20 lemma Sequ_empty [simp]: |
19 lemma Sequ_empty [simp]: |
21 shows "A ;; {} = {}" |
20 shows "A ;; {} = {}" |
22 and "{} ;; A = {}" |
21 and "{} ;; A = {}" |
23 by (simp_all add: Sequ_def) |
22 by (simp_all add: Sequ_def) |
24 |
23 |
|
24 lemma concI[simp,intro]: "u : A \<Longrightarrow> v : B \<Longrightarrow> u@v : A ;; B" |
|
25 by (auto simp add: Sequ_def) |
|
26 |
|
27 lemma concE[elim]: |
|
28 assumes "w \<in> A ;; B" |
|
29 obtains u v where "u \<in> A" "v \<in> B" "w = u@v" |
|
30 using assms by (auto simp: Sequ_def) |
|
31 |
|
32 lemma concI_if_Nil2: "[] \<in> B \<Longrightarrow> xs : A \<Longrightarrow> xs \<in> A ;; B" |
|
33 by (metis append_Nil2 concI) |
|
34 |
|
35 lemma conc_assoc: "(A ;; B) ;; C = A ;; (B ;; C)" |
|
36 by (auto elim!: concE) (simp only: append_assoc[symmetric] concI) |
|
37 |
|
38 |
|
39 text \<open>Language power operations\<close> |
|
40 |
|
41 overloading lang_pow == "compow :: nat \<Rightarrow> string set \<Rightarrow> string set" |
|
42 begin |
|
43 primrec lang_pow :: "nat \<Rightarrow> string set \<Rightarrow> string set" where |
|
44 "lang_pow 0 A = {[]}" | |
|
45 "lang_pow (Suc n) A = A ;; (lang_pow n A)" |
|
46 end |
|
47 |
|
48 |
|
49 lemma conc_pow_comm: |
|
50 shows "A ;; (A ^^ n) = (A ^^ n) ;; A" |
|
51 by (induct n) (simp_all add: conc_assoc[symmetric]) |
|
52 |
|
53 lemma lang_pow_add: "A ^^ (n + m) = (A ^^ n) ;; (A ^^ m)" |
|
54 by (induct n) (auto simp: conc_assoc) |
|
55 |
|
56 lemma lang_empty: |
|
57 fixes A::"string set" |
|
58 shows "A ^^ 0 = {[]}" |
|
59 by simp |
25 |
60 |
26 section \<open>Semantic Derivative (Left Quotient) of Languages\<close> |
61 section \<open>Semantic Derivative (Left Quotient) of Languages\<close> |
27 |
62 |
28 definition |
63 definition |
29 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
64 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
87 lemma Star_Der_Sequ: |
122 lemma Star_Der_Sequ: |
88 shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>" |
123 shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>" |
89 unfolding Der_def Sequ_def |
124 unfolding Der_def Sequ_def |
90 by(auto simp add: Star_decomp) |
125 by(auto simp add: Star_decomp) |
91 |
126 |
|
127 lemma Der_inter[simp]: "Der a (A \<inter> B) = Der a A \<inter> Der a B" |
|
128 and Der_compl[simp]: "Der a (-A) = - Der a A" |
|
129 and Der_Union[simp]: "Der a (Union M) = Union(Der a ` M)" |
|
130 and Der_UN[simp]: "Der a (UN x:I. S x) = (UN x:I. Der a (S x))" |
|
131 by (auto simp: Der_def) |
92 |
132 |
93 lemma Der_star[simp]: |
133 lemma Der_star[simp]: |
94 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
134 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
95 proof - |
135 proof - |
96 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
136 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
102 also have "... = (Der c A) ;; A\<star>" |
142 also have "... = (Der c A) ;; A\<star>" |
103 using Star_Der_Sequ by auto |
143 using Star_Der_Sequ by auto |
104 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
144 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
105 qed |
145 qed |
106 |
146 |
|
147 lemma Der_pow[simp]: |
|
148 shows "Der c (A ^^ n) = (if n = 0 then {} else (Der c A) ;; (A ^^ (n - 1)))" |
|
149 apply(induct n arbitrary: A) |
|
150 apply(auto simp add: Cons_eq_append_conv) |
|
151 by (metis Suc_pred concI_if_Nil2 conc_assoc conc_pow_comm lang_pow.simps(2)) |
|
152 |
|
153 |
107 lemma Star_concat: |
154 lemma Star_concat: |
108 assumes "\<forall>s \<in> set ss. s \<in> A" |
155 assumes "\<forall>s \<in> set ss. s \<in> A" |
109 shows "concat ss \<in> A\<star>" |
156 shows "concat ss \<in> A\<star>" |
110 using assms by (induct ss) (auto) |
157 using assms by (induct ss) (auto) |
111 |
158 |
139 | "L (ONE) = {[]}" |
187 | "L (ONE) = {[]}" |
140 | "L (CH c) = {[c]}" |
188 | "L (CH c) = {[c]}" |
141 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
189 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
142 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
190 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
143 | "L (STAR r) = (L r)\<star>" |
191 | "L (STAR r) = (L r)\<star>" |
144 |
192 | "L (NTIMES r n) = (L r) ^^ n" |
145 |
193 |
146 section \<open>Nullable, Derivatives\<close> |
194 section \<open>Nullable, Derivatives\<close> |
147 |
195 |
148 fun |
196 fun |
149 nullable :: "rexp \<Rightarrow> bool" |
197 nullable :: "rexp \<Rightarrow> bool" |
152 | "nullable (ONE) = True" |
200 | "nullable (ONE) = True" |
153 | "nullable (CH c) = False" |
201 | "nullable (CH c) = False" |
154 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
202 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
155 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
203 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
156 | "nullable (STAR r) = True" |
204 | "nullable (STAR r) = True" |
157 |
205 | "nullable (NTIMES r n) = (if n = 0 then True else nullable r)" |
158 |
206 |
159 fun |
207 fun |
160 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
208 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
161 where |
209 where |
162 "der c (ZERO) = ZERO" |
210 "der c (ZERO) = ZERO" |
166 | "der c (SEQ r1 r2) = |
214 | "der c (SEQ r1 r2) = |
167 (if nullable r1 |
215 (if nullable r1 |
168 then ALT (SEQ (der c r1) r2) (der c r2) |
216 then ALT (SEQ (der c r1) r2) (der c r2) |
169 else SEQ (der c r1) r2)" |
217 else SEQ (der c r1) r2)" |
170 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
218 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
219 | "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))" |
|
220 |
171 |
221 |
172 fun |
222 fun |
173 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
223 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
174 where |
224 where |
175 "ders [] r = r" |
225 "ders [] r = r" |
176 | "ders (c # s) r = ders s (der c r)" |
226 | "ders (c # s) r = ders s (der c r)" |
177 |
227 |
178 |
228 |
|
229 lemma pow_empty_iff: |
|
230 shows "[] \<in> (L r) ^^ n \<longleftrightarrow> (if n = 0 then True else [] \<in> (L r))" |
|
231 by (induct n) (auto simp add: Sequ_def) |
|
232 |
179 lemma nullable_correctness: |
233 lemma nullable_correctness: |
180 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
234 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
181 by (induct r) (auto simp add: Sequ_def) |
235 by (induct r) (auto simp add: Sequ_def pow_empty_iff) |
182 |
236 |
183 lemma der_correctness: |
237 lemma der_correctness: |
184 shows "L (der c r) = Der c (L r)" |
238 shows "L (der c r) = Der c (L r)" |
185 by (induct r) (simp_all add: nullable_correctness) |
239 apply (induct r) |
|
240 apply(auto simp add: nullable_correctness Sequ_def) |
|
241 using Der_def apply force |
|
242 using Der_def apply auto[1] |
|
243 apply (smt (verit, ccfv_SIG) Der_def append_eq_Cons_conv mem_Collect_eq) |
|
244 using Der_def apply force |
|
245 using Der_Sequ Sequ_def by auto |
186 |
246 |
187 lemma ders_correctness: |
247 lemma ders_correctness: |
188 shows "L (ders s r) = Ders s (L r)" |
248 shows "L (ders s r) = Ders s (L r)" |
189 by (induct s arbitrary: r) |
249 by (induct s arbitrary: r) |
190 (simp_all add: Ders_def der_correctness Der_def) |
250 (simp_all add: Ders_def der_correctness Der_def) |
196 lemma ders_snoc: |
256 lemma ders_snoc: |
197 shows "ders (s @ [c]) r = der c (ders s r)" |
257 shows "ders (s @ [c]) r = der c (ders s r)" |
198 by (simp add: ders_append) |
258 by (simp add: ders_append) |
199 |
259 |
200 |
260 |
201 (* |
|
202 datatype ctxt = |
|
203 SeqC rexp bool |
|
204 | AltCL rexp |
|
205 | AltCH rexp |
|
206 | StarC rexp |
|
207 |
|
208 function |
|
209 down :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list" |
|
210 and up :: "char \<Rightarrow> rexp \<Rightarrow> ctxt list \<Rightarrow> rexp * ctxt list" |
|
211 where |
|
212 "down c (SEQ r1 r2) ctxts = |
|
213 (if (nullable r1) then down c r1 (SeqC r2 True # ctxts) |
|
214 else down c r1 (SeqC r2 False # ctxts))" |
|
215 | "down c (CH d) ctxts = |
|
216 (if c = d then up c ONE ctxts else up c ZERO ctxts)" |
|
217 | "down c ONE ctxts = up c ZERO ctxts" |
|
218 | "down c ZERO ctxts = up c ZERO ctxts" |
|
219 | "down c (ALT r1 r2) ctxts = down c r1 (AltCH r2 # ctxts)" |
|
220 | "down c (STAR r1) ctxts = down c r1 (StarC r1 # ctxts)" |
|
221 | "up c r [] = (r, [])" |
|
222 | "up c r (SeqC r2 False # ctxts) = up c (SEQ r r2) ctxts" |
|
223 | "up c r (SeqC r2 True # ctxts) = down c r2 (AltCL (SEQ r r2) # ctxts)" |
|
224 | "up c r (AltCL r1 # ctxts) = up c (ALT r1 r) ctxts" |
|
225 | "up c r (AltCH r2 # ctxts) = down c r2 (AltCL r # ctxts)" |
|
226 | "up c r (StarC r1 # ctxts) = up c (SEQ r (STAR r1)) ctxts" |
|
227 apply(pat_completeness) |
|
228 apply(auto) |
|
229 done |
|
230 |
|
231 termination |
|
232 sorry |
|
233 |
|
234 *) |
|
235 |
|
236 |
|
237 end |
261 end |