equal
deleted
inserted
replaced
|
1 |
|
2 theory Bounds |
|
3 imports "Lexer" |
|
4 begin |
|
5 |
|
6 definition Size :: "rexp \<Rightarrow> nat" |
|
7 where "Size r == Max {size (ders s r) | s. True }" |
|
8 |
|
9 fun bar :: "rexp \<Rightarrow> string \<Rightarrow> rexp" where |
|
10 "bar r [] = r" |
|
11 | "bar r (c # s) = ALT (ders (c # s) r) (bar r s)" |
|
12 |
|
13 lemma size_ALT: |
|
14 "size (ders s (ALT r1 r2)) = Suc (size (ders s r1) + size (ders s r2))" |
|
15 apply(induct s arbitrary: r1 r2) |
|
16 apply(simp_all) |
|
17 done |
|
18 |
|
19 lemma size_bar_ALT: |
|
20 "size (bar (ALT r1 r2) s) = Suc (size (bar r1 s) + size (bar r2 s))" |
|
21 apply(induct s) |
|
22 apply(simp) |
|
23 apply(simp add: size_ALT) |
|
24 done |
|
25 |
|
26 lemma size_SEQ: |
|
27 "size (ders s (SEQ r1 r2)) \<le> Suc (size (ders s r1)) + size r2 + size (bar (SEQ r1 r2) s)" |
|
28 apply(induct s arbitrary: r1 r2) |
|
29 apply(simp_all) |
|
30 done |
|
31 |
|
32 (* |
|
33 lemma size_bar_SEQ: |
|
34 "size (bar (SEQ r1 r2) s) \<le> Suc (size (bar r1 s) + size (bar r2 s))" |
|
35 apply(induct s) |
|
36 apply(simp) |
|
37 apply(auto simp add: size_SEQ size_ALT) |
|
38 apply(rule le_trans) |
|
39 apply(rule size_SEQ) |
|
40 done |
|
41 *) |
|
42 |
|
43 lemma size_STAR: |
|
44 "size (ders s (STAR r)) \<le> Suc (size (bar r s)) + size (STAR r)" |
|
45 apply(induct s arbitrary: r) |
|
46 apply(simp) |
|
47 apply(simp) |
|
48 apply(rule le_trans) |
|
49 apply(rule size_SEQ) |
|
50 apply(simp) |
|
51 oops |
|
52 |
|
53 lemma Size_ALT: |
|
54 "Size (ALT r1 r2) \<le> Suc (Size r1 + Size r2)" |
|
55 unfolding Size_def |
|
56 apply(auto) |
|
57 apply(simp add: size_ALT) |
|
58 apply(subgoal_tac "Max {n. \<exists>s. n = Suc (size (ders s r1) + size (ders s r2))} \<ge> |
|
59 Suc (Max {n. \<exists>s. n = size (ders s r1) + size (ders s r2)})") |
|
60 prefer 2 |
|
61 oops |
|
62 |
|
63 |
|
64 |
|
65 end |