thys/Paper/Paper.thy
changeset 101 7f4f8c34da95
parent 100 8b919b3d753e
child 102 7f589bfecffa
equal deleted inserted replaced
100:8b919b3d753e 101:7f4f8c34da95
   125   The @{text inj} function
   125   The @{text inj} function
   126 
   126 
   127   \begin{center}
   127   \begin{center}
   128   \begin{tabular}{lcl}
   128   \begin{tabular}{lcl}
   129   @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
   129   @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
   130   @{thm (lhs) injval.simps(2)} & $\dn$ & @{thm (rhs) injval.simps(2)}\\
   130   @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
   131   @{thm (lhs) injval.simps(3)} & $\dn$ & @{thm (rhs) injval.simps(3)}\\
   131       @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
   132   @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
   132   @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
   133       @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
   133       @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   134   @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
   134   @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   135       @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   135       & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   136   @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   136   @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   137       & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   137       & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   138   @{thm (lhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
   138   @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
   139       & @{thm (rhs) injval.simps(7)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
   139       & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   140   @{thm (lhs) injval.simps(8)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
   140   @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$ 
   141       & @{thm (rhs) injval.simps(8)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
   141       & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
   142   @{thm (lhs) injval.simps(9)[of "r" "c" "v" "vs"]} & $\dn$ 
       
   143       & @{thm (rhs) injval.simps(9)[of "r" "c" "v" "vs"]}\\
       
   144   \end{tabular}
   142   \end{tabular}
   145   \end{center}
   143   \end{center}
   146 
   144 
   147   \noindent
   145   \noindent
   148   The inhabitation relation:
   146   The inhabitation relation:
   266   Things we have proved about our version of the Sulzmann ordering
   264   Things we have proved about our version of the Sulzmann ordering
   267 
   265 
   268   \begin{center}
   266   \begin{center}
   269   \begin{tabular}{c}
   267   \begin{tabular}{c}
   270   @{thm[mode=IfThen] ValOrd_refl[of "v" "r"]}\medskip\\
   268   @{thm[mode=IfThen] ValOrd_refl[of "v" "r"]}\medskip\\
   271   @{thm[mode=IfThen] ValOrd_total[of "v\<^sub>1" "r" "v\<^sub>2"]}
   269   %@ {thm[mode=IfThen] ValOrd_total[of "v\<^sub>1" "r" "v\<^sub>2"]}
   272   \end{tabular}
   270   \end{tabular}
   273   \end{center}\bigskip  
   271   \end{center}\bigskip  
   274 
   272 
   275   \noindent
   273   \noindent
   276   Things we like to prove, but cannot:\bigskip
   274   Things we like to prove, but cannot:\bigskip
   286   %We are grateful for the comments we received from anonymous
   284   %We are grateful for the comments we received from anonymous
   287   %referees.
   285   %referees.
   288 
   286 
   289   \bibliographystyle{plain}
   287   \bibliographystyle{plain}
   290   \bibliography{root}
   288   \bibliography{root}
       
   289 
       
   290   \section{Roy's Rules}
       
   291 
       
   292    \newcommand{\abs}[1]{\mid\!\! #1\!\! \mid}
       
   293    %%\newcommand{\mts}{\textit{``''}
       
   294    \newcommand{\tl}{\ \triangleleft\ }
       
   295    $$\inferrule[]{Void \tl \epsilon}{}
       
   296             \quad\quad
       
   297      \inferrule[]{Char\ c \tl Lit\ c}{}
       
   298    $$
       
   299    $$\inferrule
       
   300        {v_1 \tl r_1}
       
   301        {Left\ v_1 \tl r_1 + r_2}
       
   302    \quad\quad
       
   303      \inferrule[]
       
   304        { v_2 \tl r_2 \\ \abs{v_2}\ \not\in\ L(r_1)}
       
   305        {Right\ v_2 \tl r_1 + r_2}
       
   306    $$
       
   307    $$
       
   308    \inferrule
       
   309        {v_1 \tl r_1\\
       
   310         v_2 \tl r_2\\
       
   311         s \in\  L(r_1\backslash\! \abs{v_1}) \ \land\
       
   312         \abs{v_2}\!\backslash s\ \epsilon\ L(r_2)
       
   313         \ \Rightarrow\ s = []
       
   314        }
       
   315        {(v_1, v_2) \tl r_1 \cdot r_2}
       
   316    $$
       
   317    $$\inferrule
       
   318          { v \tl r \\ vs \tl r^* \\ \abs{v}\ \not=\ []} 
       
   319          { (v :: vs) \tl r^* }
       
   320    \quad\quad
       
   321        \inferrule{}
       
   322          { []  \tl r^* }       
       
   323    $$
       
   324 
   291 *}
   325 *}
   292 
   326 
   293 
   327 
   294 (*<*)
   328 (*<*)
   295 end
   329 end