
2037 "v1 \<in> Values (der c r) s" |
|
2038 "v2 \<in> Values (der c r) s" |
|
2039 "injval r c v1 \<in> Values r (c#s)" |
|
2040 "injval r c v2 \<in> Values r (c#s)" |
|
2041 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
2042 using assms |
|
2043 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
2044 (* NULL case *) |
|
2045 apply(simp add: Values_recs) |
|
2046 (* EMPTY case *) |
|
2047 apply(simp add: Values_recs) |
|
2048 (* CHAR case *) |
|
2049 apply(case_tac "c = c'") |
|
2050 apply(simp) |
|
2051 apply(simp add: Values_recs) |
|
2052 apply (metis ValOrd2.intros(8)) |
|
2053 apply(simp add: Values_recs) |
|
2054 (* ALT case *) |
|
2055 apply(simp) |
|
2056 apply(simp add: Values_recs) |
|
2057 apply(auto)[1] |
|
2058 apply(erule ValOrd.cases) |
|
2059 apply(simp_all)[8] |
|
2060 apply (metis ValOrd2.intros(6)) |
|
2061 apply(erule ValOrd.cases) |
|
2062 apply(simp_all)[8] |
|
2063 apply(rule ValOrd2.intros) |
|
2064 apply(subst v4) |
|
2065 apply(simp add: Values_def) |
|
2066 apply(subst v4) |
|
2067 apply(simp add: Values_def) |
|
2068 apply(simp) |
|
2069 apply(erule ValOrd.cases) |
|
2070 apply(simp_all)[8] |
|
2071 apply(rule ValOrd2.intros) |
|
2072 apply(subst v4) |
|
2073 apply(simp add: Values_def) |
|
2074 apply(subst v4) |
|
2075 apply(simp add: Values_def) |
|
2076 apply(simp) |
|
2077 apply(erule ValOrd.cases) |
|
2078 apply(simp_all)[8] |
|
2079 apply (metis ValOrd2.intros(5)) |
|
2080 (* SEQ case*) |
|
2081 apply(simp) |
|
2082 apply(case_tac "nullable r1") |
|
2083 apply(simp) |
|
2084 defer |
|
2085 apply(simp) |
|
2086 apply(simp add: Values_recs) |
|
2087 apply(auto)[1] |
|
2088 apply(erule ValOrd.cases) |
|
2089 apply(simp_all)[8] |
|
2090 apply(clarify) |
|
2091 apply(rule ValOrd2.intros) |
|
2092 apply(simp) |
|
2093 apply (metis Ord1) |
|
2094 apply(clarify) |
|
2095 apply(rule ValOrd2.intros) |
|
2096 apply metis |
|
2097 using injval_inj |
|
2098 apply(simp add: Values_def inj_on_def) |
|
2099 apply metis |
|
2100 apply(simp add: Values_recs) |
|
2101 apply(auto)[1] |
|
2102 apply(erule ValOrd.cases) |
|
2103 apply(simp_all)[8] |
|
2104 apply(clarify) |
|
2105 apply(erule ValOrd.cases) |
|
2106 apply(simp_all)[8] |
|
2107 apply(clarify) |
|
2108 apply (metis Ord1 ValOrd2.intros(1)) |
|
2109 apply(clarify) |
|
2110 apply(rule ValOrd2.intros(2)) |
|
2111 apply metis |
|
2112 using injval_inj |
|
2113 apply(simp add: Values_def inj_on_def) |
|
2114 apply metis |
|
2115 apply(erule ValOrd.cases) |
|
2116 apply(simp_all)[8] |
|
2117 apply(rule ValOrd2.intros(2)) |
|
2118 thm h |
|
2119 apply(rule Ord1) |
|
2120 apply(rule h) |
|
2121 apply(simp) |
|
2122 apply(simp add: Values_def) |
|
2123 apply(simp add: Values_def) |
|
2124 apply (metis list.distinct(1) mkeps_flat v4) |
|
2125 apply(erule ValOrd.cases) |
|
2126 apply(simp_all)[8] |
|
2127 apply(clarify) |
|
2128 apply(simp add: Values_def) |
|
2129 defer |
|
2130 apply(erule ValOrd.cases) |
|
2131 apply(simp_all)[8] |
|
2132 apply(clarify) |
|
2133 apply(rule ValOrd2.intros(1)) |
|
2134 apply(rotate_tac 1) |
|
2135 apply(drule_tac x="v2" in meta_spec) |
|
2136 apply(rotate_tac 8) |
|
2137 apply(drule_tac x="v2'" in meta_spec) |
|
2138 apply(rotate_tac 8) |
|
2139 oops |
|
2140 |
|
2141 lemma POSIX_der: |
|
2142 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
2143 shows "POSIX (injval r c v) r" |
|
2144 using assms |
|
2145 unfolding POSIX_def |
|
2146 apply(auto) |
|
2147 thm v3 |
|
2148 apply (erule v3) |
|
2149 thm v4 |
|
2150 apply(subst (asm) v4) |
|
2151 apply(assumption) |
|
2152 apply(drule_tac x="projval r c v'" in spec) |
|
2153 apply(drule mp) |
|
2154 apply(rule conjI) |
|
2155 thm v3_proj |
|
2156 apply(rule v3_proj) |
|
2157 apply(simp) |
|
2158 apply(rule_tac x="flat v" in exI) |
|
2159 apply(simp) |
|
2160 thm t |
|
2161 apply(rule_tac c="c" in t) |
|
2162 apply(simp) |
|
2163 thm v4_proj |
|
2164 apply(subst v4_proj) |
|
2165 apply(simp) |
|
2166 apply(rule_tac x="flat v" in exI) |
|
2167 apply(simp) |
|
2168 apply(simp) |
|
2169 oops |
|
2170 |
|
2171 lemma POSIX_der: |
|
2172 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
2173 shows "POSIX (injval r c v) r" |
|
2174 using assms |
|
2175 apply(induct c r arbitrary: v rule: der.induct) |
|
2176 (* null case*) |
|
2177 apply(simp add: POSIX_def) |
|
2178 apply(auto)[1] |
|
2179 apply(erule Prf.cases) |
|
2180 apply(simp_all)[5] |
|
2181 apply(erule Prf.cases) |
|
2182 apply(simp_all)[5] |
|
2183 (* empty case *) |
|
2184 apply(simp add: POSIX_def) |
|
2185 apply(auto)[1] |
|
2186 apply(erule Prf.cases) |
|
2187 apply(simp_all)[5] |
|
2188 apply(erule Prf.cases) |
|
2189 apply(simp_all)[5] |
|
2190 (* char case *) |
|
2191 apply(simp add: POSIX_def) |
|
2192 apply(case_tac "c = c'") |
|
2193 apply(auto)[1] |
|
2194 apply(erule Prf.cases) |
|
2195 apply(simp_all)[5] |
|
2196 apply (metis Prf.intros(5)) |
|
2197 apply(erule Prf.cases) |
|
2198 apply(simp_all)[5] |
|
2199 apply(erule Prf.cases) |
|
2200 apply(simp_all)[5] |
|
2201 apply (metis ValOrd.intros(8)) |
|
2202 apply(auto)[1] |
|
2203 apply(erule Prf.cases) |
|
2204 apply(simp_all)[5] |
|
2205 apply(erule Prf.cases) |
|
2206 apply(simp_all)[5] |
|
2207 (* alt case *) |
|
2208 apply(erule Prf.cases) |
|
2209 apply(simp_all)[5] |
|
2210 apply(clarify) |
|
2211 apply(simp (no_asm) add: POSIX_def) |
|
2212 apply(auto)[1] |
|
2213 apply (metis Prf.intros(2) v3) |
|
2214 apply(rotate_tac 4) |
|
2215 apply(erule Prf.cases) |
|
2216 apply(simp_all)[5] |
|
2217 apply (metis POSIX_ALT2 POSIX_def ValOrd.intros(6)) |
|
2218 apply (metis ValOrd.intros(3) order_refl) |
|
2219 apply(simp (no_asm) add: POSIX_def) |
|
2220 apply(auto)[1] |
|
2221 apply (metis Prf.intros(3) v3) |
|
2222 apply(rotate_tac 4) |
|
2223 apply(erule Prf.cases) |
|
2224 apply(simp_all)[5] |
|
2225 defer |
|
2226 apply (metis POSIX_ALT1a POSIX_def ValOrd.intros(5)) |
|
2227 prefer 2 |
|
2228 apply(subst (asm) (5) POSIX_def) |
|
2229 apply(auto)[1] |
|
2230 apply(rotate_tac 5) |
|
2231 apply(erule Prf.cases) |
|
2232 apply(simp_all)[5] |
|
2233 apply(rule ValOrd.intros) |
|
2234 apply(subst (asm) v4) |
|
2235 apply(simp) |
|
2236 apply(drule_tac x="Left (projval r1a c v1)" in spec) |
|
2237 apply(clarify) |
|
2238 apply(drule mp) |
|
2239 apply(rule conjI) |
|
2240 apply (metis Prf.intros(2) v3_proj) |
|
2241 apply(simp) |
|
2242 apply (metis v4_proj2) |
|
2243 apply(erule ValOrd.cases) |
|
2244 apply(simp_all)[8] |
|
2245 apply (metis less_not_refl v4_proj2) |
|
2246 (* seq case *) |
|
2247 apply(case_tac "nullable r1") |
|
2248 defer |
|
2249 apply(simp add: POSIX_def) |
|
2250 apply(auto)[1] |
|
2251 apply(erule Prf.cases) |
|
2252 apply(simp_all)[5] |
|
2253 apply (metis Prf.intros(1) v3) |
|
2254 apply(erule Prf.cases) |
|
2255 apply(simp_all)[5] |
|
2256 apply(erule Prf.cases) |
|
2257 apply(simp_all)[5] |
|
2258 apply(clarify) |
|
2259 apply(subst (asm) (3) v4) |
|
2260 apply(simp) |
|
2261 apply(simp) |
|
2262 apply(subgoal_tac "flat v1a \<noteq> []") |
|
2263 prefer 2 |
|
2264 apply (metis Prf_flat_L nullable_correctness) |
|
2265 apply(subgoal_tac "\<exists>s. flat v1a = c # s") |
|
2266 prefer 2 |
|
2267 apply (metis append_eq_Cons_conv) |
|
2268 apply(auto)[1] |
|
2269 oops |
|
2270 |
|
2271 |
|
2272 lemma POSIX_ex: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r" |
|
2273 apply(induct r arbitrary: v) |
|
2274 apply(erule Prf.cases) |
|
2275 apply(simp_all)[5] |
|
2276 apply(erule Prf.cases) |
|
2277 apply(simp_all)[5] |
|
2278 apply(rule_tac x="Void" in exI) |
|
2279 apply(simp add: POSIX_def) |
|
2280 apply(auto)[1] |
|
2281 apply (metis Prf.intros(4)) |
|
2282 apply(erule Prf.cases) |
|
2283 apply(simp_all)[5] |
|
2284 apply (metis ValOrd.intros(7)) |
|
2285 apply(erule Prf.cases) |
|
2286 apply(simp_all)[5] |
|
2287 apply(rule_tac x="Char c" in exI) |
|
2288 apply(simp add: POSIX_def) |
|
2289 apply(auto)[1] |
|
2290 apply (metis Prf.intros(5)) |
|
2291 apply(erule Prf.cases) |
|
2292 apply(simp_all)[5] |
|
2293 apply (metis ValOrd.intros(8)) |
|
2294 apply(erule Prf.cases) |
|
2295 apply(simp_all)[5] |
|
2296 apply(auto)[1] |
|
2297 apply(drule_tac x="v1" in meta_spec) |
|
2298 apply(drule_tac x="v2" in meta_spec) |
|
2299 apply(auto)[1] |
|
2300 defer |
|
2301 apply(erule Prf.cases) |
|
2302 apply(simp_all)[5] |
|
2303 apply(auto)[1] |
|
2304 apply (metis POSIX_ALT_I1) |
|
2305 apply (metis POSIX_ALT_I1 POSIX_ALT_I2) |
|
2306 apply(case_tac "nullable r1a") |
|
2307 apply(rule_tac x="Seq (mkeps r1a) va" in exI) |
|
2308 apply(auto simp add: POSIX_def)[1] |
|
2309 apply (metis Prf.intros(1) mkeps_nullable) |
|
2310 apply(simp add: mkeps_flat) |
|
2311 apply(rotate_tac 7) |
|
2312 apply(erule Prf.cases) |
|
2313 apply(simp_all)[5] |
|
2314 apply(case_tac "mkeps r1 = v1a") |
|
2315 apply(simp) |
|
2316 apply (rule ValOrd.intros(1)) |
|
2317 apply (metis append_Nil mkeps_flat) |
|
2318 apply (rule ValOrd.intros(2)) |
|
2319 apply(drule mkeps_POSIX) |
|
2320 apply(simp add: POSIX_def) |
|
2321 oops |
|
2322 |
|
2323 lemma POSIX_ex2: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r \<and> \<turnstile> v : r" |
|
2324 apply(induct r arbitrary: v) |
|
2325 apply(erule Prf.cases) |
|
2326 apply(simp_all)[5] |
|
2327 apply(erule Prf.cases) |
|
2328 apply(simp_all)[5] |
|
2329 apply(rule_tac x="Void" in exI) |
|
2330 apply(simp add: POSIX_def) |
|
2331 apply(auto)[1] |
|
2332 oops |
|
2333 |
|
2334 lemma POSIX_ALT_cases: |
|
2335 assumes "\<turnstile> v : (ALT r1 r2)" "POSIX v (ALT r1 r2)" |
|
2336 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
2337 using assms |
|
2338 apply(erule_tac Prf.cases) |
|
2339 apply(simp_all) |
|
2340 unfolding POSIX_def |
|
2341 apply(auto) |
|
2342 apply (metis POSIX_ALT2 POSIX_def assms(2)) |
|
2343 by (metis POSIX_ALT1b assms(2)) |
|
2344 |
|
2345 lemma POSIX_ALT_cases2: |
|
2346 assumes "POSIX v (ALT r1 r2)" "\<turnstile> v : (ALT r1 r2)" |
|
2347 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
2348 using assms POSIX_ALT_cases by auto |
|
2349 |
|
2350 lemma Prf_flat_empty: |
|
2351 assumes "\<turnstile> v : r" "flat v = []" |
|
2352 shows "nullable r" |
|
2353 using assms |
|
2354 apply(induct) |
|
2355 apply(auto) |
|
2356 done |
|
2357 |
|
2358 lemma POSIX_proj: |
|
2359 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
2360 shows "POSIX (projval r c v) (der c r)" |
|
2361 using assms |
|
2362 apply(induct r c v arbitrary: rule: projval.induct) |
|
2363 defer |
|
2364 defer |
|
2365 defer |
|
2366 defer |
|
2367 apply(erule Prf.cases) |
|
2368 apply(simp_all)[5] |
|
2369 apply(erule Prf.cases) |
|
2370 apply(simp_all)[5] |
|
2371 apply(erule Prf.cases) |
|
2372 apply(simp_all)[5] |
|
2373 apply(erule Prf.cases) |
|
2374 apply(simp_all)[5] |
|
2375 apply(erule Prf.cases) |
|
2376 apply(simp_all)[5] |
|
2377 apply(erule Prf.cases) |
|
2378 apply(simp_all)[5] |
|
2379 apply(erule Prf.cases) |
|
2380 apply(simp_all)[5] |
|
2381 apply(erule Prf.cases) |
|
2382 apply(simp_all)[5] |
|
2383 apply(erule Prf.cases) |
|
2384 apply(simp_all)[5] |
|
2385 apply(erule Prf.cases) |
|
2386 apply(simp_all)[5] |
|
2387 apply(simp add: POSIX_def) |
|
2388 apply(auto)[1] |
|
2389 apply(erule Prf.cases) |
|
2390 apply(simp_all)[5] |
|
2391 oops |
|
2392 |
|
2393 lemma POSIX_proj: |
|
2394 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
2395 shows "POSIX (projval r c v) (der c r)" |
|
2396 using assms |
|
2397 apply(induct r arbitrary: c v rule: rexp.induct) |
|
2398 apply(erule Prf.cases) |
|
2399 apply(simp_all)[5] |
|
2400 apply(erule Prf.cases) |
|
2401 apply(simp_all)[5] |
|
2402 apply(erule Prf.cases) |
|
2403 apply(simp_all)[5] |
|
2404 apply(simp add: POSIX_def) |
|
2405 apply(auto)[1] |
|
2406 apply(erule Prf.cases) |
|
2407 apply(simp_all)[5] |
|
2408 oops |
|
2409 |
|
2410 lemma POSIX_proj: |
|
2411 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
2412 shows "POSIX (projval r c v) (der c r)" |
|
2413 using assms |
|
2414 apply(induct r c v arbitrary: rule: projval.induct) |
|
2415 defer |
|
2416 defer |
|
2417 defer |
|
2418 defer |
|
2419 apply(erule Prf.cases) |
|
2420 apply(simp_all)[5] |
|
2421 apply(erule Prf.cases) |
|
2422 apply(simp_all)[5] |
|
2423 apply(erule Prf.cases) |
|
2424 apply(simp_all)[5] |
|
2425 apply(erule Prf.cases) |
|
2426 apply(simp_all)[5] |
|
2427 apply(erule Prf.cases) |
|
2428 apply(simp_all)[5] |
|
2429 apply(erule Prf.cases) |
|
2430 apply(simp_all)[5] |
|
2431 apply(erule Prf.cases) |
|
2432 apply(simp_all)[5] |
|
2433 apply(erule Prf.cases) |
|
2434 apply(simp_all)[5] |
|
2435 apply(erule Prf.cases) |
|
2436 apply(simp_all)[5] |
|
2437 apply(erule Prf.cases) |
|
2438 apply(simp_all)[5] |
|
2439 apply(simp add: POSIX_def) |
|
2440 apply(auto)[1] |
|
2441 apply(erule Prf.cases) |
|
2442 apply(simp_all)[5] |
|
2443 oops |
|
2444 |
|
2445 lemma Prf_inj: |
|
2446 assumes "v1 \<succ>(der c r) v2" "\<turnstile> v1 : der c r" "\<turnstile> v2 : der c r" "flat v1 = flat v2" |
|
2447 shows "(injval r c v1) \<succ>r (injval r c v2)" |
|
2448 using assms |
|
2449 apply(induct arbitrary: v1 v2 rule: der.induct) |
|
2450 (* NULL case *) |
|
2451 apply(simp) |
|
2452 apply(erule ValOrd.cases) |
|
2453 apply(simp_all)[8] |
|
2454 (* EMPTY case *) |
|
2455 apply(erule ValOrd.cases) |
|
2456 apply(simp_all)[8] |
|
2457 (* CHAR case *) |
|
2458 apply(case_tac "c = c'") |
|
2459 apply(simp) |
|
2460 apply(erule ValOrd.cases) |
|
2461 apply(simp_all)[8] |
|
2462 apply(rule ValOrd.intros) |
|
2463 apply(simp) |
|
2464 apply(erule ValOrd.cases) |
|
2465 apply(simp_all)[8] |
|
2466 (* ALT case *) |
|
2467 apply(simp) |
|
2468 apply(erule ValOrd.cases) |
|
2469 apply(simp_all)[8] |
|
2470 apply(rule ValOrd.intros) |
|
2471 apply(subst v4) |
|
2472 apply(clarify) |
|
2473 apply(rotate_tac 3) |
|
2474 apply(erule Prf.cases) |
|
2475 apply(simp_all)[5] |
|
2476 apply(subst v4) |
|
2477 apply(clarify) |
|
2478 apply(rotate_tac 2) |
|
2479 apply(erule Prf.cases) |
|
2480 apply(simp_all)[5] |
|
2481 apply(simp) |
|
2482 apply(rule ValOrd.intros) |
|
2483 apply(clarify) |
|
2484 apply(rotate_tac 3) |
|
2485 apply(erule Prf.cases) |
|
2486 apply(simp_all)[5] |
|
2487 apply(clarify) |
|
2488 apply(erule Prf.cases) |
|
2489 apply(simp_all)[5] |
|
2490 apply(rule ValOrd.intros) |
|
2491 apply(clarify) |
|
2492 apply(erule Prf.cases) |
|
2493 apply(simp_all)[5] |
|
2494 apply(erule Prf.cases) |
|
2495 apply(simp_all)[5] |
|
2496 (* SEQ case*) |
|
2497 apply(simp) |
|
2498 apply(case_tac "nullable r1") |
|
2499 defer |
|
2500 apply(simp) |
|
2501 apply(erule ValOrd.cases) |
|
2502 apply(simp_all)[8] |
|
2503 apply(clarify) |
|
2504 apply(erule Prf.cases) |
|
2505 apply(simp_all)[5] |
|
2506 apply(erule Prf.cases) |
|
2507 apply(simp_all)[5] |
|
2508 apply(clarify) |
|
2509 apply(rule ValOrd.intros) |
|
2510 apply(simp) |
|
2511 oops |
|
2512 |
|
2513 |
|
2514 text {* |
|
2515 Injection followed by projection is the identity. |
|
2516 *} |
|
2517 |
|
2518 lemma proj_inj_id: |
|
2519 assumes "\<turnstile> v : der c r" |
|
2520 shows "projval r c (injval r c v) = v" |
|
2521 using assms |
|
2522 apply(induct r arbitrary: c v rule: rexp.induct) |
|
2523 apply(simp) |
|
2524 apply(erule Prf.cases) |
|
2525 apply(simp_all)[5] |
|
2526 apply(simp) |
|
2527 apply(erule Prf.cases) |
|
2528 apply(simp_all)[5] |
|
2529 apply(simp) |
|
2530 apply(case_tac "c = char") |
|
2531 apply(simp) |
|
2532 apply(erule Prf.cases) |
|
2533 apply(simp_all)[5] |
|
2534 apply(simp) |
|
2535 apply(erule Prf.cases) |
|
2536 apply(simp_all)[5] |
|
2537 defer |
|
2538 apply(simp) |
|
2539 apply(erule Prf.cases) |
|
2540 apply(simp_all)[5] |
|
2541 apply(simp) |
|
2542 apply(case_tac "nullable rexp1") |
|
2543 apply(simp) |
|
2544 apply(erule Prf.cases) |
|
2545 apply(simp_all)[5] |
|
2546 apply(auto)[1] |
|
2547 apply(erule Prf.cases) |
|
2548 apply(simp_all)[5] |
|
2549 apply(auto)[1] |
|
2550 apply (metis list.distinct(1) v4) |
|
2551 apply(auto)[1] |
|
2552 apply (metis mkeps_flat) |
|
2553 apply(auto) |
|
2554 apply(erule Prf.cases) |
|
2555 apply(simp_all)[5] |
|
2556 apply(auto)[1] |
|
2557 apply(simp add: v4) |
|
2558 done |
|
2559 |
|
2560 text {* |
|
2561 |
|
2562 HERE: Crucial lemma that does not go through in the sequence case. |
|
2563 |
|
2564 *} |
|
2565 lemma v5: |
|
2566 assumes "\<turnstile> v : der c r" "POSIX v (der c r)" |
|
2567 shows "POSIX (injval r c v) r" |
|
2568 using assms |
|
2569 apply(induct arbitrary: v rule: der.induct) |
|
2570 (* NULL case *) |
|
2571 apply(simp) |
|
2572 apply(erule Prf.cases) |
|
2573 apply(simp_all)[5] |
|
2574 (* EMPTY case *) |
|
2575 apply(simp) |
|
2576 apply(erule Prf.cases) |
|
2577 apply(simp_all)[5] |
|
2578 (* CHAR case *) |
|
2579 apply(simp) |
|
2580 apply(case_tac "c = c'") |
|
2581 apply(auto simp add: POSIX_def)[1] |
|
2582 apply(erule Prf.cases) |
|
2583 apply(simp_all)[5] |
|
2584 oops |