ChengsongTanPhdThesis/Chapters/Chapter2.tex
changeset 515 84938708781d
parent 514 036600af4c30
child 516 6fecb7fe8cd0
equal deleted inserted replaced
514:036600af4c30 515:84938708781d
   213 We define rewriting relations for $\rrexp$s, which allows us to do the 
   213 We define rewriting relations for $\rrexp$s, which allows us to do the 
   214 same trick as we did for the correctness proof,
   214 same trick as we did for the correctness proof,
   215 but this time we will have stronger equalities established.
   215 but this time we will have stronger equalities established.
   216 \subsection{"hrewrite" relation}
   216 \subsection{"hrewrite" relation}
   217 List of 1-step rewrite rules for regular expressions simplification without bitcodes:
   217 List of 1-step rewrite rules for regular expressions simplification without bitcodes:
   218 \
   218 \begin{center}
   219 
   219 \begin{tabular}{lcl}
   220 
   220 $r_1 \cdot \ZERO$ & $\rightarrow$ & $\ZERO$
   221 
   221 \end{tabular}
       
   222 \end{center}
       
   223 
       
   224 And we define an "grewrite" relation that works on lists:
       
   225 \begin{center}
       
   226 \begin{tabular}{lcl}
       
   227 $ \ZERO :: rs$ & $\rightarrow_g$ & $rs$
       
   228 \end{tabular}
       
   229 \end{center}
       
   230 
       
   231 
       
   232 
       
   233 With these relations we prove
       
   234 \begin{lemma}
       
   235 $rs \rightarrow rs'  \implies \RALTS{rs} \rightarrow \RALTS{rs'}$
       
   236 \end{lemma}
       
   237 which enables us to prove "closed forms" equalities such as
       
   238 \begin{lemma}
       
   239 $\sflat{(r_1 \cdot r_2) \backslash s} = \RALTS{ (r_1 \backslash s) \cdot r_2 :: (\map (r_2 \backslash \_) (\vsuf{s}{r_1}))}$
       
   240 \end{lemma}
       
   241 
       
   242 But the most involved part of the above lemma is proving the following:
       
   243 \begin{lemma}
       
   244 $\bsimp{\RALTS{rs @ \RALTS{rs_1} @ rs'}} = \bsimp{\RALTS{rs @rs_1 @ rs'}} $ 
       
   245 \end{lemma}
       
   246 which is needed in proving things like 
       
   247 \begin{lemma}
       
   248 $r \rightarrow_f r'  \implies \rsimp{r} \rightarrow \rsimp{r'}$
       
   249 \end{lemma}
       
   250 .
       
   251 Fortunately this is provable by induction on the list $rs$
   222 
   252 
   223 %----------------------------------------------------------------------------------------
   253 %----------------------------------------------------------------------------------------
   224 %	SECTION ??
   254 %	SECTION ??
   225 %----------------------------------------------------------------------------------------
   255 %----------------------------------------------------------------------------------------
   226 
   256