thys3/document/root.tex
changeset 615 8881a09a06fd
parent 569 5af61c89f51e
child 642 6c13f76c070b
equal deleted inserted replaced
614:d5e9bcb384ec 615:8881a09a06fd
     1 \documentclass[runningheads]{lipics-v2021}
     1 \documentclass[runningheads]{llncs}
       
     2 %!\documentclass[runningheads]{lipics-v2021}
     2 \usepackage{times}
     3 \usepackage{times}
     3 \usepackage{isabelle}
     4 \usepackage{isabelle}
     4 \usepackage{isabellesym}
     5 \usepackage{isabellesym}
     5 \usepackage{amsmath}
     6 \usepackage{amsmath}
     6 \usepackage{amssymb}
     7 \usepackage{amssymb}
     8 \usepackage{tikz}
     9 \usepackage{tikz}
     9 \usepackage{pgf}
    10 \usepackage{pgf}
    10 \usetikzlibrary{positioning}
    11 \usetikzlibrary{positioning}
    11 %\usepackage{pdfsetup}
    12 %\usepackage{pdfsetup}
    12 \usepackage{stmaryrd}
    13 \usepackage{stmaryrd}
    13 %\usepackage{url}
    14 \usepackage{url}
    14 %\usepackage{color}
    15 %\usepackage{color}
    15 %\usepackage[safe]{tipa}
    16 %\usepackage[safe]{tipa}
    16 %\usepackage[sc]{mathpazo}
    17 %\usepackage[sc]{mathpazo}
    17 %\usepackage{fontspec}
    18 %\usepackage{fontspec}
    18 %\setmainfont[Ligatures=TeX]{Palatino Linotype}
    19 %\setmainfont[Ligatures=TeX]{Palatino Linotype}
    56 \def\Brz{Brzozowski}
    57 \def\Brz{Brzozowski}
    57 \def\der{\backslash}
    58 \def\der{\backslash}
    58 \newtheorem{falsehood}{Falsehood}
    59 \newtheorem{falsehood}{Falsehood}
    59 \newtheorem{conject}{Conjecture}
    60 \newtheorem{conject}{Conjecture}
    60 
    61 
    61 \bibliographystyle{plainurl}
    62 %!\bibliographystyle{plainurl}
       
    63 \bibliographystyle{plain}
    62 
    64 
    63 \title{{POSIX} {L}exing with {B}itcoded {D}erivatives}
    65 \title{{POSIX} {L}exing with {B}itcoded {D}erivatives}
    64 \titlerunning{POSIX Lexing with Bitcoded Derivatives}
    66 \titlerunning{POSIX Lexing with Bitcoded Derivatives}
    65 \author{Chengsong Tan}{King's College London}{chengsong.tan@kcl.ac.uk}{}{}
    67 \author{Chengsong Tan\inst{1,2} \and Christian Urban\inst{2}}
    66 \author{Christian Urban}{King's College London}{christian.urban@kcl.ac.uk}{}{}
    68 \institute{Imperial College London \and King's College London\\
    67 \authorrunning{C.~Tan and C.~Urban}
    69 \email{\{chengsong.tan,christian.urban\}@kcl.ac.uk}}
    68 \keywords{POSIX matching and lexing, derivatives of regular expressions, Isabelle/HOL}
    70 %!\author{Chengsong Tan}{King's College London}{chengsong.tan@kcl.ac.uk}{}{}
    69 \category{}
    71 %!\author{Christian Urban}{King's College London}{christian.urban@kcl.ac.uk}{}{}
    70 \ccsdesc[100]{Design and analysis of algorithms}
    72 %!\authorrunning{C.~Tan and C.~Urban}
    71 \ccsdesc[100]{Formal languages and automata theory}
    73 %!\keywords{POSIX matching and lexing, derivatives of regular expressions, Isabelle/HOL}
    72 \Copyright{\mbox{}}
    74 %!\category{}
    73 \renewcommand{\DOIPrefix}{}
    75 %!\ccsdesc[100]{Design and analysis of algorithms}
    74 \nolinenumbers
    76 %!\ccsdesc[100]{Formal languages and automata theory}
       
    77 %!\Copyright{\mbox{}}
       
    78 %!\renewcommand{\DOIPrefix}{}
       
    79 %!\nolinenumbers
    75 
    80 
    76 
    81 
    77 \begin{document}
    82 \begin{document}
    78 \maketitle
    83 \maketitle
    79 
    84 
    91   derivatives finitely bounded. Without simplification the size of some derivatives can grow
    96   derivatives finitely bounded. Without simplification the size of some derivatives can grow
    92   arbitrarily big, resulting in an extremely slow lexing algorithm.  In this
    97   arbitrarily big, resulting in an extremely slow lexing algorithm.  In this
    93   paper we describe a variant of Sulzmann and Lu's algorithm: Our
    98   paper we describe a variant of Sulzmann and Lu's algorithm: Our
    94   variant is a recursive functional program, whereas Sulzmann
    99   variant is a recursive functional program, whereas Sulzmann
    95   and Lu's version involves a fixpoint construction. We \textit{(i)}
   100   and Lu's version involves a fixpoint construction. We \textit{(i)}
    96   prove in Isabelle/HOL that our algorithm is correct and generates
   101   prove in Isabelle/HOL that our variant is correct and generates
    97   unique POSIX values; we also \textit{(ii)} establish finite
   102   unique POSIX values (no such proof has been given for the
    98   bounds for the size of the derivatives.
   103   original algorithm by Sulzmann and Lu); we also \textit{(ii)} establish finite
       
   104   bounds for the size of our derivatives.
    99 
   105 
   100   %The size can be seen as a
   106   %The size can be seen as a
   101   %proxy measure for the efficiency of the lexing algorithm: because of
   107   %proxy measure for the efficiency of the lexing algorithm: because of
   102   %the polynomial bound our algorithm does not suffer from
   108   %the polynomial bound our algorithm does not suffer from
   103   %the exponential blowup in earlier works.
   109   %the exponential blowup in earlier works.