|
1 import System.Environment |
|
2 import Data.List |
|
3 import Text.Printf |
|
4 import Control.Exception |
|
5 import System.CPUTime |
|
6 import Control.Parallel.Strategies |
|
7 import Control.Monad |
|
8 |
|
9 lim :: Int |
|
10 lim = 1 |
|
11 -- lim = 10^6 |
|
12 |
|
13 time :: (Num t, NFData t) => t -> IO () |
|
14 time y = do |
|
15 start <- getCPUTime |
|
16 replicateM_ lim $ do |
|
17 x <- evaluate $ 1 + y |
|
18 rdeepseq x `seq` return () |
|
19 end <- getCPUTime |
|
20 let diff = (fromIntegral (end - start)) / (10^12) |
|
21 printf "%0.9f\n" (diff :: Double) |
|
22 return () |
|
23 |
|
24 data Rexp = |
|
25 NULL |
|
26 | EMPTY |
|
27 | CHAR Char |
|
28 | ALT Rexp Rexp |
|
29 | SEQ Rexp Rexp |
|
30 | STAR Rexp |
|
31 | RECD String Rexp deriving (Eq, Show) |
|
32 |
|
33 data Value = |
|
34 Void |
|
35 | Chr Char |
|
36 | Sequ Value Value |
|
37 | Lf Value |
|
38 | Rg Value |
|
39 | Stars [Value] |
|
40 | Rec String Value deriving (Eq, Show) |
|
41 |
|
42 string_repeat :: String -> Int -> String |
|
43 string_repeat s n = concat (replicate n s) |
|
44 |
|
45 sequ :: [Char] -> Rexp |
|
46 sequ s = case s of |
|
47 [] -> EMPTY |
|
48 [c] -> CHAR c |
|
49 c:cs -> SEQ (CHAR c) (sequ cs) |
|
50 |
|
51 |
|
52 str :: String -> Rexp |
|
53 str s = sequ s |
|
54 |
|
55 plus :: Rexp -> Rexp |
|
56 plus r = SEQ r (STAR r) |
|
57 |
|
58 (\/) :: Rexp -> Rexp -> Rexp |
|
59 r1 \/ r2 = ALT r1 r2 |
|
60 |
|
61 (~~) :: Rexp -> Rexp -> Rexp |
|
62 r1 ~~ r2 = SEQ r1 r2 |
|
63 |
|
64 ($$) :: String -> Rexp -> Rexp |
|
65 x $$ r = RECD x r |
|
66 |
|
67 alts :: [Rexp] -> Rexp |
|
68 alts rs = case rs of |
|
69 [] -> NULL |
|
70 [r] -> r |
|
71 r:rs -> foldl (ALT) r rs |
|
72 |
|
73 size :: Rexp -> Int |
|
74 size r = case r of |
|
75 NULL -> 1 |
|
76 EMPTY -> 1 |
|
77 CHAR _ -> 1 |
|
78 ALT r1 r2 -> 1 + (size r1) + (size r2) |
|
79 SEQ r1 r2 -> 1 + (size r1) + (size r2) |
|
80 STAR r -> 1 + (size r) |
|
81 RECD _ r -> 1 + (size r) |
|
82 |
|
83 nullable :: Rexp -> Bool |
|
84 nullable r = case r of |
|
85 NULL -> False |
|
86 EMPTY -> True |
|
87 CHAR _ -> False |
|
88 ALT r1 r2 -> nullable(r1) || nullable(r2) |
|
89 SEQ r1 r2 -> nullable(r1) && nullable(r2) |
|
90 STAR _ -> True |
|
91 RECD _ r -> nullable(r) |
|
92 |
|
93 der :: Char -> Rexp -> Rexp |
|
94 der c r = case r of |
|
95 NULL -> NULL |
|
96 EMPTY -> NULL |
|
97 CHAR d -> if c == d then EMPTY else NULL |
|
98 ALT r1 r2 -> ALT (der c r1) (der c r2) |
|
99 SEQ r1 r2 -> |
|
100 if nullable r1 then ALT (SEQ (der c r1) r2) (der c r2) |
|
101 else SEQ (der c r1) r2 |
|
102 STAR r -> SEQ (der c r) (STAR r) |
|
103 RECD _ r -> der c r |
|
104 |
|
105 ders :: [Char] -> Rexp -> Rexp |
|
106 ders s r = case s of |
|
107 [] -> r |
|
108 c:s -> ders s (der c r) |
|
109 |
|
110 flatten :: Value -> String |
|
111 flatten v = case v of |
|
112 Void -> "" |
|
113 Chr c -> [c] |
|
114 Lf v -> flatten v |
|
115 Rg v -> flatten v |
|
116 Sequ v1 v2 -> flatten v1 ++ flatten v2 |
|
117 Stars vs -> concat (map flatten vs) |
|
118 Rec _ v -> flatten v |
|
119 |
|
120 env :: Value -> [(String, String)] |
|
121 env v = case v of |
|
122 Void -> [] |
|
123 Chr c -> [] |
|
124 Lf v -> env v |
|
125 Rg v -> env v |
|
126 Sequ v1 v2 -> env v1 ++ env v2 |
|
127 Stars vs -> foldl (++) [] (map env vs) |
|
128 Rec x v -> (x, flatten v) : env v |
|
129 |
|
130 string_of_pair :: (String, String) -> String |
|
131 string_of_pair (x, s) = "(" ++ x ++ "," ++ s ++ ")" |
|
132 |
|
133 string_of_env :: [(String, String)] -> String |
|
134 string_of_env xs = intercalate "," (map string_of_pair xs) |
|
135 |
|
136 mkeps :: Rexp -> Value |
|
137 mkeps r = case r of |
|
138 EMPTY -> Void |
|
139 ALT r1 r2 -> |
|
140 if nullable r1 then Lf (mkeps r1) else Rg (mkeps r2) |
|
141 SEQ r1 r2 -> Sequ (mkeps r1) (mkeps r2) |
|
142 STAR r -> Stars [] |
|
143 RECD x r -> Rec x (mkeps r) |
|
144 |
|
145 inj :: Rexp -> Char -> Value -> Value |
|
146 inj r c v = case (r, v) of |
|
147 (STAR r, Sequ v1 (Stars vs)) -> Stars (inj r c v1 : vs) |
|
148 (SEQ r1 r2, Sequ v1 v2) -> Sequ (inj r1 c v1) v2 |
|
149 (SEQ r1 r2, Lf (Sequ v1 v2)) -> Sequ (inj r1 c v1) v2 |
|
150 (SEQ r1 r2, Rg v2) -> Sequ (mkeps r1) (inj r2 c v2) |
|
151 (ALT r1 r2, Lf v1) -> Lf (inj r1 c v1) |
|
152 (ALT r1 r2, Rg v2) -> Rg (inj r2 c v2) |
|
153 (CHAR d, Void) -> Chr d |
|
154 (RECD x r1, _) -> Rec x (inj r1 c v) |
|
155 |
|
156 f_id :: Value -> Value |
|
157 f_id v = v |
|
158 |
|
159 f_right :: (Value -> Value) -> Value -> Value |
|
160 f_right f = \v -> Rg (f v) |
|
161 |
|
162 f_left :: (Value -> Value) -> Value -> Value |
|
163 f_left f = \v -> Lf (f v) |
|
164 |
|
165 f_alt :: (Value -> Value) -> (Value -> Value) -> Value -> Value |
|
166 f_alt f1 f2 = \v -> case v of |
|
167 Rg v -> Rg (f2 v) |
|
168 Lf v -> Lf (f1 v) |
|
169 |
|
170 f_seq :: (Value -> Value) -> (Value -> Value) -> Value -> Value |
|
171 f_seq f1 f2 = \v -> case v of |
|
172 Sequ v1 v2 -> Sequ (f1 v1) (f2 v2) |
|
173 |
|
174 f_seq_void1 :: (Value -> Value) -> (Value -> Value) -> Value -> Value |
|
175 f_seq_void1 f1 f2 = \v -> Sequ (f1 Void) (f2 v) |
|
176 |
|
177 f_seq_void2 :: (Value -> Value) -> (Value -> Value) -> Value -> Value |
|
178 f_seq_void2 f1 f2 = \v -> Sequ(f1 v) (f2 Void) |
|
179 |
|
180 f_rec :: (Value -> Value) -> Value -> Value |
|
181 f_rec f = \v -> case v of |
|
182 Rec x v -> Rec x (f v) |
|
183 |
|
184 simp :: Rexp -> (Rexp, Value -> Value) |
|
185 simp r = case r of |
|
186 ALT r1 r2 -> |
|
187 let (r1s, f1s) = simp r1 |
|
188 (r2s, f2s) = simp r2 |
|
189 in |
|
190 (case (r1s, r2s) of |
|
191 (NULL, _) -> (r2s, f_right f2s) |
|
192 (_, NULL) -> (r1s, f_left f1s) |
|
193 (_, _) -> if r1s == r2s then (r1s, f_left f1s) |
|
194 else (ALT r1s r2s, f_alt f1s f2s)) |
|
195 SEQ r1 r2 -> |
|
196 let (r1s, f1s) = simp r1 |
|
197 (r2s, f2s) = simp r2 |
|
198 in |
|
199 (case (r1s, r2s) of |
|
200 (NULL, _) -> (NULL, f_right f2s) |
|
201 (_, NULL) -> (NULL, f_left f1s) |
|
202 (EMPTY, _) -> (r2s, f_seq_void1 f1s f2s) |
|
203 (_, EMPTY) -> (r1s, f_seq_void2 f1s f2s) |
|
204 (_, _) -> (SEQ r1s r2s, f_seq f1s f2s)) |
|
205 RECD x r1 -> |
|
206 let (r1s, f1s) = simp r1 |
|
207 in |
|
208 (RECD x r1s, f_rec f1s) |
|
209 r -> (r, f_id) |
|
210 |
|
211 der_simp :: Char -> Rexp -> (Rexp, Value -> Value) |
|
212 der_simp c r = case r of |
|
213 NULL -> (NULL, f_id) |
|
214 EMPTY -> (NULL, f_id) |
|
215 CHAR(d) -> ((if c == d then EMPTY else NULL), f_id) |
|
216 ALT r1 r2 -> |
|
217 let (r1d, f1d) = der_simp c r1 |
|
218 (r2d, f2d) = der_simp c r2 |
|
219 in |
|
220 (case (r1d, r2d) of |
|
221 (NULL, _) -> (r2d, f_right f2d) |
|
222 (_, NULL) -> (r1d, f_left f1d) |
|
223 (_, _) -> if r1d == r2d then (r1d, f_left f1d) |
|
224 else (ALT r1d r2d, f_alt f1d f2d)) |
|
225 SEQ r1 r2 -> |
|
226 if nullable r1 |
|
227 then |
|
228 let (r1d, f1d) = der_simp c r1 |
|
229 (r2d, f2d) = der_simp c r2 |
|
230 (r2s, f2s) = simp r2 |
|
231 in |
|
232 (case (r1d, r2s, r2d) of |
|
233 (NULL, _, _) -> (r2d, f_right f2d) |
|
234 (_, NULL, _) -> (r2d, f_right f2d) |
|
235 (_, _, NULL) -> (SEQ r1d r2s, f_left (f_seq f1d f2s)) |
|
236 (EMPTY, _, _) -> (ALT r2s r2d, f_alt (f_seq_void1 f1d f2s) f2d) |
|
237 (_, EMPTY, _) -> (ALT r1d r2d, f_alt (f_seq_void2 f1d f2s) f2d) |
|
238 (_, _, _) -> (ALT (SEQ r1d r2s) r2d, f_alt (f_seq f1d f2s) f2d)) |
|
239 else |
|
240 let (r1d, f1d) = der_simp c r1 |
|
241 (r2s, f2s) = simp r2 |
|
242 in |
|
243 (case (r1d, r2s) of |
|
244 (NULL, _) -> (NULL, f_id) |
|
245 (_, NULL) -> (NULL, f_id) |
|
246 (EMPTY, _) -> (r2s, f_seq_void1 f1d f2s) |
|
247 (_, EMPTY) -> (r1d, f_seq_void2 f1d f2s) |
|
248 (_, _) -> (SEQ r1d r2s, f_seq f1d f2s)) |
|
249 STAR r1 -> |
|
250 let (r1d, f1d) = der_simp c r1 |
|
251 in |
|
252 (case r1d of |
|
253 NULL -> (NULL, f_id) |
|
254 EMPTY -> (STAR r1, f_seq_void1 f1d f_id) |
|
255 _ -> (SEQ r1d (STAR r1), f_seq f1d f_id)) |
|
256 RECD x r1 -> der_simp c r1 |
|
257 |
|
258 |
|
259 |
|
260 matcher :: Rexp -> String -> Bool |
|
261 matcher r s = nullable (ders s r) |
|
262 |
|
263 lex0 :: Rexp -> String -> Maybe Value |
|
264 lex0 r s = case s of |
|
265 [] -> if (nullable r) |
|
266 then Just (mkeps r) |
|
267 else Nothing |
|
268 c:cs -> do res <- lex0 (der c r) cs |
|
269 return (inj r c res) |
|
270 |
|
271 lex_simp :: Rexp -> String -> Maybe Value |
|
272 lex_simp r s = case s of |
|
273 [] -> if (nullable r) |
|
274 then Just (mkeps r) |
|
275 else Nothing |
|
276 c:cs -> let |
|
277 (r_simp, f_simp) = simp (der c r) |
|
278 in |
|
279 do |
|
280 res <- lex_simp r_simp cs |
|
281 return (inj r c (f_simp res)) |
|
282 |
|
283 lex_simp2 :: Rexp -> String -> Maybe Value |
|
284 lex_simp2 r s = case s of |
|
285 [] -> if (nullable r) |
|
286 then Just (mkeps r) |
|
287 else Nothing |
|
288 c:cs -> let |
|
289 (r_simp, f_simp) = der_simp c r |
|
290 in |
|
291 do |
|
292 res <- lex_simp2 r_simp cs |
|
293 return (inj r c (f_simp res)) |
|
294 |
|
295 lex_acc :: Rexp -> String -> (Value -> Value) -> Maybe Value |
|
296 lex_acc r s f = case s of |
|
297 [] -> if (nullable r) |
|
298 then Just (f (mkeps r)) |
|
299 else Nothing |
|
300 c:cs -> let |
|
301 (r_simp, f_simp) = simp (der c r) |
|
302 in |
|
303 lex_acc r_simp cs (\v -> f (inj r c (f_simp v))) |
|
304 |
|
305 lex_acc2 :: Rexp -> String -> (Value -> Value) -> Maybe Value |
|
306 lex_acc2 r s f = case s of |
|
307 [] -> if (nullable r) |
|
308 then Just (f (mkeps r)) |
|
309 else Nothing |
|
310 c:cs -> let |
|
311 (r_simp, f_simp) = der_simp c r |
|
312 in |
|
313 lex_acc2 r_simp cs (\v -> f (inj r c (f_simp v))) |
|
314 |
|
315 sym = alts (map CHAR "abcdefghijklmnopqrstuvwxyz") |
|
316 digit = alts (map CHAR "0123456789") |
|
317 idents = sym ~~ STAR(sym \/ digit) |
|
318 nums = plus digit |
|
319 keywords = alts (map str ["skip", "while", "do", "if", "then", "else", "read", "write", "true", "false"]) |
|
320 semicolon = str ";" |
|
321 ops = alts (map str [":=", "==", "-", "+", "*", "!=", "<", ">", "<=", ">=", "%", "/"]) |
|
322 whitespace = plus(str " " \/ str "\n" \/ str "\t") |
|
323 rparen = str ")" |
|
324 lparen = str "(" |
|
325 begin_paren = str "{" |
|
326 end_paren = str "}" |
|
327 |
|
328 while_regs = STAR(("k" $$ keywords) \/ |
|
329 ("i" $$ idents) \/ |
|
330 ("o" $$ ops) \/ |
|
331 ("n" $$ nums) \/ |
|
332 ("s" $$ semicolon) \/ |
|
333 ("p" $$ (lparen \/ rparen)) \/ |
|
334 ("b" $$ (begin_paren \/ end_paren)) \/ |
|
335 ("w" $$ whitespace)) |
|
336 |
|
337 prog2 = intercalate "\n" |
|
338 ["i := 2;", |
|
339 "max := 100;", |
|
340 "while i < max do {", |
|
341 " isprime := 1;", |
|
342 " j := 2;", |
|
343 " while (j * j) <= i + 1 do {", |
|
344 " if i % j == 0 then isprime := 0 else skip;", |
|
345 " j := j + 1", |
|
346 " };", |
|
347 " if isprime == 1 then write i else skip;", |
|
348 " i := i + 1", |
|
349 "}"] |
|
350 |
|
351 |
|
352 lexing_simp :: Int -> Int |
|
353 lexing_simp n = case (lex_simp while_regs (string_repeat prog2 n)) of |
|
354 Just result -> 1 |
|
355 Nothing -> 0 |
|
356 |
|
357 step_simp :: Int -> IO () |
|
358 step_simp n = do |
|
359 putStr (show n ++ ": ") |
|
360 time (lexing_simp n) |
|
361 |
|
362 lexing_simp2 :: Int -> Int |
|
363 lexing_simp2 n = case (lex_simp2 while_regs (string_repeat prog2 n)) of |
|
364 Just result -> 1 |
|
365 Nothing -> 0 |
|
366 |
|
367 step_simp2 :: Int -> IO () |
|
368 step_simp2 n = do |
|
369 putStr (show n ++ ": ") |
|
370 time (lexing_simp2 n) |
|
371 |
|
372 lexing_acc :: Int -> Int |
|
373 lexing_acc n = case (lex_acc while_regs (string_repeat prog2 n) f_id) of |
|
374 Just result -> 1 |
|
375 Nothing -> 0 |
|
376 |
|
377 step_acc :: Int -> IO () |
|
378 step_acc n = do |
|
379 putStr (show n ++ ": ") |
|
380 time (lexing_acc n) |
|
381 |
|
382 lexing_acc2 :: Int -> Int |
|
383 lexing_acc2 n = case (lex_acc2 while_regs (string_repeat prog2 n) f_id) of |
|
384 Just result -> 1 |
|
385 Nothing -> 0 |
|
386 |
|
387 step_acc2 :: Int -> IO () |
|
388 step_acc2 n = do |
|
389 putStr (show n ++ ": ") |
|
390 time (lexing_acc2 n) |
|
391 |
|
392 main :: IO () |
|
393 main = do |
|
394 forM_ [1000,2000..5000] step_simp |
|
395 printf "\n" |
|
396 forM_ [1000,2000..5000] step_simp2 |
|
397 printf "\n" |
|
398 forM_ [1000,2000..5000] step_acc |
|
399 printf "\n" |
|
400 forM_ [1000,2000..5000] step_acc2 |