|
1 |
|
2 theory SizeBound2 |
|
3 imports "Lexer" |
|
4 begin |
|
5 |
|
6 section \<open>Bit-Encodings\<close> |
|
7 |
|
8 datatype bit = Z | S |
|
9 |
|
10 fun code :: "val \<Rightarrow> bit list" |
|
11 where |
|
12 "code Void = []" |
|
13 | "code (Char c) = []" |
|
14 | "code (Left v) = Z # (code v)" |
|
15 | "code (Right v) = S # (code v)" |
|
16 | "code (Seq v1 v2) = (code v1) @ (code v2)" |
|
17 | "code (Stars []) = [S]" |
|
18 | "code (Stars (v # vs)) = (Z # code v) @ code (Stars vs)" |
|
19 |
|
20 |
|
21 fun |
|
22 Stars_add :: "val \<Rightarrow> val \<Rightarrow> val" |
|
23 where |
|
24 "Stars_add v (Stars vs) = Stars (v # vs)" |
|
25 |
|
26 function |
|
27 decode' :: "bit list \<Rightarrow> rexp \<Rightarrow> (val * bit list)" |
|
28 where |
|
29 "decode' ds ZERO = (Void, [])" |
|
30 | "decode' ds ONE = (Void, ds)" |
|
31 | "decode' ds (CH d) = (Char d, ds)" |
|
32 | "decode' [] (ALT r1 r2) = (Void, [])" |
|
33 | "decode' (Z # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r1 in (Left v, ds'))" |
|
34 | "decode' (S # ds) (ALT r1 r2) = (let (v, ds') = decode' ds r2 in (Right v, ds'))" |
|
35 | "decode' ds (SEQ r1 r2) = (let (v1, ds') = decode' ds r1 in |
|
36 let (v2, ds'') = decode' ds' r2 in (Seq v1 v2, ds''))" |
|
37 | "decode' [] (STAR r) = (Void, [])" |
|
38 | "decode' (S # ds) (STAR r) = (Stars [], ds)" |
|
39 | "decode' (Z # ds) (STAR r) = (let (v, ds') = decode' ds r in |
|
40 let (vs, ds'') = decode' ds' (STAR r) |
|
41 in (Stars_add v vs, ds''))" |
|
42 by pat_completeness auto |
|
43 |
|
44 lemma decode'_smaller: |
|
45 assumes "decode'_dom (ds, r)" |
|
46 shows "length (snd (decode' ds r)) \<le> length ds" |
|
47 using assms |
|
48 apply(induct ds r) |
|
49 apply(auto simp add: decode'.psimps split: prod.split) |
|
50 using dual_order.trans apply blast |
|
51 by (meson dual_order.trans le_SucI) |
|
52 |
|
53 termination "decode'" |
|
54 apply(relation "inv_image (measure(%cs. size cs) <*lex*> measure(%s. size s)) (%(ds,r). (r,ds))") |
|
55 apply(auto dest!: decode'_smaller) |
|
56 by (metis less_Suc_eq_le snd_conv) |
|
57 |
|
58 definition |
|
59 decode :: "bit list \<Rightarrow> rexp \<Rightarrow> val option" |
|
60 where |
|
61 "decode ds r \<equiv> (let (v, ds') = decode' ds r |
|
62 in (if ds' = [] then Some v else None))" |
|
63 |
|
64 lemma decode'_code_Stars: |
|
65 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> (\<forall>x. decode' (code v @ x) r = (v, x)) \<and> flat v \<noteq> []" |
|
66 shows "decode' (code (Stars vs) @ ds) (STAR r) = (Stars vs, ds)" |
|
67 using assms |
|
68 apply(induct vs) |
|
69 apply(auto) |
|
70 done |
|
71 |
|
72 lemma decode'_code: |
|
73 assumes "\<Turnstile> v : r" |
|
74 shows "decode' ((code v) @ ds) r = (v, ds)" |
|
75 using assms |
|
76 apply(induct v r arbitrary: ds) |
|
77 apply(auto) |
|
78 using decode'_code_Stars by blast |
|
79 |
|
80 lemma decode_code: |
|
81 assumes "\<Turnstile> v : r" |
|
82 shows "decode (code v) r = Some v" |
|
83 using assms unfolding decode_def |
|
84 by (smt append_Nil2 decode'_code old.prod.case) |
|
85 |
|
86 |
|
87 section {* Annotated Regular Expressions *} |
|
88 |
|
89 datatype arexp = |
|
90 AZERO |
|
91 | AONE "bit list" |
|
92 | ACHAR "bit list" char |
|
93 | ASEQ "bit list" arexp arexp |
|
94 | AALTs "bit list" "arexp list" |
|
95 | ASTAR "bit list" arexp |
|
96 |
|
97 abbreviation |
|
98 "AALT bs r1 r2 \<equiv> AALTs bs [r1, r2]" |
|
99 |
|
100 fun asize :: "arexp \<Rightarrow> nat" where |
|
101 "asize AZERO = 1" |
|
102 | "asize (AONE cs) = 1" |
|
103 | "asize (ACHAR cs c) = 1" |
|
104 | "asize (AALTs cs rs) = Suc (sum_list (map asize rs))" |
|
105 | "asize (ASEQ cs r1 r2) = Suc (asize r1 + asize r2)" |
|
106 | "asize (ASTAR cs r) = Suc (asize r)" |
|
107 |
|
108 fun |
|
109 erase :: "arexp \<Rightarrow> rexp" |
|
110 where |
|
111 "erase AZERO = ZERO" |
|
112 | "erase (AONE _) = ONE" |
|
113 | "erase (ACHAR _ c) = CH c" |
|
114 | "erase (AALTs _ []) = ZERO" |
|
115 | "erase (AALTs _ [r]) = (erase r)" |
|
116 | "erase (AALTs bs (r#rs)) = ALT (erase r) (erase (AALTs bs rs))" |
|
117 | "erase (ASEQ _ r1 r2) = SEQ (erase r1) (erase r2)" |
|
118 | "erase (ASTAR _ r) = STAR (erase r)" |
|
119 |
|
120 |
|
121 fun fuse :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp" where |
|
122 "fuse bs AZERO = AZERO" |
|
123 | "fuse bs (AONE cs) = AONE (bs @ cs)" |
|
124 | "fuse bs (ACHAR cs c) = ACHAR (bs @ cs) c" |
|
125 | "fuse bs (AALTs cs rs) = AALTs (bs @ cs) rs" |
|
126 | "fuse bs (ASEQ cs r1 r2) = ASEQ (bs @ cs) r1 r2" |
|
127 | "fuse bs (ASTAR cs r) = ASTAR (bs @ cs) r" |
|
128 |
|
129 lemma fuse_append: |
|
130 shows "fuse (bs1 @ bs2) r = fuse bs1 (fuse bs2 r)" |
|
131 apply(induct r) |
|
132 apply(auto) |
|
133 done |
|
134 |
|
135 lemma fuse_Nil: |
|
136 shows "fuse [] r = r" |
|
137 by (induct r)(simp_all) |
|
138 |
|
139 lemma map_fuse_Nil: |
|
140 shows "map (fuse []) rs = rs" |
|
141 by (induct rs)(simp_all add: fuse_Nil) |
|
142 |
|
143 |
|
144 fun intern :: "rexp \<Rightarrow> arexp" where |
|
145 "intern ZERO = AZERO" |
|
146 | "intern ONE = AONE []" |
|
147 | "intern (CH c) = ACHAR [] c" |
|
148 | "intern (ALT r1 r2) = AALT [] (fuse [Z] (intern r1)) |
|
149 (fuse [S] (intern r2))" |
|
150 | "intern (SEQ r1 r2) = ASEQ [] (intern r1) (intern r2)" |
|
151 | "intern (STAR r) = ASTAR [] (intern r)" |
|
152 |
|
153 |
|
154 fun retrieve :: "arexp \<Rightarrow> val \<Rightarrow> bit list" where |
|
155 "retrieve (AONE bs) Void = bs" |
|
156 | "retrieve (ACHAR bs c) (Char d) = bs" |
|
157 | "retrieve (AALTs bs [r]) v = bs @ retrieve r v" |
|
158 | "retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v" |
|
159 | "retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v" |
|
160 | "retrieve (ASEQ bs r1 r2) (Seq v1 v2) = bs @ retrieve r1 v1 @ retrieve r2 v2" |
|
161 | "retrieve (ASTAR bs r) (Stars []) = bs @ [S]" |
|
162 | "retrieve (ASTAR bs r) (Stars (v#vs)) = |
|
163 bs @ [Z] @ retrieve r v @ retrieve (ASTAR [] r) (Stars vs)" |
|
164 |
|
165 |
|
166 |
|
167 fun |
|
168 bnullable :: "arexp \<Rightarrow> bool" |
|
169 where |
|
170 "bnullable (AZERO) = False" |
|
171 | "bnullable (AONE bs) = True" |
|
172 | "bnullable (ACHAR bs c) = False" |
|
173 | "bnullable (AALTs bs rs) = (\<exists>r \<in> set rs. bnullable r)" |
|
174 | "bnullable (ASEQ bs r1 r2) = (bnullable r1 \<and> bnullable r2)" |
|
175 | "bnullable (ASTAR bs r) = True" |
|
176 |
|
177 fun |
|
178 bmkeps :: "arexp \<Rightarrow> bit list" |
|
179 where |
|
180 "bmkeps(AONE bs) = bs" |
|
181 | "bmkeps(ASEQ bs r1 r2) = bs @ (bmkeps r1) @ (bmkeps r2)" |
|
182 | "bmkeps(AALTs bs [r]) = bs @ (bmkeps r)" |
|
183 | "bmkeps(AALTs bs (r#rs)) = (if bnullable(r) then bs @ (bmkeps r) else (bmkeps (AALTs bs rs)))" |
|
184 | "bmkeps(ASTAR bs r) = bs @ [S]" |
|
185 |
|
186 |
|
187 fun |
|
188 bder :: "char \<Rightarrow> arexp \<Rightarrow> arexp" |
|
189 where |
|
190 "bder c (AZERO) = AZERO" |
|
191 | "bder c (AONE bs) = AZERO" |
|
192 | "bder c (ACHAR bs d) = (if c = d then AONE bs else AZERO)" |
|
193 | "bder c (AALTs bs rs) = AALTs bs (map (bder c) rs)" |
|
194 | "bder c (ASEQ bs r1 r2) = |
|
195 (if bnullable r1 |
|
196 then AALT bs (ASEQ [] (bder c r1) r2) (fuse (bmkeps r1) (bder c r2)) |
|
197 else ASEQ bs (bder c r1) r2)" |
|
198 | "bder c (ASTAR bs r) = ASEQ bs (fuse [Z] (bder c r)) (ASTAR [] r)" |
|
199 |
|
200 |
|
201 fun |
|
202 bders :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
203 where |
|
204 "bders r [] = r" |
|
205 | "bders r (c#s) = bders (bder c r) s" |
|
206 |
|
207 lemma bders_append: |
|
208 "bders r (s1 @ s2) = bders (bders r s1) s2" |
|
209 apply(induct s1 arbitrary: r s2) |
|
210 apply(simp_all) |
|
211 done |
|
212 |
|
213 lemma bnullable_correctness: |
|
214 shows "nullable (erase r) = bnullable r" |
|
215 apply(induct r rule: erase.induct) |
|
216 apply(simp_all) |
|
217 done |
|
218 |
|
219 lemma erase_fuse: |
|
220 shows "erase (fuse bs r) = erase r" |
|
221 apply(induct r rule: erase.induct) |
|
222 apply(simp_all) |
|
223 done |
|
224 |
|
225 lemma erase_intern [simp]: |
|
226 shows "erase (intern r) = r" |
|
227 apply(induct r) |
|
228 apply(simp_all add: erase_fuse) |
|
229 done |
|
230 |
|
231 lemma erase_bder [simp]: |
|
232 shows "erase (bder a r) = der a (erase r)" |
|
233 apply(induct r rule: erase.induct) |
|
234 apply(simp_all add: erase_fuse bnullable_correctness) |
|
235 done |
|
236 |
|
237 lemma erase_bders [simp]: |
|
238 shows "erase (bders r s) = ders s (erase r)" |
|
239 apply(induct s arbitrary: r ) |
|
240 apply(simp_all) |
|
241 done |
|
242 |
|
243 lemma bnullable_fuse: |
|
244 shows "bnullable (fuse bs r) = bnullable r" |
|
245 apply(induct r arbitrary: bs) |
|
246 apply(auto) |
|
247 done |
|
248 |
|
249 lemma retrieve_encode_STARS: |
|
250 assumes "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> code v = retrieve (intern r) v" |
|
251 shows "code (Stars vs) = retrieve (ASTAR [] (intern r)) (Stars vs)" |
|
252 using assms |
|
253 apply(induct vs) |
|
254 apply(simp_all) |
|
255 done |
|
256 |
|
257 |
|
258 lemma retrieve_fuse2: |
|
259 assumes "\<Turnstile> v : (erase r)" |
|
260 shows "retrieve (fuse bs r) v = bs @ retrieve r v" |
|
261 using assms |
|
262 apply(induct r arbitrary: v bs) |
|
263 apply(auto elim: Prf_elims)[4] |
|
264 defer |
|
265 using retrieve_encode_STARS |
|
266 apply(auto elim!: Prf_elims)[1] |
|
267 apply(case_tac vs) |
|
268 apply(simp) |
|
269 apply(simp) |
|
270 (* AALTs case *) |
|
271 apply(simp) |
|
272 apply(case_tac x2a) |
|
273 apply(simp) |
|
274 apply(auto elim!: Prf_elims)[1] |
|
275 apply(simp) |
|
276 apply(case_tac list) |
|
277 apply(simp) |
|
278 apply(auto) |
|
279 apply(auto elim!: Prf_elims)[1] |
|
280 done |
|
281 |
|
282 lemma retrieve_fuse: |
|
283 assumes "\<Turnstile> v : r" |
|
284 shows "retrieve (fuse bs (intern r)) v = bs @ retrieve (intern r) v" |
|
285 using assms |
|
286 by (simp_all add: retrieve_fuse2) |
|
287 |
|
288 |
|
289 lemma retrieve_code: |
|
290 assumes "\<Turnstile> v : r" |
|
291 shows "code v = retrieve (intern r) v" |
|
292 using assms |
|
293 apply(induct v r ) |
|
294 apply(simp_all add: retrieve_fuse retrieve_encode_STARS) |
|
295 done |
|
296 |
|
297 |
|
298 lemma bnullable_Hdbmkeps_Hd: |
|
299 assumes "bnullable a" |
|
300 shows "bmkeps (AALTs bs (a # rs)) = bs @ (bmkeps a)" |
|
301 using assms |
|
302 by (metis bmkeps.simps(3) bmkeps.simps(4) list.exhaust) |
|
303 |
|
304 lemma r1: |
|
305 assumes "\<not> bnullable a" "bnullable (AALTs bs rs)" |
|
306 shows "bmkeps (AALTs bs (a # rs)) = bmkeps (AALTs bs rs)" |
|
307 using assms |
|
308 apply(induct rs) |
|
309 apply(auto) |
|
310 done |
|
311 |
|
312 lemma r2: |
|
313 assumes "x \<in> set rs" "bnullable x" |
|
314 shows "bnullable (AALTs bs rs)" |
|
315 using assms |
|
316 apply(induct rs) |
|
317 apply(auto) |
|
318 done |
|
319 |
|
320 lemma r3: |
|
321 assumes "\<not> bnullable r" |
|
322 " \<exists> x \<in> set rs. bnullable x" |
|
323 shows "retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs))) = |
|
324 retrieve (AALTs bs (r # rs)) (mkeps (erase (AALTs bs (r # rs))))" |
|
325 using assms |
|
326 apply(induct rs arbitrary: r bs) |
|
327 apply(auto)[1] |
|
328 apply(auto) |
|
329 using bnullable_correctness apply blast |
|
330 apply(auto simp add: bnullable_correctness mkeps_nullable retrieve_fuse2) |
|
331 apply(subst retrieve_fuse2[symmetric]) |
|
332 apply (smt bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable) |
|
333 apply(simp) |
|
334 apply(case_tac "bnullable a") |
|
335 apply (smt append_Nil2 bnullable.simps(4) bnullable_correctness erase.simps(5) erase.simps(6) fuse.simps(4) insert_iff list.exhaust list.set(2) mkeps.simps(3) mkeps_nullable retrieve_fuse2) |
|
336 apply(drule_tac x="a" in meta_spec) |
|
337 apply(drule_tac x="bs" in meta_spec) |
|
338 apply(drule meta_mp) |
|
339 apply(simp) |
|
340 apply(drule meta_mp) |
|
341 apply(auto) |
|
342 apply(subst retrieve_fuse2[symmetric]) |
|
343 apply(case_tac rs) |
|
344 apply(simp) |
|
345 apply(auto)[1] |
|
346 apply (simp add: bnullable_correctness) |
|
347 apply (metis append_Nil2 bnullable_correctness erase_fuse fuse.simps(4) list.set_intros(1) mkeps.simps(3) mkeps_nullable nullable.simps(4) r2) |
|
348 apply (simp add: bnullable_correctness) |
|
349 apply (metis append_Nil2 bnullable_correctness erase.simps(6) erase_fuse fuse.simps(4) list.set_intros(2) mkeps.simps(3) mkeps_nullable r2) |
|
350 apply(simp) |
|
351 done |
|
352 |
|
353 |
|
354 lemma t: |
|
355 assumes "\<forall>r \<in> set rs. nullable (erase r) \<longrightarrow> bmkeps r = retrieve r (mkeps (erase r))" |
|
356 "nullable (erase (AALTs bs rs))" |
|
357 shows " bmkeps (AALTs bs rs) = retrieve (AALTs bs rs) (mkeps (erase (AALTs bs rs)))" |
|
358 using assms |
|
359 apply(induct rs arbitrary: bs) |
|
360 apply(simp) |
|
361 apply(auto simp add: bnullable_correctness) |
|
362 apply(case_tac rs) |
|
363 apply(auto simp add: bnullable_correctness)[2] |
|
364 apply(subst r1) |
|
365 apply(simp) |
|
366 apply(rule r2) |
|
367 apply(assumption) |
|
368 apply(simp) |
|
369 apply(drule_tac x="bs" in meta_spec) |
|
370 apply(drule meta_mp) |
|
371 apply(auto)[1] |
|
372 prefer 2 |
|
373 apply(case_tac "bnullable a") |
|
374 apply(subst bnullable_Hdbmkeps_Hd) |
|
375 apply blast |
|
376 apply(subgoal_tac "nullable (erase a)") |
|
377 prefer 2 |
|
378 using bnullable_correctness apply blast |
|
379 apply (metis (no_types, lifting) erase.simps(5) erase.simps(6) list.exhaust mkeps.simps(3) retrieve.simps(3) retrieve.simps(4)) |
|
380 apply(subst r1) |
|
381 apply(simp) |
|
382 using r2 apply blast |
|
383 apply(drule_tac x="bs" in meta_spec) |
|
384 apply(drule meta_mp) |
|
385 apply(auto)[1] |
|
386 apply(simp) |
|
387 using r3 apply blast |
|
388 apply(auto) |
|
389 using r3 by blast |
|
390 |
|
391 lemma bmkeps_retrieve: |
|
392 assumes "nullable (erase r)" |
|
393 shows "bmkeps r = retrieve r (mkeps (erase r))" |
|
394 using assms |
|
395 apply(induct r) |
|
396 apply(simp) |
|
397 apply(simp) |
|
398 apply(simp) |
|
399 apply(simp) |
|
400 defer |
|
401 apply(simp) |
|
402 apply(rule t) |
|
403 apply(auto) |
|
404 done |
|
405 |
|
406 lemma bder_retrieve: |
|
407 assumes "\<Turnstile> v : der c (erase r)" |
|
408 shows "retrieve (bder c r) v = retrieve r (injval (erase r) c v)" |
|
409 using assms |
|
410 apply(induct r arbitrary: v rule: erase.induct) |
|
411 apply(simp) |
|
412 apply(erule Prf_elims) |
|
413 apply(simp) |
|
414 apply(erule Prf_elims) |
|
415 apply(simp) |
|
416 apply(case_tac "c = ca") |
|
417 apply(simp) |
|
418 apply(erule Prf_elims) |
|
419 apply(simp) |
|
420 apply(simp) |
|
421 apply(erule Prf_elims) |
|
422 apply(simp) |
|
423 apply(erule Prf_elims) |
|
424 apply(simp) |
|
425 apply(simp) |
|
426 apply(rename_tac "r\<^sub>1" "r\<^sub>2" rs v) |
|
427 apply(erule Prf_elims) |
|
428 apply(simp) |
|
429 apply(simp) |
|
430 apply(case_tac rs) |
|
431 apply(simp) |
|
432 apply(simp) |
|
433 apply (smt Prf_elims(3) injval.simps(2) injval.simps(3) retrieve.simps(4) retrieve.simps(5) same_append_eq) |
|
434 apply(simp) |
|
435 apply(case_tac "nullable (erase r1)") |
|
436 apply(simp) |
|
437 apply(erule Prf_elims) |
|
438 apply(subgoal_tac "bnullable r1") |
|
439 prefer 2 |
|
440 using bnullable_correctness apply blast |
|
441 apply(simp) |
|
442 apply(erule Prf_elims) |
|
443 apply(simp) |
|
444 apply(subgoal_tac "bnullable r1") |
|
445 prefer 2 |
|
446 using bnullable_correctness apply blast |
|
447 apply(simp) |
|
448 apply(simp add: retrieve_fuse2) |
|
449 apply(simp add: bmkeps_retrieve) |
|
450 apply(simp) |
|
451 apply(erule Prf_elims) |
|
452 apply(simp) |
|
453 using bnullable_correctness apply blast |
|
454 apply(rename_tac bs r v) |
|
455 apply(simp) |
|
456 apply(erule Prf_elims) |
|
457 apply(clarify) |
|
458 apply(erule Prf_elims) |
|
459 apply(clarify) |
|
460 apply(subst injval.simps) |
|
461 apply(simp del: retrieve.simps) |
|
462 apply(subst retrieve.simps) |
|
463 apply(subst retrieve.simps) |
|
464 apply(simp) |
|
465 apply(simp add: retrieve_fuse2) |
|
466 done |
|
467 |
|
468 |
|
469 |
|
470 lemma MAIN_decode: |
|
471 assumes "\<Turnstile> v : ders s r" |
|
472 shows "Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" |
|
473 using assms |
|
474 proof (induct s arbitrary: v rule: rev_induct) |
|
475 case Nil |
|
476 have "\<Turnstile> v : ders [] r" by fact |
|
477 then have "\<Turnstile> v : r" by simp |
|
478 then have "Some v = decode (retrieve (intern r) v) r" |
|
479 using decode_code retrieve_code by auto |
|
480 then show "Some (flex r id [] v) = decode (retrieve (bders (intern r) []) v) r" |
|
481 by simp |
|
482 next |
|
483 case (snoc c s v) |
|
484 have IH: "\<And>v. \<Turnstile> v : ders s r \<Longrightarrow> |
|
485 Some (flex r id s v) = decode (retrieve (bders (intern r) s) v) r" by fact |
|
486 have asm: "\<Turnstile> v : ders (s @ [c]) r" by fact |
|
487 then have asm2: "\<Turnstile> injval (ders s r) c v : ders s r" |
|
488 by (simp add: Prf_injval ders_append) |
|
489 have "Some (flex r id (s @ [c]) v) = Some (flex r id s (injval (ders s r) c v))" |
|
490 by (simp add: flex_append) |
|
491 also have "... = decode (retrieve (bders (intern r) s) (injval (ders s r) c v)) r" |
|
492 using asm2 IH by simp |
|
493 also have "... = decode (retrieve (bder c (bders (intern r) s)) v) r" |
|
494 using asm by (simp_all add: bder_retrieve ders_append) |
|
495 finally show "Some (flex r id (s @ [c]) v) = |
|
496 decode (retrieve (bders (intern r) (s @ [c])) v) r" by (simp add: bders_append) |
|
497 qed |
|
498 |
|
499 |
|
500 definition blex where |
|
501 "blex a s \<equiv> if bnullable (bders a s) then Some (bmkeps (bders a s)) else None" |
|
502 |
|
503 |
|
504 |
|
505 definition blexer where |
|
506 "blexer r s \<equiv> if bnullable (bders (intern r) s) then |
|
507 decode (bmkeps (bders (intern r) s)) r else None" |
|
508 |
|
509 lemma blexer_correctness: |
|
510 shows "blexer r s = lexer r s" |
|
511 proof - |
|
512 { define bds where "bds \<equiv> bders (intern r) s" |
|
513 define ds where "ds \<equiv> ders s r" |
|
514 assume asm: "nullable ds" |
|
515 have era: "erase bds = ds" |
|
516 unfolding ds_def bds_def by simp |
|
517 have mke: "\<Turnstile> mkeps ds : ds" |
|
518 using asm by (simp add: mkeps_nullable) |
|
519 have "decode (bmkeps bds) r = decode (retrieve bds (mkeps ds)) r" |
|
520 using bmkeps_retrieve |
|
521 using asm era by (simp add: bmkeps_retrieve) |
|
522 also have "... = Some (flex r id s (mkeps ds))" |
|
523 using mke by (simp_all add: MAIN_decode ds_def bds_def) |
|
524 finally have "decode (bmkeps bds) r = Some (flex r id s (mkeps ds))" |
|
525 unfolding bds_def ds_def . |
|
526 } |
|
527 then show "blexer r s = lexer r s" |
|
528 unfolding blexer_def lexer_flex |
|
529 apply(subst bnullable_correctness[symmetric]) |
|
530 apply(simp) |
|
531 done |
|
532 qed |
|
533 |
|
534 |
|
535 fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list" |
|
536 where |
|
537 "distinctBy [] f acc = []" |
|
538 | "distinctBy (x#xs) f acc = |
|
539 (if (f x) \<in> acc then distinctBy xs f acc |
|
540 else x # (distinctBy xs f ({f x} \<union> acc)))" |
|
541 |
|
542 lemma dB_single_step: |
|
543 shows "distinctBy (a#rs) f {} = a # distinctBy rs f {f a}" |
|
544 by simp |
|
545 |
|
546 fun flts :: "arexp list \<Rightarrow> arexp list" |
|
547 where |
|
548 "flts [] = []" |
|
549 | "flts (AZERO # rs) = flts rs" |
|
550 | "flts ((AALTs bs rs1) # rs) = (map (fuse bs) rs1) @ flts rs" |
|
551 | "flts (r1 # rs) = r1 # flts rs" |
|
552 |
|
553 |
|
554 |
|
555 fun bsimp_ASEQ :: "bit list \<Rightarrow> arexp \<Rightarrow> arexp \<Rightarrow> arexp" |
|
556 where |
|
557 "bsimp_ASEQ _ AZERO _ = AZERO" |
|
558 | "bsimp_ASEQ _ _ AZERO = AZERO" |
|
559 | "bsimp_ASEQ bs1 (AONE bs2) r2 = fuse (bs1 @ bs2) r2" |
|
560 | "bsimp_ASEQ bs1 r1 r2 = ASEQ bs1 r1 r2" |
|
561 |
|
562 |
|
563 fun bsimp_AALTs :: "bit list \<Rightarrow> arexp list \<Rightarrow> arexp" |
|
564 where |
|
565 "bsimp_AALTs _ [] = AZERO" |
|
566 | "bsimp_AALTs bs1 [r] = fuse bs1 r" |
|
567 | "bsimp_AALTs bs1 rs = AALTs bs1 rs" |
|
568 |
|
569 |
|
570 fun bsimp :: "arexp \<Rightarrow> arexp" |
|
571 where |
|
572 "bsimp (ASEQ bs1 r1 r2) = bsimp_ASEQ bs1 (bsimp r1) (bsimp r2)" |
|
573 | "bsimp (AALTs bs1 rs) = bsimp_AALTs bs1 (distinctBy (flts (map bsimp rs)) erase {}) " |
|
574 | "bsimp r = r" |
|
575 |
|
576 |
|
577 fun |
|
578 bders_simp :: "arexp \<Rightarrow> string \<Rightarrow> arexp" |
|
579 where |
|
580 "bders_simp r [] = r" |
|
581 | "bders_simp r (c # s) = bders_simp (bsimp (bder c r)) s" |
|
582 |
|
583 definition blexer_simp where |
|
584 "blexer_simp r s \<equiv> if bnullable (bders_simp (intern r) s) then |
|
585 decode (bmkeps (bders_simp (intern r) s)) r else None" |
|
586 |
|
587 export_code bders_simp in Scala module_name Example |
|
588 |
|
589 lemma bders_simp_append: |
|
590 shows "bders_simp r (s1 @ s2) = bders_simp (bders_simp r s1) s2" |
|
591 apply(induct s1 arbitrary: r s2) |
|
592 apply(simp_all) |
|
593 done |
|
594 |
|
595 lemma L_bsimp_ASEQ: |
|
596 "L (SEQ (erase r1) (erase r2)) = L (erase (bsimp_ASEQ bs r1 r2))" |
|
597 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
598 apply(simp_all) |
|
599 by (metis erase_fuse fuse.simps(4)) |
|
600 |
|
601 lemma L_bsimp_AALTs: |
|
602 "L (erase (AALTs bs rs)) = L (erase (bsimp_AALTs bs rs))" |
|
603 apply(induct bs rs rule: bsimp_AALTs.induct) |
|
604 apply(simp_all add: erase_fuse) |
|
605 done |
|
606 |
|
607 lemma L_erase_AALTs: |
|
608 shows "L (erase (AALTs bs rs)) = \<Union> (L ` erase ` (set rs))" |
|
609 apply(induct rs) |
|
610 apply(simp) |
|
611 apply(simp) |
|
612 apply(case_tac rs) |
|
613 apply(simp) |
|
614 apply(simp) |
|
615 done |
|
616 |
|
617 lemma L_erase_flts: |
|
618 shows "\<Union> (L ` erase ` (set (flts rs))) = \<Union> (L ` erase ` (set rs))" |
|
619 apply(induct rs rule: flts.induct) |
|
620 apply(simp_all) |
|
621 apply(auto) |
|
622 using L_erase_AALTs erase_fuse apply auto[1] |
|
623 by (simp add: L_erase_AALTs erase_fuse) |
|
624 |
|
625 lemma L_erase_dB_acc: |
|
626 shows "( \<Union>(L ` acc) \<union> ( \<Union> (L ` erase ` (set (distinctBy rs erase acc) ) ) )) = \<Union>(L ` acc) \<union> \<Union> (L ` erase ` (set rs))" |
|
627 apply(induction rs arbitrary: acc) |
|
628 apply simp |
|
629 apply simp |
|
630 by (smt (z3) SUP_absorb UN_insert sup_assoc sup_commute) |
|
631 |
|
632 lemma L_erase_dB: |
|
633 shows " ( \<Union> (L ` erase ` (set (distinctBy rs erase {}) ) ) ) = \<Union> (L ` erase ` (set rs))" |
|
634 by (metis L_erase_dB_acc Un_commute Union_image_empty) |
|
635 |
|
636 lemma L_bsimp_erase: |
|
637 shows "L (erase r) = L (erase (bsimp r))" |
|
638 apply(induct r) |
|
639 apply(simp) |
|
640 apply(simp) |
|
641 apply(simp) |
|
642 apply(auto simp add: Sequ_def)[1] |
|
643 apply(subst L_bsimp_ASEQ[symmetric]) |
|
644 apply(auto simp add: Sequ_def)[1] |
|
645 apply(subst (asm) L_bsimp_ASEQ[symmetric]) |
|
646 apply(auto simp add: Sequ_def)[1] |
|
647 apply(simp) |
|
648 apply(subst L_bsimp_AALTs[symmetric]) |
|
649 defer |
|
650 apply(simp) |
|
651 apply(subst (2)L_erase_AALTs) |
|
652 apply(subst L_erase_dB) |
|
653 apply(subst L_erase_flts) |
|
654 apply(auto) |
|
655 apply (simp add: L_erase_AALTs) |
|
656 using L_erase_AALTs by blast |
|
657 |
|
658 |
|
659 |
|
660 lemma bsimp_ASEQ0: |
|
661 shows "bsimp_ASEQ bs r1 AZERO = AZERO" |
|
662 apply(induct r1) |
|
663 apply(auto) |
|
664 done |
|
665 |
|
666 lemma bsimp_ASEQ1: |
|
667 assumes "r1 \<noteq> AZERO" "r2 \<noteq> AZERO" "\<forall>bs. r1 \<noteq> AONE bs" |
|
668 shows "bsimp_ASEQ bs r1 r2 = ASEQ bs r1 r2" |
|
669 using assms |
|
670 apply(induct bs r1 r2 rule: bsimp_ASEQ.induct) |
|
671 apply(auto) |
|
672 done |
|
673 |
|
674 lemma bsimp_ASEQ2: |
|
675 shows "bsimp_ASEQ bs (AONE bs1) r2 = fuse (bs @ bs1) r2" |
|
676 apply(induct r2) |
|
677 apply(auto) |
|
678 done |
|
679 |
|
680 |
|
681 lemma L_bders_simp: |
|
682 shows "L (erase (bders_simp r s)) = L (erase (bders r s))" |
|
683 apply(induct s arbitrary: r rule: rev_induct) |
|
684 apply(simp) |
|
685 apply(simp) |
|
686 apply(simp add: ders_append) |
|
687 apply(simp add: bders_simp_append) |
|
688 apply(simp add: L_bsimp_erase[symmetric]) |
|
689 by (simp add: der_correctness) |
|
690 |
|
691 |
|
692 lemma b2: |
|
693 assumes "bnullable r" |
|
694 shows "bmkeps (fuse bs r) = bs @ bmkeps r" |
|
695 by (simp add: assms bmkeps_retrieve bnullable_correctness erase_fuse mkeps_nullable retrieve_fuse2) |
|
696 |
|
697 |
|
698 lemma b4: |
|
699 shows "bnullable (bders_simp r s) = bnullable (bders r s)" |
|
700 by (metis L_bders_simp bnullable_correctness lexer.simps(1) lexer_correct_None option.distinct(1)) |
|
701 |
|
702 lemma qq1: |
|
703 assumes "\<exists>r \<in> set rs. bnullable r" |
|
704 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs)" |
|
705 using assms |
|
706 apply(induct rs arbitrary: rs1 bs) |
|
707 apply(simp) |
|
708 apply(simp) |
|
709 by (metis Nil_is_append_conv bmkeps.simps(4) neq_Nil_conv bnullable_Hdbmkeps_Hd split_list_last) |
|
710 |
|
711 lemma qq2: |
|
712 assumes "\<forall>r \<in> set rs. \<not> bnullable r" "\<exists>r \<in> set rs1. bnullable r" |
|
713 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs rs1)" |
|
714 using assms |
|
715 apply(induct rs arbitrary: rs1 bs) |
|
716 apply(simp) |
|
717 apply(simp) |
|
718 by (metis append_assoc in_set_conv_decomp r1 r2) |
|
719 |
|
720 lemma qq3: |
|
721 assumes "bnullable (AALTs bs (rs @ rs1))" |
|
722 "bnullable (AALTs bs (rs @ rs2))" |
|
723 "\<lbrakk>bnullable (AALTs bs rs1); bnullable (AALTs bs rs2); \<forall>r\<in>set rs. \<not>bnullable r\<rbrakk> \<Longrightarrow> |
|
724 bmkeps (AALTs bs rs1) = bmkeps (AALTs bs rs2)" |
|
725 shows "bmkeps (AALTs bs (rs @ rs1)) = bmkeps (AALTs bs (rs @ rs2))" |
|
726 using assms |
|
727 apply(case_tac "\<exists>r \<in> set rs. bnullable r") |
|
728 using qq1 apply auto[1] |
|
729 by (metis UnE bnullable.simps(4) qq2 set_append) |
|
730 |
|
731 |
|
732 lemma q3a: |
|
733 assumes "\<exists>r \<in> set rs. bnullable r" |
|
734 shows "bmkeps (AALTs bs (map (fuse bs1) rs)) = bmkeps (AALTs (bs@bs1) rs)" |
|
735 using assms |
|
736 apply(induct rs arbitrary: bs bs1) |
|
737 apply(simp) |
|
738 apply(simp) |
|
739 apply(auto) |
|
740 apply (metis append_assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd) |
|
741 apply(case_tac "bnullable a") |
|
742 apply (metis append.assoc b2 bnullable_correctness erase_fuse bnullable_Hdbmkeps_Hd) |
|
743 apply(case_tac rs) |
|
744 apply(simp) |
|
745 apply(simp) |
|
746 apply(auto)[1] |
|
747 apply (metis bnullable_correctness erase_fuse)+ |
|
748 done |
|
749 |
|
750 lemma qq4: |
|
751 assumes "\<exists>x\<in>set list. bnullable x" |
|
752 shows "\<exists>x\<in>set (flts list). bnullable x" |
|
753 using assms |
|
754 apply(induct list rule: flts.induct) |
|
755 apply(auto) |
|
756 by (metis UnCI bnullable_correctness erase_fuse imageI) |
|
757 |
|
758 |
|
759 lemma qs3: |
|
760 assumes "\<exists>r \<in> set rs. bnullable r" |
|
761 shows "bmkeps (AALTs bs rs) = bmkeps (AALTs bs (flts rs))" |
|
762 using assms |
|
763 apply(induct rs arbitrary: bs taking: size rule: measure_induct) |
|
764 apply(case_tac x) |
|
765 apply(simp) |
|
766 apply(simp) |
|
767 apply(case_tac a) |
|
768 apply(simp) |
|
769 apply (simp add: r1) |
|
770 apply(simp) |
|
771 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
772 apply(simp) |
|
773 apply(case_tac "flts list") |
|
774 apply(simp) |
|
775 apply (metis L_erase_AALTs L_erase_flts L_flat_Prf1 L_flat_Prf2 Prf_elims(1) bnullable_correctness erase.simps(4) mkeps_nullable r2) |
|
776 apply(simp) |
|
777 apply (simp add: r1) |
|
778 prefer 3 |
|
779 apply(simp) |
|
780 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
781 prefer 2 |
|
782 apply(simp) |
|
783 apply(case_tac "\<exists>x\<in>set x52. bnullable x") |
|
784 apply(case_tac "list") |
|
785 apply(simp) |
|
786 apply (metis b2 fuse.simps(4) q3a r2) |
|
787 apply(erule disjE) |
|
788 apply(subst qq1) |
|
789 apply(auto)[1] |
|
790 apply (metis bnullable_correctness erase_fuse) |
|
791 apply(simp) |
|
792 apply (metis b2 fuse.simps(4) q3a r2) |
|
793 apply(simp) |
|
794 apply(auto)[1] |
|
795 apply(subst qq1) |
|
796 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
797 apply (metis b2 fuse.simps(4) q3a r2) |
|
798 apply(subst qq1) |
|
799 apply (metis bnullable_correctness erase_fuse image_eqI set_map) |
|
800 apply (metis b2 fuse.simps(4) q3a r2) |
|
801 apply(simp) |
|
802 apply(subst qq2) |
|
803 apply (metis bnullable_correctness erase_fuse imageE set_map) |
|
804 prefer 2 |
|
805 apply(case_tac "list") |
|
806 apply(simp) |
|
807 apply(simp) |
|
808 apply (simp add: qq4) |
|
809 apply(simp) |
|
810 apply(auto) |
|
811 apply(case_tac list) |
|
812 apply(simp) |
|
813 apply(simp) |
|
814 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
815 apply(case_tac "bnullable (ASEQ x41 x42 x43)") |
|
816 apply(case_tac list) |
|
817 apply(simp) |
|
818 apply(simp) |
|
819 apply (simp add: bnullable_Hdbmkeps_Hd) |
|
820 apply(simp) |
|
821 using qq4 r1 r2 by auto |
|
822 |
|
823 lemma bder_fuse: |
|
824 shows "bder c (fuse bs a) = fuse bs (bder c a)" |
|
825 apply(induct a arbitrary: bs c) |
|
826 apply(simp_all) |
|
827 done |
|
828 |
|
829 |
|
830 |
|
831 |
|
832 inductive |
|
833 rrewrite:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto> _" [99, 99] 99) |
|
834 and |
|
835 srewrite:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" (" _ s\<leadsto> _" [100, 100] 100) |
|
836 where |
|
837 bs1: "ASEQ bs AZERO r2 \<leadsto> AZERO" |
|
838 | bs2: "ASEQ bs r1 AZERO \<leadsto> AZERO" |
|
839 | bs3: "ASEQ bs1 (AONE bs2) r \<leadsto> fuse (bs1@bs2) r" |
|
840 | bs4: "r1 \<leadsto> r2 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r2 r3" |
|
841 | bs5: "r3 \<leadsto> r4 \<Longrightarrow> ASEQ bs r1 r3 \<leadsto> ASEQ bs r1 r4" |
|
842 | bs6: "AALTs bs [] \<leadsto> AZERO" |
|
843 | bs7: "AALTs bs [r] \<leadsto> fuse bs r" |
|
844 | bs10: "rs1 s\<leadsto> rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto> AALTs bs rs2" |
|
845 | ss1: "[] s\<leadsto> []" |
|
846 | ss2: "rs1 s\<leadsto> rs2 \<Longrightarrow> (r # rs1) s\<leadsto> (r # rs2)" |
|
847 | ss3: "r1 \<leadsto> r2 \<Longrightarrow> (r1 # rs) s\<leadsto> (r2 # rs)" |
|
848 | ss4: "(AZERO # rs) s\<leadsto> rs" |
|
849 | ss5: "(AALTs bs1 rs1 # rsb) s\<leadsto> ((map (fuse bs1) rs1) @ rsb)" |
|
850 | ss6: "erase a1 = erase a2 \<Longrightarrow> (rsa@[a1]@rsb@[a2]@rsc) s\<leadsto> (rsa@[a1]@rsb@rsc)" |
|
851 |
|
852 inductive |
|
853 rrewrites:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>* _" [100, 100] 100) |
|
854 where |
|
855 rs1[intro, simp]:"r \<leadsto>* r" |
|
856 | rs2[intro]: "\<lbrakk>r1 \<leadsto>* r2; r2 \<leadsto> r3\<rbrakk> \<Longrightarrow> r1 \<leadsto>* r3" |
|
857 |
|
858 inductive |
|
859 srewrites:: "arexp list \<Rightarrow> arexp list \<Rightarrow> bool" ("_ s\<leadsto>* _" [100, 100] 100) |
|
860 where |
|
861 sss1[intro, simp]:"rs s\<leadsto>* rs" |
|
862 | sss2[intro]: "\<lbrakk>rs1 s\<leadsto> rs2; rs2 s\<leadsto>* rs3\<rbrakk> \<Longrightarrow> rs1 s\<leadsto>* rs3" |
|
863 |
|
864 |
|
865 lemma r_in_rstar : "r1 \<leadsto> r2 \<Longrightarrow> r1 \<leadsto>* r2" |
|
866 using rrewrites.intros(1) rrewrites.intros(2) by blast |
|
867 |
|
868 lemma rrewrites_trans[trans]: |
|
869 assumes a1: "r1 \<leadsto>* r2" and a2: "r2 \<leadsto>* r3" |
|
870 shows "r1 \<leadsto>* r3" |
|
871 using a2 a1 |
|
872 apply(induct r2 r3 arbitrary: r1 rule: rrewrites.induct) |
|
873 apply(auto) |
|
874 done |
|
875 |
|
876 lemma srewrites_trans[trans]: |
|
877 assumes a1: "r1 s\<leadsto>* r2" and a2: "r2 s\<leadsto>* r3" |
|
878 shows "r1 s\<leadsto>* r3" |
|
879 using a1 a2 |
|
880 apply(induct r1 r2 arbitrary: r3 rule: srewrites.induct) |
|
881 apply(auto) |
|
882 done |
|
883 |
|
884 |
|
885 lemma rewrite_fuse : |
|
886 assumes "r1 \<leadsto> r2" |
|
887 shows "fuse bs r1 \<leadsto> fuse bs r2" |
|
888 using assms |
|
889 apply(induct rule: rrewrite_srewrite.inducts(1)) |
|
890 apply(auto intro: rrewrite_srewrite.intros) |
|
891 apply (metis bs3 fuse_append) |
|
892 by (metis bs7 fuse_append) |
|
893 |
|
894 lemma contextrewrites0: |
|
895 "rs1 s\<leadsto>* rs2 \<Longrightarrow> AALTs bs rs1 \<leadsto>* AALTs bs rs2" |
|
896 apply(induct rs1 rs2 rule: srewrites.inducts) |
|
897 apply simp |
|
898 using bs10 r_in_rstar rrewrites_trans by blast |
|
899 |
|
900 lemma contextrewrites1: |
|
901 "r \<leadsto>* r' \<Longrightarrow> AALTs bs (r#rs) \<leadsto>* AALTs bs (r'#rs)" |
|
902 apply(induct r r' rule: rrewrites.induct) |
|
903 apply simp |
|
904 using bs10 ss3 by blast |
|
905 |
|
906 lemma srewrite1: |
|
907 shows "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto> (rs @ rs2)" |
|
908 apply(induct rs) |
|
909 apply(auto) |
|
910 using ss2 by auto |
|
911 |
|
912 lemma srewrites1: |
|
913 shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs @ rs1) s\<leadsto>* (rs @ rs2)" |
|
914 apply(induct rs1 rs2 rule: srewrites.induct) |
|
915 apply(auto) |
|
916 using srewrite1 by blast |
|
917 |
|
918 lemma srewrite2: |
|
919 shows "r1 \<leadsto> r2 \<Longrightarrow> True" |
|
920 and "rs1 s\<leadsto> rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)" |
|
921 apply(induct rule: rrewrite_srewrite.inducts) |
|
922 apply(auto) |
|
923 apply (metis append_Cons append_Nil srewrites1) |
|
924 apply(meson srewrites.simps ss3) |
|
925 apply (meson srewrites.simps ss4) |
|
926 apply (meson srewrites.simps ss5) |
|
927 by (metis append_Cons append_Nil srewrites.simps ss6) |
|
928 |
|
929 |
|
930 lemma srewrites3: |
|
931 shows "rs1 s\<leadsto>* rs2 \<Longrightarrow> (rs1 @ rs) s\<leadsto>* (rs2 @ rs)" |
|
932 apply(induct rs1 rs2 arbitrary: rs rule: srewrites.induct) |
|
933 apply(auto) |
|
934 by (meson srewrite2(2) srewrites_trans) |
|
935 |
|
936 (* |
|
937 lemma srewrites4: |
|
938 assumes "rs3 s\<leadsto>* rs4" "rs1 s\<leadsto>* rs2" |
|
939 shows "(rs1 @ rs3) s\<leadsto>* (rs2 @ rs4)" |
|
940 using assms |
|
941 apply(induct rs3 rs4 arbitrary: rs1 rs2 rule: srewrites.induct) |
|
942 apply (simp add: srewrites3) |
|
943 using srewrite1 by blast |
|
944 *) |
|
945 |
|
946 lemma srewrites6: |
|
947 assumes "r1 \<leadsto>* r2" |
|
948 shows "[r1] s\<leadsto>* [r2]" |
|
949 using assms |
|
950 |
|
951 apply(induct r1 r2 rule: rrewrites.induct) |
|
952 apply(auto) |
|
953 by (meson srewrites.simps srewrites_trans ss3) |
|
954 |
|
955 lemma srewrites7: |
|
956 assumes "rs3 s\<leadsto>* rs4" "r1 \<leadsto>* r2" |
|
957 shows "(r1 # rs3) s\<leadsto>* (r2 # rs4)" |
|
958 using assms |
|
959 by (smt (verit, best) append_Cons append_Nil srewrites1 srewrites3 srewrites6 srewrites_trans) |
|
960 |
|
961 |
|
962 |
|
963 lemma star_seq: |
|
964 assumes "r1 \<leadsto>* r2" |
|
965 shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r2 r3" |
|
966 using assms |
|
967 apply(induct r1 r2 arbitrary: r3 rule: rrewrites.induct) |
|
968 apply(auto intro: rrewrite_srewrite.intros) |
|
969 done |
|
970 |
|
971 lemma star_seq2: |
|
972 assumes "r3 \<leadsto>* r4" |
|
973 shows "ASEQ bs r1 r3 \<leadsto>* ASEQ bs r1 r4" |
|
974 using assms |
|
975 apply(induct r3 r4 arbitrary: r1 rule: rrewrites.induct) |
|
976 apply(auto intro: rrewrite_srewrite.intros) |
|
977 done |
|
978 |
|
979 lemma continuous_rewrite: |
|
980 assumes "r1 \<leadsto>* AZERO" |
|
981 shows "ASEQ bs1 r1 r2 \<leadsto>* AZERO" |
|
982 using assms bs1 star_seq by blast |
|
983 |
|
984 |
|
985 lemma bsimp_aalts_simpcases: |
|
986 shows "AONE bs \<leadsto>* bsimp (AONE bs)" |
|
987 and "AZERO \<leadsto>* bsimp AZERO" |
|
988 and "ACHAR bs c \<leadsto>* bsimp (ACHAR bs c)" |
|
989 by (simp_all) |
|
990 |
|
991 |
|
992 lemma trivialbsimp_srewrites: |
|
993 "\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* f x \<rbrakk> \<Longrightarrow> rs s\<leadsto>* (map f rs)" |
|
994 apply(induction rs) |
|
995 apply simp |
|
996 apply(simp) |
|
997 using srewrites7 by auto |
|
998 |
|
999 lemma alts_simpalts: |
|
1000 "(\<And>x. x \<in> set rs \<Longrightarrow> x \<leadsto>* bsimp x) \<Longrightarrow> |
|
1001 AALTs bs1 rs \<leadsto>* AALTs bs1 (map bsimp rs)" |
|
1002 apply(induct rs) |
|
1003 apply(auto)[1] |
|
1004 using trivialbsimp_srewrites apply auto[1] |
|
1005 by (simp add: contextrewrites0 srewrites7) |
|
1006 |
|
1007 |
|
1008 lemma bsimp_AALTs_rewrites: |
|
1009 shows "AALTs bs1 rs \<leadsto>* bsimp_AALTs bs1 rs" |
|
1010 by (smt (verit) bs6 bs7 bsimp_AALTs.elims rrewrites.simps) |
|
1011 |
|
1012 lemma fltsfrewrites: "rs s\<leadsto>* (flts rs)" |
|
1013 |
|
1014 apply(induction rs) |
|
1015 apply simp |
|
1016 apply(case_tac a) |
|
1017 apply(auto) |
|
1018 using ss4 apply blast |
|
1019 using srewrites7 apply force |
|
1020 using rs1 srewrites7 apply presburger |
|
1021 using srewrites7 apply force |
|
1022 apply (meson srewrites.simps srewrites1 ss5) |
|
1023 by (simp add: srewrites7) |
|
1024 |
|
1025 |
|
1026 lemma flts_rewrites: "AALTs bs1 rs \<leadsto>* AALTs bs1 (flts rs)" |
|
1027 by (simp add: contextrewrites0 fltsfrewrites) |
|
1028 |
|
1029 |
|
1030 (* delete*) |
|
1031 lemma threelistsappend: "rsa@a#rsb = (rsa@[a])@rsb" |
|
1032 apply auto |
|
1033 done |
|
1034 |
|
1035 lemma somewhereInside: "r \<in> set rs \<Longrightarrow> \<exists>rs1 rs2. rs = rs1@[r]@rs2" |
|
1036 using split_list by fastforce |
|
1037 |
|
1038 lemma somewhereMapInside: "f r \<in> f ` set rs \<Longrightarrow> \<exists>rs1 rs2 a. rs = rs1@[a]@rs2 \<and> f a = f r" |
|
1039 apply auto |
|
1040 by (metis split_list) |
|
1041 |
|
1042 lemma alts_dBrewrites_withFront: |
|
1043 "AALTs bs (rsa @ rs) \<leadsto>* AALTs bs (rsa @ distinctBy rs erase (erase ` set rsa))" |
|
1044 |
|
1045 apply(induction rs arbitrary: rsa) |
|
1046 apply simp |
|
1047 |
|
1048 apply(drule_tac x = "rsa@[a]" in meta_spec) |
|
1049 |
|
1050 apply(subst threelistsappend) |
|
1051 apply(rule rrewrites_trans) |
|
1052 apply simp |
|
1053 |
|
1054 apply(case_tac "a \<in> set rsa") |
|
1055 apply simp |
|
1056 apply(drule somewhereInside) |
|
1057 apply(erule exE)+ |
|
1058 apply simp |
|
1059 using bs10 ss6 apply auto[1] |
|
1060 |
|
1061 apply(subgoal_tac "erase ` set (rsa @ [a]) = insert (erase a) (erase ` set rsa)") |
|
1062 prefer 2 |
|
1063 |
|
1064 apply auto[1] |
|
1065 apply(case_tac "erase a \<in> erase `set rsa") |
|
1066 |
|
1067 apply simp |
|
1068 apply(subgoal_tac "AALTs bs (rsa @ a # distinctBy rs erase (insert (erase a) (erase ` set rsa))) \<leadsto> |
|
1069 AALTs bs (rsa @ distinctBy rs erase (insert (erase a) (erase ` set rsa)))") |
|
1070 apply force |
|
1071 apply (smt (verit, ccfv_threshold) append.assoc append.left_neutral append_Cons append_Nil bs10 imageE insertCI insert_image somewhereMapInside ss6) |
|
1072 by simp |
|
1073 |
|
1074 |
|
1075 |
|
1076 lemma alts_dBrewrites: |
|
1077 shows "AALTs bs rs \<leadsto>* AALTs bs (distinctBy rs erase {})" |
|
1078 |
|
1079 apply(induction rs) |
|
1080 apply simp |
|
1081 apply simp |
|
1082 using alts_dBrewrites_withFront |
|
1083 by (metis append_Nil dB_single_step empty_set image_empty) |
|
1084 |
|
1085 lemma bsimp_rewrite: |
|
1086 shows "r \<leadsto>* bsimp r" |
|
1087 proof (induction r rule: bsimp.induct) |
|
1088 case (1 bs1 r1 r2) |
|
1089 then show "ASEQ bs1 r1 r2 \<leadsto>* bsimp (ASEQ bs1 r1 r2)" |
|
1090 apply(simp) |
|
1091 apply(case_tac "bsimp r1 = AZERO") |
|
1092 apply simp |
|
1093 using continuous_rewrite apply blast |
|
1094 apply(case_tac "\<exists>bs. bsimp r1 = AONE bs") |
|
1095 apply(erule exE) |
|
1096 apply simp |
|
1097 apply(subst bsimp_ASEQ2) |
|
1098 apply (meson rrewrites_trans rrewrite_srewrite.intros(3) rrewrites.intros(2) star_seq star_seq2) |
|
1099 apply (smt (verit, best) bsimp_ASEQ0 bsimp_ASEQ1 rrewrites_trans rrewrite_srewrite.intros(2) rs2 star_seq star_seq2) |
|
1100 done |
|
1101 next |
|
1102 case (2 bs1 rs) |
|
1103 then show "AALTs bs1 rs \<leadsto>* bsimp (AALTs bs1 rs)" |
|
1104 by (metis alts_dBrewrites alts_simpalts bsimp.simps(2) bsimp_AALTs_rewrites flts_rewrites rrewrites_trans) |
|
1105 next |
|
1106 case "3_1" |
|
1107 then show "AZERO \<leadsto>* bsimp AZERO" |
|
1108 by simp |
|
1109 next |
|
1110 case ("3_2" v) |
|
1111 then show "AONE v \<leadsto>* bsimp (AONE v)" |
|
1112 by simp |
|
1113 next |
|
1114 case ("3_3" v va) |
|
1115 then show "ACHAR v va \<leadsto>* bsimp (ACHAR v va)" |
|
1116 by simp |
|
1117 next |
|
1118 case ("3_4" v va) |
|
1119 then show "ASTAR v va \<leadsto>* bsimp (ASTAR v va)" |
|
1120 by simp |
|
1121 qed |
|
1122 |
|
1123 lemma bnullable1: |
|
1124 shows "r1 \<leadsto> r2 \<Longrightarrow> (bnullable r1 \<Longrightarrow> bnullable r2)" |
|
1125 and "rs1 s\<leadsto> rs2 \<Longrightarrow> ((\<exists>x \<in> set rs1. bnullable x) \<Longrightarrow> \<exists>x\<in>set rs2. bnullable x)" |
|
1126 apply(induct rule: rrewrite_srewrite.inducts) |
|
1127 apply(auto) |
|
1128 using bnullable_fuse apply blast |
|
1129 apply (simp add: bnullable_fuse) |
|
1130 apply (meson UnCI bnullable_fuse imageI) |
|
1131 by (metis bnullable_correctness) |
|
1132 |
|
1133 lemma bnullable2: |
|
1134 shows "r1 \<leadsto> r2 \<Longrightarrow> (bnullable r2 \<Longrightarrow> bnullable r1)" |
|
1135 and "rs1 s\<leadsto> rs2 \<Longrightarrow> ((\<exists>x \<in> set rs2. bnullable x) \<Longrightarrow> \<exists>x\<in>set rs1. bnullable x)" |
|
1136 apply(induct rule: rrewrite_srewrite.inducts) |
|
1137 apply(auto) |
|
1138 using bnullable_fuse apply blast |
|
1139 apply (simp add: bnullable_fuse) |
|
1140 using bnullable_fuse by blast |
|
1141 |
|
1142 lemma rewrite_non_nullable_strong: |
|
1143 assumes "r1 \<leadsto> r2" |
|
1144 shows "bnullable r1 = bnullable r2" |
|
1145 using assms |
|
1146 apply(induction r1 r2 rule: rrewrite_srewrite.inducts(1)) |
|
1147 apply(auto) |
|
1148 apply(metis bnullable_correctness erase_fuse)+ |
|
1149 using bnullable1(2) apply blast |
|
1150 using bnullable2(2) apply blast |
|
1151 done |
|
1152 |
|
1153 |
|
1154 lemma rewritesnullable: |
|
1155 assumes "r1 \<leadsto>* r2" "bnullable r1" |
|
1156 shows "bnullable r2" |
|
1157 using assms |
|
1158 apply(induction r1 r2 rule: rrewrites.induct) |
|
1159 apply simp |
|
1160 using rewrite_non_nullable_strong by blast |
|
1161 |
|
1162 lemma rewrite_bmkeps_aux: |
|
1163 shows "r1 \<leadsto> r2 \<Longrightarrow> (bnullable r1 \<and> bnullable r2 \<Longrightarrow> bmkeps r1 = bmkeps r2)" |
|
1164 and "rs1 s\<leadsto> rs2 \<Longrightarrow> (\<And>bs. (bnullable (AALTs bs rs1) \<and> bnullable (AALTs bs rs2) \<Longrightarrow> |
|
1165 bmkeps (AALTs bs rs1) = bmkeps (AALTs bs rs2)))" |
|
1166 proof (induct rule: rrewrite_srewrite.inducts) |
|
1167 case (bs1 bs r2) |
|
1168 then show ?case by fastforce |
|
1169 next |
|
1170 case (bs2 bs r1) |
|
1171 then show ?case by fastforce |
|
1172 next |
|
1173 case (bs3 bs1 bs2 r) |
|
1174 then show ?case by (simp add: b2) |
|
1175 next |
|
1176 case (bs4 r1 r2 bs r3) |
|
1177 then show ?case by simp |
|
1178 next |
|
1179 case (bs5 r3 r4 bs r1) |
|
1180 then show ?case by simp |
|
1181 next |
|
1182 case (bs6 bs) |
|
1183 then show ?case by fastforce |
|
1184 next |
|
1185 case (bs7 bs r) |
|
1186 then show ?case by (simp add: b2) |
|
1187 next |
|
1188 case (bs10 rs1 rs2 bs) |
|
1189 then show ?case |
|
1190 by blast |
|
1191 next |
|
1192 case ss1 |
|
1193 then show ?case by simp |
|
1194 next |
|
1195 case (ss2 rs1 rs2 r) |
|
1196 then show ?case |
|
1197 apply(simp) |
|
1198 by (metis bnullable_Hdbmkeps_Hd r1 r2) |
|
1199 next |
|
1200 case (ss3 r1 r2 rs) |
|
1201 then show ?case |
|
1202 by (metis bnullable.simps(4) bnullable_Hdbmkeps_Hd r1 rewrite_non_nullable_strong set_ConsD) |
|
1203 next |
|
1204 case (ss4 rs) |
|
1205 then show ?case apply(simp_all) |
|
1206 using bnullable.simps(1) local.ss4 r1 by blast |
|
1207 next |
|
1208 case (ss5 bs1 rs1 rsb) |
|
1209 then show ?case |
|
1210 apply(simp) |
|
1211 by (metis bnullable.simps(4) flts.simps(3) local.ss5 qq3 qq4 qs3) |
|
1212 next |
|
1213 case (ss6 a1 a2 bs rsa rsb rsc) |
|
1214 then show ?case |
|
1215 by (smt (verit, ccfv_threshold) append_Cons append_eq_appendI append_self_conv2 bnullable_correctness list.set_intros(1) qq3 r1) |
|
1216 qed |
|
1217 |
|
1218 |
|
1219 lemma rewrite_bmkeps: |
|
1220 assumes "r1 \<leadsto> r2" "bnullable r1" |
|
1221 shows "bmkeps r1 = bmkeps r2" |
|
1222 using assms |
|
1223 by (simp add: rewrite_bmkeps_aux(1) rewrite_non_nullable_strong) |
|
1224 |
|
1225 lemma rewrites_bmkeps: |
|
1226 assumes "r1 \<leadsto>* r2" "bnullable r1" |
|
1227 shows "bmkeps r1 = bmkeps r2" |
|
1228 using assms |
|
1229 proof(induction r1 r2 rule: rrewrites.induct) |
|
1230 case (rs1 r) |
|
1231 then show "bmkeps r = bmkeps r" by simp |
|
1232 next |
|
1233 case (rs2 r1 r2 r3) |
|
1234 then have IH: "bmkeps r1 = bmkeps r2" by simp |
|
1235 have a1: "bnullable r1" by fact |
|
1236 have a2: "r1 \<leadsto>* r2" by fact |
|
1237 have a3: "r2 \<leadsto> r3" by fact |
|
1238 have a4: "bnullable r2" using a1 a2 by (simp add: rewritesnullable) |
|
1239 then have "bmkeps r2 = bmkeps r3" using rewrite_bmkeps a3 a4 by simp |
|
1240 then show "bmkeps r1 = bmkeps r3" using IH by simp |
|
1241 qed |
|
1242 |
|
1243 lemma to_zero_in_alt: |
|
1244 shows "AALT bs (ASEQ [] AZERO r) r2 \<leadsto> AALT bs AZERO r2" |
|
1245 by (simp add: bs1 bs10 ss3) |
|
1246 |
|
1247 |
|
1248 lemma rewrite_fuse2: |
|
1249 shows "r2 \<leadsto> r3 \<Longrightarrow> True" |
|
1250 and "rs2 s\<leadsto> rs3 \<Longrightarrow> (\<And>bs. map (fuse bs) rs2 s\<leadsto>* map (fuse bs) rs3)" |
|
1251 proof(induct rule: rrewrite_srewrite.inducts) |
|
1252 case ss1 |
|
1253 then show ?case |
|
1254 by simp |
|
1255 next |
|
1256 case (ss2 rs1 rs2 r) |
|
1257 then show ?case |
|
1258 using srewrites7 by force |
|
1259 next |
|
1260 case (ss3 r1 r2 rs) |
|
1261 then show ?case |
|
1262 by (simp add: r_in_rstar rewrite_fuse srewrites7) |
|
1263 next |
|
1264 case (ss4 rs) |
|
1265 then show ?case |
|
1266 by (metis fuse.simps(1) list.simps(9) rrewrite_srewrite.ss4 srewrites.simps) |
|
1267 next |
|
1268 case (ss5 bs1 rs1 rsb) |
|
1269 then show ?case |
|
1270 apply(simp) |
|
1271 by (metis (mono_tags, lifting) comp_def fuse_append map_eq_conv rrewrite_srewrite.ss5 srewrites.simps) |
|
1272 next |
|
1273 case (ss6 a1 a2 rsa rsb rsc) |
|
1274 then show ?case |
|
1275 apply(simp only: map_append) |
|
1276 by (smt (verit, ccfv_threshold) erase_fuse list.simps(8) list.simps(9) rrewrite_srewrite.ss6 srewrites.simps) |
|
1277 qed (auto) |
|
1278 |
|
1279 |
|
1280 lemma rewrites_fuse: |
|
1281 assumes "r1 \<leadsto>* r2" |
|
1282 shows "fuse bs r1 \<leadsto>* fuse bs r2" |
|
1283 using assms |
|
1284 apply(induction r1 r2 arbitrary: bs rule: rrewrites.induct) |
|
1285 apply(auto intro: rewrite_fuse rrewrites_trans) |
|
1286 done |
|
1287 |
|
1288 lemma bder_fuse_list: |
|
1289 shows "map (bder c \<circ> fuse bs1) rs1 = map (fuse bs1 \<circ> bder c) rs1" |
|
1290 apply(induction rs1) |
|
1291 apply(simp_all add: bder_fuse) |
|
1292 done |
|
1293 |
|
1294 |
|
1295 lemma rewrite_after_der: |
|
1296 shows "r1 \<leadsto> r2 \<Longrightarrow> (bder c r1) \<leadsto>* (bder c r2)" |
|
1297 and "rs1 s\<leadsto> rs2 \<Longrightarrow> map (bder c) rs1 s\<leadsto>* map (bder c) rs2" |
|
1298 proof(induction rule: rrewrite_srewrite.inducts) |
|
1299 case (bs1 bs r2) |
|
1300 then show ?case |
|
1301 by (simp add: continuous_rewrite) |
|
1302 next |
|
1303 case (bs2 bs r1) |
|
1304 then show ?case |
|
1305 apply(auto) |
|
1306 apply (meson bs6 contextrewrites0 rrewrite_srewrite.bs2 rs2 ss3 ss4 sss1 sss2) |
|
1307 by (simp add: r_in_rstar rrewrite_srewrite.bs2) |
|
1308 next |
|
1309 case (bs3 bs1 bs2 r) |
|
1310 then show ?case |
|
1311 apply(simp) |
|
1312 by (metis (no_types, lifting) bder_fuse bs10 bs7 fuse_append rrewrites.simps ss4 to_zero_in_alt) |
|
1313 next |
|
1314 case (bs4 r1 r2 bs r3) |
|
1315 have as: "r1 \<leadsto> r2" by fact |
|
1316 have IH: "bder c r1 \<leadsto>* bder c r2" by fact |
|
1317 from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r2 r3)" |
|
1318 by (simp add: contextrewrites1 rewrite_bmkeps rewrite_non_nullable_strong star_seq) |
|
1319 next |
|
1320 case (bs5 r3 r4 bs r1) |
|
1321 have as: "r3 \<leadsto> r4" by fact |
|
1322 have IH: "bder c r3 \<leadsto>* bder c r4" by fact |
|
1323 from as IH show "bder c (ASEQ bs r1 r3) \<leadsto>* bder c (ASEQ bs r1 r4)" |
|
1324 apply(simp) |
|
1325 apply(auto) |
|
1326 using contextrewrites0 r_in_rstar rewrites_fuse srewrites6 srewrites7 star_seq2 apply presburger |
|
1327 using star_seq2 by blast |
|
1328 next |
|
1329 case (bs6 bs) |
|
1330 then show ?case |
|
1331 using rrewrite_srewrite.bs6 by force |
|
1332 next |
|
1333 case (bs7 bs r) |
|
1334 then show ?case |
|
1335 by (simp add: bder_fuse r_in_rstar rrewrite_srewrite.bs7) |
|
1336 next |
|
1337 case (bs10 rs1 rs2 bs) |
|
1338 then show ?case |
|
1339 using contextrewrites0 by force |
|
1340 next |
|
1341 case ss1 |
|
1342 then show ?case by simp |
|
1343 next |
|
1344 case (ss2 rs1 rs2 r) |
|
1345 then show ?case |
|
1346 by (simp add: srewrites7) |
|
1347 next |
|
1348 case (ss3 r1 r2 rs) |
|
1349 then show ?case |
|
1350 by (simp add: srewrites7) |
|
1351 next |
|
1352 case (ss4 rs) |
|
1353 then show ?case |
|
1354 using rrewrite_srewrite.ss4 by fastforce |
|
1355 next |
|
1356 case (ss5 bs1 rs1 rsb) |
|
1357 then show ?case |
|
1358 apply(simp) |
|
1359 using bder_fuse_list map_map rrewrite_srewrite.ss5 srewrites.simps by blast |
|
1360 next |
|
1361 case (ss6 a1 a2 bs rsa rsb) |
|
1362 then show ?case |
|
1363 apply(simp only: map_append) |
|
1364 by (smt (verit, best) erase_bder list.simps(8) list.simps(9) local.ss6 rrewrite_srewrite.ss6 srewrites.simps) |
|
1365 qed |
|
1366 |
|
1367 lemma rewrites_after_der: |
|
1368 assumes "r1 \<leadsto>* r2" |
|
1369 shows "bder c r1 \<leadsto>* bder c r2" |
|
1370 using assms |
|
1371 apply(induction r1 r2 rule: rrewrites.induct) |
|
1372 apply(simp_all add: rewrite_after_der rrewrites_trans) |
|
1373 done |
|
1374 |
|
1375 |
|
1376 lemma central: |
|
1377 shows "bders r s \<leadsto>* bders_simp r s" |
|
1378 proof(induct s arbitrary: r rule: rev_induct) |
|
1379 case Nil |
|
1380 then show "bders r [] \<leadsto>* bders_simp r []" by simp |
|
1381 next |
|
1382 case (snoc x xs) |
|
1383 have IH: "\<And>r. bders r xs \<leadsto>* bders_simp r xs" by fact |
|
1384 have "bders r (xs @ [x]) = bders (bders r xs) [x]" by (simp add: bders_append) |
|
1385 also have "... \<leadsto>* bders (bders_simp r xs) [x]" using IH |
|
1386 by (simp add: rewrites_after_der) |
|
1387 also have "... \<leadsto>* bders_simp (bders_simp r xs) [x]" using IH |
|
1388 by (simp add: bsimp_rewrite) |
|
1389 finally show "bders r (xs @ [x]) \<leadsto>* bders_simp r (xs @ [x])" |
|
1390 by (simp add: bders_simp_append) |
|
1391 qed |
|
1392 |
|
1393 |
|
1394 |
|
1395 |
|
1396 |
|
1397 lemma quasi_main: |
|
1398 assumes "bnullable (bders r s)" |
|
1399 shows "bmkeps (bders r s) = bmkeps (bders_simp r s)" |
|
1400 proof - |
|
1401 have "bders r s \<leadsto>* bders_simp r s" by (rule central) |
|
1402 then |
|
1403 show "bmkeps (bders r s) = bmkeps (bders_simp r s)" using assms |
|
1404 by (rule rewrites_bmkeps) |
|
1405 qed |
|
1406 |
|
1407 |
|
1408 |
|
1409 |
|
1410 theorem main_main: |
|
1411 shows "blexer r s = blexer_simp r s" |
|
1412 unfolding blexer_def blexer_simp_def |
|
1413 using b4 quasi_main by simp |
|
1414 |
|
1415 |
|
1416 theorem blexersimp_correctness: |
|
1417 shows "lexer r s = blexer_simp r s" |
|
1418 using blexer_correctness main_main by simp |
|
1419 |
|
1420 |
|
1421 |
|
1422 export_code blexer_simp blexer lexer bders bders_simp in Scala module_name VerifiedLexers |
|
1423 |
|
1424 |
|
1425 unused_thms |
|
1426 |
|
1427 |
|
1428 inductive aggressive:: "arexp \<Rightarrow> arexp \<Rightarrow> bool" ("_ \<leadsto>? _" [99, 99] 99) |
|
1429 where |
|
1430 "ASEQ bs (AALTs bs1 rs) r \<leadsto>? AALTs (bs@bs1) (map (\<lambda>r'. ASEQ [] r' r) rs) " |
|
1431 |
|
1432 |
|
1433 |
|
1434 end |