thys/RegLangs.thy
changeset 311 8b8db9558ecf
parent 295 c6ec5f369037
child 314 20a57552d722
equal deleted inserted replaced
310:c090baa7059d 311:8b8db9558ecf
       
     1    
       
     2 theory RegLangs
       
     3   imports Main "~~/src/HOL/Library/Sublist"
       
     4 begin
       
     5 
       
     6 section {* Sequential Composition of Languages *}
       
     7 
       
     8 definition
       
     9   Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
       
    10 where 
       
    11   "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
       
    12 
       
    13 text {* Two Simple Properties about Sequential Composition *}
       
    14 
       
    15 lemma Sequ_empty_string [simp]:
       
    16   shows "A ;; {[]} = A"
       
    17   and   "{[]} ;; A = A"
       
    18 by (simp_all add: Sequ_def)
       
    19 
       
    20 lemma Sequ_empty [simp]:
       
    21   shows "A ;; {} = {}"
       
    22   and   "{} ;; A = {}"
       
    23 by (simp_all add: Sequ_def)
       
    24 
       
    25 
       
    26 section {* Semantic Derivative (Left Quotient) of Languages *}
       
    27 
       
    28 definition
       
    29   Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
       
    30 where
       
    31   "Der c A \<equiv> {s. c # s \<in> A}"
       
    32 
       
    33 definition
       
    34   Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
       
    35 where
       
    36   "Ders s A \<equiv> {s'. s @ s' \<in> A}"
       
    37 
       
    38 lemma Der_null [simp]:
       
    39   shows "Der c {} = {}"
       
    40 unfolding Der_def
       
    41 by auto
       
    42 
       
    43 lemma Der_empty [simp]:
       
    44   shows "Der c {[]} = {}"
       
    45 unfolding Der_def
       
    46 by auto
       
    47 
       
    48 lemma Der_char [simp]:
       
    49   shows "Der c {[d]} = (if c = d then {[]} else {})"
       
    50 unfolding Der_def
       
    51 by auto
       
    52 
       
    53 lemma Der_union [simp]:
       
    54   shows "Der c (A \<union> B) = Der c A \<union> Der c B"
       
    55 unfolding Der_def
       
    56 by auto
       
    57 
       
    58 lemma Der_Sequ [simp]:
       
    59   shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
       
    60 unfolding Der_def Sequ_def
       
    61 by (auto simp add: Cons_eq_append_conv)
       
    62 
       
    63 
       
    64 section {* Kleene Star for Languages *}
       
    65 
       
    66 inductive_set
       
    67   Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
       
    68   for A :: "string set"
       
    69 where
       
    70   start[intro]: "[] \<in> A\<star>"
       
    71 | step[intro]:  "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
       
    72 
       
    73 (* Arden's lemma *)
       
    74 
       
    75 lemma Star_cases:
       
    76   shows "A\<star> = {[]} \<union> A ;; A\<star>"
       
    77 unfolding Sequ_def
       
    78 by (auto) (metis Star.simps)
       
    79 
       
    80 lemma Star_decomp: 
       
    81   assumes "c # x \<in> A\<star>" 
       
    82   shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
       
    83 using assms
       
    84 by (induct x\<equiv>"c # x" rule: Star.induct) 
       
    85    (auto simp add: append_eq_Cons_conv)
       
    86 
       
    87 lemma Star_Der_Sequ: 
       
    88   shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
       
    89 unfolding Der_def Sequ_def
       
    90 by(auto simp add: Star_decomp)
       
    91 
       
    92 
       
    93 lemma Der_star [simp]:
       
    94   shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
       
    95 proof -    
       
    96   have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"  
       
    97     by (simp only: Star_cases[symmetric])
       
    98   also have "... = Der c (A ;; A\<star>)"
       
    99     by (simp only: Der_union Der_empty) (simp)
       
   100   also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
       
   101     by simp
       
   102   also have "... =  (Der c A) ;; A\<star>"
       
   103     using Star_Der_Sequ by auto
       
   104   finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
       
   105 qed
       
   106 
       
   107 lemma Star_concat:
       
   108   assumes "\<forall>s \<in> set ss. s \<in> A"  
       
   109   shows "concat ss \<in> A\<star>"
       
   110 using assms by (induct ss) (auto)
       
   111 
       
   112 lemma Star_split:
       
   113   assumes "s \<in> A\<star>"
       
   114   shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
       
   115 using assms
       
   116   apply(induct rule: Star.induct)
       
   117   using concat.simps(1) apply fastforce
       
   118   apply(clarify)
       
   119   by (metis append_Nil concat.simps(2) set_ConsD)
       
   120 
       
   121 
       
   122 
       
   123 section {* Regular Expressions *}
       
   124 
       
   125 datatype rexp =
       
   126   ZERO
       
   127 | ONE
       
   128 | CHAR char
       
   129 | SEQ rexp rexp
       
   130 | ALT rexp rexp
       
   131 | STAR rexp
       
   132 
       
   133 section {* Semantics of Regular Expressions *}
       
   134  
       
   135 fun
       
   136   L :: "rexp \<Rightarrow> string set"
       
   137 where
       
   138   "L (ZERO) = {}"
       
   139 | "L (ONE) = {[]}"
       
   140 | "L (CHAR c) = {[c]}"
       
   141 | "L (SEQ r1 r2) = (L r1) ;; (L r2)"
       
   142 | "L (ALT r1 r2) = (L r1) \<union> (L r2)"
       
   143 | "L (STAR r) = (L r)\<star>"
       
   144 
       
   145 
       
   146 section {* Nullable, Derivatives *}
       
   147 
       
   148 fun
       
   149  nullable :: "rexp \<Rightarrow> bool"
       
   150 where
       
   151   "nullable (ZERO) = False"
       
   152 | "nullable (ONE) = True"
       
   153 | "nullable (CHAR c) = False"
       
   154 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
       
   155 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
       
   156 | "nullable (STAR r) = True"
       
   157 
       
   158 
       
   159 fun
       
   160  der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
       
   161 where
       
   162   "der c (ZERO) = ZERO"
       
   163 | "der c (ONE) = ZERO"
       
   164 | "der c (CHAR d) = (if c = d then ONE else ZERO)"
       
   165 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
       
   166 | "der c (SEQ r1 r2) = 
       
   167      (if nullable r1
       
   168       then ALT (SEQ (der c r1) r2) (der c r2)
       
   169       else SEQ (der c r1) r2)"
       
   170 | "der c (STAR r) = SEQ (der c r) (STAR r)"
       
   171 
       
   172 fun 
       
   173  ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
       
   174 where
       
   175   "ders [] r = r"
       
   176 | "ders (c # s) r = ders s (der c r)"
       
   177 
       
   178 
       
   179 lemma nullable_correctness:
       
   180   shows "nullable r  \<longleftrightarrow> [] \<in> (L r)"
       
   181 by (induct r) (auto simp add: Sequ_def) 
       
   182 
       
   183 lemma der_correctness:
       
   184   shows "L (der c r) = Der c (L r)"
       
   185 by (induct r) (simp_all add: nullable_correctness)
       
   186 
       
   187 lemma ders_correctness:
       
   188   shows "L (ders s r) = Ders s (L r)"
       
   189   by (induct s arbitrary: r)
       
   190      (simp_all add: Ders_def der_correctness Der_def)
       
   191 
       
   192 lemma ders_append:
       
   193   shows "ders (s1 @ s2) r = ders s2 (ders s1 r)"
       
   194   by (induct s1 arbitrary: s2 r) (auto)
       
   195 
       
   196 
       
   197 
       
   198 end