thys2/SizeBound6CT.thy
changeset 435 65e786a58365
parent 434 0cce1aee0fb2
child 437 43b87bab0dac
child 438 a73b2e553804
equal deleted inserted replaced
434:0cce1aee0fb2 435:65e786a58365
    44 
    44 
    45 
    45 
    46 lemma shape_of_suf_3list:
    46 lemma shape_of_suf_3list:
    47   shows "orderedSuf [c1, c2, c3] = [[c3], [c2, c3], [c1, c2, c3]]"
    47   shows "orderedSuf [c1, c2, c3] = [[c3], [c2, c3], [c1, c2, c3]]"
    48   by auto
    48   by auto
    49 
    49 (*
    50 lemma throwing_elem_around:
    50 lemma throwing_elem_around:
    51   shows "orderedSuf (s1 @ [a] @ s) = (orderedSuf s) @ (map (\<lambda>s11. s11 @ s) (orderedSuf ( s1 @ [a]) ))"
    51   shows "orderedSuf (s1 @ [a] @ s) = (orderedSuf s) @ (map (\<lambda>s11. s11 @ s) (orderedSuf ( s1 @ [a]) ))"
    52 and "orderedSuf (s1 @ [a] @ s) = (orderedSuf ([a] @ s) @ (map (\<lambda>s11. s11 @ ([a] @ s))) (orderedSuf s1) )"
    52 and "orderedSuf (s1 @ [a] @ s) = (orderedSuf ([a] @ s) @ (map (\<lambda>s11. s11 @ ([a] @ s))) (orderedSuf s1) )"
    53   sorry
    53   sorry
    54 
    54 
    63   apply(subgoal_tac "orderedSuf (s1 @ a # s) = orderedSuf ((s1 @ [a]) @ s)")
    63   apply(subgoal_tac "orderedSuf (s1 @ a # s) = orderedSuf ((s1 @ [a]) @ s)")
    64   prefer 2
    64   prefer 2
    65    apply presburger
    65    apply presburger
    66   apply(drule_tac x="s1 @ [a]" in meta_spec)
    66   apply(drule_tac x="s1 @ [a]" in meta_spec)
    67   sorry
    67   sorry
    68 
    68 *)
    69 
    69 
    70 
    70 
    71 lemma shape_of_prf_3list:
    71 lemma shape_of_prf_3list:
    72   shows "orderedPref [c1, c2, c3] = [[c1, c2], [c1], []]"
    72   shows "orderedPref [c1, c2, c3] = [[c1, c2], [c1], []]"
    73   by auto
    73   by auto
   139   "rdistinct [] acc = []"
   139   "rdistinct [] acc = []"
   140 | "rdistinct (x#xs)  acc = 
   140 | "rdistinct (x#xs)  acc = 
   141      (if x \<in> acc then rdistinct xs  acc 
   141      (if x \<in> acc then rdistinct xs  acc 
   142       else x # (rdistinct xs  ({x} \<union> acc)))"
   142       else x # (rdistinct xs  ({x} \<union> acc)))"
   143 
   143 
   144 lemma rdistinct_idem:
       
   145   shows "rdistinct (x # (rdistinct rs {x})) {} = x # (rdistinct rs {x})"
       
   146   
       
   147   sorry
       
   148 
       
   149 
   144 
   150 
   145 
   151 
   146 
   152 
   147 
   153 fun rflts :: "rrexp list \<Rightarrow> rrexp list"
   148 fun rflts :: "rrexp list \<Rightarrow> rrexp list"
   197 fun rlist_size :: "rrexp list \<Rightarrow> nat" where
   192 fun rlist_size :: "rrexp list \<Rightarrow> nat" where
   198 "rlist_size (r # rs) = rsize r + rlist_size rs" 
   193 "rlist_size (r # rs) = rsize r + rlist_size rs" 
   199 | "rlist_size [] = 0"
   194 | "rlist_size [] = 0"
   200 
   195 
   201 thm neq_Nil_conv
   196 thm neq_Nil_conv
   202 
   197 lemma hand_made_def_rlist_size:
       
   198   shows "rlist_size rs = sum_list (map rsize rs)"
       
   199 proof (induct rs)
       
   200   case Nil show ?case by simp
       
   201 next
       
   202   case (Cons a rs) thus ?case
       
   203     by simp
       
   204 qed
   203 
   205 
   204 lemma rsimp_aalts_smaller:
   206 lemma rsimp_aalts_smaller:
   205   shows "rsize (rsimp_ALTs  rs) \<le> rsize (RALTS rs)"
   207   shows "rsize (rsimp_ALTs  rs) \<le> rsize (RALTS rs)"
   206   apply(induct rs)
   208   apply(induct rs)
   207    apply simp
   209    apply simp
   247 
   249 
   248 fun cond_list :: "rrexp \<Rightarrow> rrexp \<Rightarrow> char list \<Rightarrow> rrexp list"
   250 fun cond_list :: "rrexp \<Rightarrow> rrexp \<Rightarrow> char list \<Rightarrow> rrexp list"
   249   where
   251   where
   250 "cond_list r1 r2 s = rders_cond_list r2 (nullable_bools r1 (orderedPref s) ) (orderedSuf s)"
   252 "cond_list r1 r2 s = rders_cond_list r2 (nullable_bools r1 (orderedPref s) ) (orderedSuf s)"
   251 
   253 
   252 thm rsimp_SEQ.simps
   254 
   253 lemma rSEQ_mono:
   255 lemma rSEQ_mono:
   254   shows "rsize (rsimp_SEQ r1 r2) \<le>rsize ( RSEQ r1 r2)"
   256   shows "rsize (rsimp_SEQ r1 r2) \<le>rsize ( RSEQ r1 r2)"
   255   apply auto
   257   apply auto
   256   apply(induct r1)
   258   apply(induct r1)
   257        apply auto
   259        apply auto
   265         apply simp_all
   267         apply simp_all
   266      apply(case_tac r2)
   268      apply(case_tac r2)
   267   apply simp_all
   269   apply simp_all
   268   done
   270   done
   269 
   271 
       
   272 lemma ralts_cap_mono:
       
   273   shows "rsize (RALTS rs) \<le> Suc ( sum_list (map rsize rs)) "
       
   274   by simp
       
   275 
       
   276 lemma rflts_def_idiot:
       
   277   shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk>
       
   278        \<Longrightarrow> rflts (a # rs) = a # rflts rs"
       
   279   apply(case_tac a)
       
   280        apply simp_all
       
   281   done
       
   282 
       
   283 
       
   284 lemma rflts_mono:
       
   285   shows "sum_list (map rsize (rflts rs))\<le> sum_list (map rsize rs)"
       
   286   apply(induct rs)
       
   287   apply simp
       
   288   apply(case_tac "a = RZERO")
       
   289    apply simp
       
   290   apply(case_tac "\<exists>rs1. a = RALTS rs1")
       
   291   apply(erule exE)
       
   292    apply simp
       
   293   apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)")
       
   294   prefer 2
       
   295   using rflts_def_idiot apply blast
       
   296   apply simp
       
   297   done
       
   298 
       
   299 lemma rdistinct_smaller: shows "sum_list (map rsize (rdistinct rs ss)) \<le>
       
   300 sum_list (map rsize rs )"
       
   301   apply (induct rs arbitrary: ss)
       
   302    apply simp
       
   303   by (simp add: trans_le_add2)
       
   304 
       
   305 lemma rdistinct_phi_smaller: "sum_list (map rsize (rdistinct rs {})) \<le> sum_list (map rsize rs)"
       
   306   by (simp add: rdistinct_smaller)
       
   307 
       
   308 
       
   309 lemma rsimp_alts_mono :
       
   310   shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa)  \<Longrightarrow>
       
   311 rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (sum_list (map rsize x))"
       
   312   apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} )) 
       
   313                     \<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))")
       
   314   prefer 2
       
   315   using rsimp_aalts_smaller apply auto[1]
       
   316   apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc( sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})))")
       
   317   prefer 2
       
   318   using ralts_cap_mono apply blast
       
   319   apply(subgoal_tac "sum_list (map rsize (rdistinct (rflts (map rsimp x)) {})) \<le>
       
   320                      sum_list (map rsize ( (rflts (map rsimp x))))")
       
   321   prefer 2
       
   322   using rdistinct_smaller apply presburger
       
   323   apply(subgoal_tac "sum_list (map rsize (rflts (map rsimp x))) \<le> 
       
   324                      sum_list (map rsize (map rsimp x))")
       
   325   prefer 2
       
   326   using rflts_mono apply blast
       
   327   apply(subgoal_tac "sum_list (map rsize (map rsimp x)) \<le> sum_list (map rsize x)")
       
   328   prefer 2
       
   329   
       
   330   apply (simp add: sum_list_mono)
       
   331   by linarith
       
   332 
       
   333 
       
   334 
       
   335 
       
   336 
   270 lemma rsimp_mono:
   337 lemma rsimp_mono:
   271   shows "rsize (rsimp r) \<le> rsize r"
   338   shows "rsize (rsimp r) \<le> rsize r"
       
   339 
   272   apply(induct r)
   340   apply(induct r)
   273        apply simp_all
   341              apply simp_all
       
   342 
   274   apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))")
   343   apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))")
   275   
   344   
   276     apply force
   345     apply force
   277   using rSEQ_mono
   346   using rSEQ_mono
   278   apply presburger
   347    apply presburger
   279   sorry
   348   using rsimp_alts_mono by auto
   280 
   349 
   281 lemma idiot:
   350 lemma idiot:
   282   shows "rsimp_SEQ RONE r = r"
   351   shows "rsimp_SEQ RONE r = r"
   283   apply(case_tac r)
   352   apply(case_tac r)
   284        apply simp_all
   353        apply simp_all
   285   done
   354   done
   286 
   355 
   287 lemma no_dup_after_simp:
   356 lemma no_alt_short_list_after_simp:
   288   shows "RALTS rs = rsimp r \<Longrightarrow> distinct rs"
   357   shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
   289   sorry
   358   sorry
   290 
   359 
   291 lemma no_further_dB_after_simp:
   360 lemma no_further_dB_after_simp:
   292   shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs"
   361   shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs"
   293   sorry
   362 
   294 
   363   sorry
   295 lemma longlist_withstands_rsimp_alts:
   364 
   296   shows "length rs \<ge> 2 \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
       
   297   sorry
       
   298 
       
   299 lemma no_alt_short_list_after_simp:
       
   300   shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
       
   301   sorry
       
   302 
   365 
   303 lemma idiot2:
   366 lemma idiot2:
   304   shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk>
   367   shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk>
   305     \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2"
   368     \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2"
   306   apply(case_tac r1)
   369   apply(case_tac r1)
   549 
   612 
   550 lemma cond_list_head_last:
   613 lemma cond_list_head_last:
   551   shows "rnullable (rders r1 s) \<Longrightarrow> 
   614   shows "rnullable (rders r1 s) \<Longrightarrow> 
   552         RALTS (r # (cond_list r1 r2 (s @ [c]))) = RALTS (r # ((rder c r2) # (map (rder c) (cond_list r1 r2 s))))"
   615         RALTS (r # (cond_list r1 r2 (s @ [c]))) = RALTS (r # ((rder c r2) # (map (rder c) (cond_list r1 r2 s))))"
   553   using suffix_plus1charn by blast
   616   using suffix_plus1charn by blast
       
   617 
       
   618 lemma simp_flatten2:
       
   619   shows "rsimp (RALTS (r # [RALTS rs])) = rsimp (RALTS (r # rs))"
       
   620   sorry
   554 
   621 
   555 
   622 
   556 lemma simp_flatten:
   623 lemma simp_flatten:
   557   shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))"
   624   shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))"
   558 
   625 
   829                           (rders_cond_list r2 (nullable_bools r1 (orderedPref s))  (orderedSuf s))
   896                           (rders_cond_list r2 (nullable_bools r1 (orderedPref s))  (orderedSuf s))
   830                          ) 
   897                          ) 
   831         )"
   898         )"
   832   sorry
   899   sorry
   833 
   900 
   834 lemma hand_made_def_rlist_size:
   901 
   835   shows "rlist_size rs = sum_list (map rsize rs)"
       
   836 proof (induct rs)
       
   837   case Nil show ?case by simp
       
   838 next
       
   839   case (Cons a rs) thus ?case
       
   840     by simp
       
   841 qed
       
   842 
   902 
   843 (*this section deals with the property of distinctBy: creates a list without duplicates*)
   903 (*this section deals with the property of distinctBy: creates a list without duplicates*)
   844 lemma distinct_mono:
   904 lemma distinct_mono:
   845   shows "rlist_size (rdistinct (a # s) {}) \<le> rlist_size (a # (rdistinct s {}) )"
   905   shows "rlist_size (rdistinct (a # s) {}) \<le> rlist_size (a # (rdistinct s {}) )"
   846   sorry
   906   sorry
  1015 
  1075 
  1016 fun star_update :: "char \<Rightarrow> rrexp \<Rightarrow> char list list => char list list" where
  1076 fun star_update :: "char \<Rightarrow> rrexp \<Rightarrow> char list list => char list list" where
  1017 "star_update c r [] = []"
  1077 "star_update c r [] = []"
  1018 |"star_update c r (s # Ss) = (if (rnullable (rders_simp r s)) 
  1078 |"star_update c r (s # Ss) = (if (rnullable (rders_simp r s)) 
  1019                                 then (s@[c]) # [c] # (star_update c r Ss) 
  1079                                 then (s@[c]) # [c] # (star_update c r Ss) 
  1020                                else   s # (star_update c r Ss) )"
  1080                                else   (s@[c]) # (star_update c r Ss) )"
  1021 
  1081 
  1022 lemma star_update_case1:
  1082 lemma star_update_case1:
  1023   shows "rnullable (rders_simp r s) \<Longrightarrow> star_update c r (s # Ss) = (s @ [c]) # [c] # (star_update c r Ss)"
  1083   shows "rnullable (rders_simp r s) \<Longrightarrow> star_update c r (s # Ss) = (s @ [c]) # [c] # (star_update c r Ss)"
  1024   
  1084   
  1025   by force
  1085   by force
  1026 
  1086 
  1027 lemma star_update_case2:
  1087 lemma star_update_case2:
  1028   shows "\<not>rnullable (rders_simp r s) \<Longrightarrow> star_update c r (s # Ss) = s # (star_update c r Ss)"
  1088   shows "\<not>rnullable (rders_simp r s) \<Longrightarrow> star_update c r (s # Ss) = (s @ [c]) # (star_update c r Ss)"
       
  1089   by simp
       
  1090 
       
  1091 lemma bubble_break: shows "rflts [r, RZERO] = rflts [r]"
       
  1092   apply(case_tac r)
       
  1093        apply simp+
       
  1094   done
       
  1095 
       
  1096 lemma rsimp_alts_idem_aux1:
       
  1097   shows "rsimp_ALTs (rdistinct (rflts [rsimp a]) {}) = rsimp (RALTS [a])"
       
  1098   by force
       
  1099 
       
  1100 
       
  1101 
       
  1102 lemma rsimp_alts_idem_aux2:
       
  1103   shows "rsimp a = rsimp (RALTS [a])"
       
  1104   apply(simp)
       
  1105   apply(case_tac "rsimp a")
       
  1106        apply simp+
       
  1107   apply (metis no_alt_short_list_after_simp no_further_dB_after_simp)
  1029   by simp
  1108   by simp
  1030 
  1109 
  1031 lemma rsimp_alts_idem:
  1110 lemma rsimp_alts_idem:
  1032   shows "rsimp (rsimp_ALTs (a # as)) = rsimp (rsimp_ALTs (a # [(rsimp (rsimp_ALTs as))] ))"
  1111   shows "rsimp (rsimp_ALTs (a # as)) = rsimp (rsimp_ALTs (a # [(rsimp (rsimp_ALTs as))] ))"
  1033   sorry
  1112   apply(induct as)
       
  1113    apply(subgoal_tac "rsimp (rsimp_ALTs [a, rsimp (rsimp_ALTs [])]) = rsimp (rsimp_ALTs [a, RZERO])")
       
  1114   prefer 2
       
  1115     apply simp
       
  1116   using bubble_break rsimp_alts_idem_aux2 apply auto[1]
       
  1117   apply(case_tac as)
       
  1118    apply(subgoal_tac "rsimp_ALTs( aa # as) = aa")
       
  1119   prefer 2
       
  1120     apply simp
       
  1121   using head_one_more_simp apply fastforce
       
  1122   apply(subgoal_tac "rsimp_ALTs (aa # as) = RALTS (aa # as)")
       
  1123   prefer 2
       
  1124   
       
  1125   using rsimp_ALTs.simps(3) apply presburger
       
  1126   
       
  1127   apply(simp only:)
       
  1128   apply(subgoal_tac "rsimp_ALTs (a # aa # aaa # list) = RALTS (a # aa # aaa # list)")
       
  1129   prefer 2
       
  1130   using rsimp_ALTs.simps(3) apply presburger
       
  1131   apply(simp only:)
       
  1132   apply(subgoal_tac "rsimp_ALTs [a, rsimp (RALTS (aa # aaa # list))] = RALTS (a # [rsimp (RALTS (aa # aaa # list))])")
       
  1133   prefer 2
       
  1134   
       
  1135   using rsimp_ALTs.simps(3) apply presburger
       
  1136   apply(simp only:)
       
  1137   using simp_flatten2
       
  1138   apply(subgoal_tac " rsimp (RALT a (rsimp (RALTS (aa # aaa # list))))  =  rsimp (RALT a ((RALTS (aa # aaa # list)))) ")
       
  1139   prefer 2
       
  1140 
       
  1141   apply (metis head_one_more_simp list.simps(9) rsimp.simps(2))
       
  1142   apply (simp only:)
       
  1143   done
       
  1144 
  1034 
  1145 
  1035 lemma rsimp_alts_idem2:
  1146 lemma rsimp_alts_idem2:
  1036   shows "rsimp (rsimp_ALTs (a # as)) = rsimp (rsimp_ALTs ((rsimp a) # [(rsimp (rsimp_ALTs as))] ))"
  1147   shows "rsimp (rsimp_ALTs (a # as)) = rsimp (rsimp_ALTs ((rsimp a) # [(rsimp (rsimp_ALTs as))] ))"
  1037   sorry
  1148   using head_one_more_simp rsimp_alts_idem by auto
       
  1149 
  1038 
  1150 
  1039 lemma evolution_step1:
  1151 lemma evolution_step1:
  1040   shows "rsimp
  1152   shows "rsimp
  1041         (rsimp_ALTs
  1153         (rsimp_ALTs
  1042           (rder x (rsimp_SEQ (rders_simp r a) (RSTAR r)) # map (\<lambda>s1. rder x (rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss)) =
  1154           (rder x (rsimp_SEQ (rders_simp r a) (RSTAR r)) # map (\<lambda>s1. rder x (rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss)) =
  1054                  rsimp 
  1166                  rsimp 
  1055         (rsimp_ALTs
  1167         (rsimp_ALTs
  1056           (rder x (rsimp_SEQ (rders_simp r a) (RSTAR r)) # [ rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))]))  "
  1168           (rder x (rsimp_SEQ (rders_simp r a) (RSTAR r)) # [ rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))]))  "
  1057   by (simp add: assms rsimp_alts_idem)
  1169   by (simp add: assms rsimp_alts_idem)
  1058 
  1170 
       
  1171 lemma rsimp_seq_aux1:
       
  1172   shows "r = RONE \<and> r2 = RSTAR r0 \<Longrightarrow> rsimp_SEQ r r2 = r2"
       
  1173   apply simp
       
  1174   done
       
  1175 
       
  1176 lemma multiple_alts_simp_flatten:
       
  1177   shows "rsimp (RALT (RALT r1 r2) (rsimp_ALTs rs)) = rsimp (RALTS (r1 # r2 # rs))"
       
  1178   by (metis Cons_eq_appendI append_self_conv2 rsimp_ALTs.simps(2) rsimp_ALTs.simps(3) rsimp_alts_idem simp_flatten)
       
  1179 
       
  1180 
       
  1181 lemma evo3_main_aux1:
       
  1182   shows "rsimp
       
  1183             (RALT (RALT (RSEQ (rsimp (rders_simp r (a @ [x]))) (RSTAR r)) (RSEQ (rders_simp r [x]) (RSTAR r)))
       
  1184               (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))) =
       
  1185            rsimp
       
  1186             (RALTS
       
  1187               (RSEQ (rders_simp r (a @ [x])) (RSTAR r) #
       
  1188                RSEQ (rders_simp r [x]) (RSTAR r) # map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))"
       
  1189   apply(subgoal_tac "rsimp
       
  1190             (RALT (RALT (RSEQ (rsimp (rders_simp r (a @ [x]))) (RSTAR r)) (RSEQ (rders_simp r [x]) (RSTAR r)))
       
  1191               (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))) =
       
  1192 rsimp
       
  1193             (RALT (RALT (RSEQ ( (rders_simp r (a @ [x]))) (RSTAR r)) (RSEQ (rders_simp r [x]) (RSTAR r)))
       
  1194               (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))) ")
       
  1195   prefer 2
       
  1196    apply (simp add: rsimp_idem)
       
  1197   apply (simp only:)
       
  1198   apply(subst multiple_alts_simp_flatten)
       
  1199   by simp
       
  1200 
       
  1201 
       
  1202 lemma evo3_main_nullable:
       
  1203   shows "
       
  1204 \<And>a Ss.
       
  1205        \<lbrakk>rsimp (rsimp_ALTs (map (\<lambda>s1. rder x (rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss)) =
       
  1206         rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)));
       
  1207         rders_simp r a \<noteq> RONE; rders_simp r a \<noteq> RZERO; rnullable (rders_simp r a)\<rbrakk>
       
  1208        \<Longrightarrow> rsimp
       
  1209             (rsimp_ALTs
       
  1210               [rder x (RSEQ (rders_simp r a) (RSTAR r)),
       
  1211                rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))]) =
       
  1212            rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r (a # Ss))))"
       
  1213   apply(subgoal_tac "rder x (RSEQ (rders_simp r a) (RSTAR r)) 
       
  1214                    = RALT (RSEQ (rder x (rders_simp r a)) (RSTAR r)) (RSEQ (rder x r) (RSTAR r))")
       
  1215   prefer 2
       
  1216    apply simp
       
  1217   apply(simp only:)
       
  1218   apply(subgoal_tac "star_update x r (a # Ss) = (a @ [x]) # [x] # (star_update x r Ss)")
       
  1219    prefer 2
       
  1220   using star_update_case1 apply presburger
       
  1221   apply(simp only:)
       
  1222   apply(subst List.list.map(2))+
       
  1223   apply(subgoal_tac "rsimp
       
  1224             (rsimp_ALTs
       
  1225               [RALT (RSEQ (rder x (rders_simp r a)) (RSTAR r)) (RSEQ (rder x r) (RSTAR r)),
       
  1226                rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))]) = 
       
  1227 rsimp
       
  1228             (RALTS
       
  1229               [RALT (RSEQ (rder x (rders_simp r a)) (RSTAR r)) (RSEQ (rder x r) (RSTAR r)),
       
  1230                rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))])")
       
  1231   prefer 2
       
  1232   using rsimp_ALTs.simps(3) apply presburger
       
  1233   apply(simp only:)
       
  1234   apply(subgoal_tac " rsimp
       
  1235             (rsimp_ALTs
       
  1236               (rsimp_SEQ (rders_simp r (a @ [x])) (RSTAR r) #
       
  1237                rsimp_SEQ (rders_simp r [x]) (RSTAR r) # map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss))) 
       
  1238 = 
       
  1239  rsimp
       
  1240             (RALTS
       
  1241               (rsimp_SEQ (rders_simp r (a @ [x])) (RSTAR r) #
       
  1242                rsimp_SEQ (rders_simp r [x]) (RSTAR r) # map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))")
       
  1243 
       
  1244   prefer 2
       
  1245   using rsimp_ALTs.simps(3) apply presburger
       
  1246   apply (simp only:)
       
  1247   apply(subgoal_tac " rsimp
       
  1248             (RALT (RALT (RSEQ (rder x (rders_simp r a)) (RSTAR r)) (RSEQ ( (rder x r)) (RSTAR r)))
       
  1249               (rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss))))) = 
       
  1250              rsimp
       
  1251             (RALT (RALT (RSEQ (rsimp (rder x (rders_simp r a))) (RSTAR r)) (RSEQ (rsimp (rder x r)) (RSTAR r)))
       
  1252               (rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))))")
       
  1253   prefer 2
       
  1254    apply (simp add: rsimp_idem)
       
  1255   apply(simp only:)
       
  1256   apply(subgoal_tac "             rsimp
       
  1257             (RALT (RALT (RSEQ (rsimp (rder x (rders_simp r a))) (RSTAR r)) (RSEQ (rsimp (rder x r)) (RSTAR r)))
       
  1258               (rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss))))) = 
       
  1259              rsimp
       
  1260             (RALT (RALT (RSEQ (rsimp (rders_simp r (a @ [x]))) (RSTAR r)) (RSEQ (rders_simp r [x]) (RSTAR r)))
       
  1261               (rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))))")
       
  1262    prefer 2
       
  1263   using rders_simp_append rders_simp_one_char rsimp_idem apply presburger
       
  1264   apply(simp only:)
       
  1265   apply(subgoal_tac " rsimp
       
  1266             (RALTS
       
  1267               (rsimp_SEQ (rders_simp r (a @ [x])) (RSTAR r) #
       
  1268                rsimp_SEQ (rders_simp r [x]) (RSTAR r) # map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss))) = 
       
  1269  rsimp
       
  1270             (RALTS
       
  1271               (RSEQ (rders_simp r (a @ [x])) (RSTAR r) #
       
  1272                RSEQ (rders_simp r [x]) (RSTAR r) # map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))")
       
  1273   prefer 2
       
  1274   apply (smt (z3) idiot2 list.simps(9) rrexp.distinct(9) rsimp.simps(1) rsimp.simps(2) rsimp.simps(3) rsimp.simps(4) rsimp.simps(6) rsimp_idem)
       
  1275   apply(simp only:)
       
  1276   apply(subgoal_tac "      rsimp
       
  1277             (RALT (RALT (RSEQ (rsimp (rders_simp r (a @ [x]))) (RSTAR r)) (RSEQ (rders_simp r [x]) (RSTAR r)))
       
  1278               (rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss))))) =
       
  1279      rsimp
       
  1280             (RALT (RALT (RSEQ (rsimp (rders_simp r (a @ [x]))) (RSTAR r)) (RSEQ (rders_simp r [x]) (RSTAR r)))
       
  1281               ( (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))))  ")
       
  1282   prefer 2
       
  1283   using rsimp_idem apply force
       
  1284   apply(simp only:)
       
  1285   using evo3_main_aux1 by blast
       
  1286   
       
  1287 
       
  1288 lemma evo3_main_not1:
       
  1289   shows " \<not>rnullable (rders_simp r a) \<Longrightarrow> rder x (RSEQ (rders_simp r a) (RSTAR r)) = RSEQ (rder x (rders_simp r a)) (RSTAR r)"
       
  1290   by fastforce
       
  1291 
       
  1292 
       
  1293 lemma evo3_main_not2:
       
  1294   shows "\<not>rnullable (rders_simp r a) \<Longrightarrow>  rsimp
       
  1295             (rsimp_ALTs
       
  1296               (rder x (RSEQ (rders_simp r a) (RSTAR r)) # rs)) = rsimp
       
  1297             (rsimp_ALTs
       
  1298               ((RSEQ (rders_simp r (a @ [x])) (RSTAR r)) # rs))"
       
  1299   by (simp add: rders_simp_append rsimp_alts_idem2 rsimp_idem)
       
  1300 
       
  1301 lemma evo3_main_not3:
       
  1302   shows "rsimp
       
  1303             (rsimp_ALTs
       
  1304               (rsimp_SEQ r1 (RSTAR r) # rs)) = 
       
  1305          rsimp (rsimp_ALTs
       
  1306               (RSEQ r1 (RSTAR r) # rs))"
       
  1307   by (metis idiot2 rrexp.distinct(9) rsimp.simps(1) rsimp.simps(3) rsimp.simps(4) rsimp.simps(6) rsimp_alts_idem rsimp_alts_idem2)
       
  1308 
       
  1309 
       
  1310 lemma evo3_main_notnullable:
       
  1311   shows "\<And>a Ss.
       
  1312        \<lbrakk>rsimp (rsimp_ALTs (map (\<lambda>s1. rder x (rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss)) =
       
  1313         rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)));
       
  1314         rders_simp r a \<noteq> RONE; rders_simp r a \<noteq> RZERO; \<not>rnullable (rders_simp r a)\<rbrakk>
       
  1315        \<Longrightarrow> rsimp
       
  1316             (rsimp_ALTs
       
  1317               [rder x (RSEQ (rders_simp r a) (RSTAR r)),
       
  1318                rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))]) =
       
  1319            rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r (a # Ss))))"
       
  1320   apply(subst star_update_case2)
       
  1321    apply simp
       
  1322   apply(subst List.list.map(2))
       
  1323   apply(subst evo3_main_not2)
       
  1324    apply simp
       
  1325   apply(subst evo3_main_not3)
       
  1326   using rsimp_alts_idem by presburger
       
  1327 
       
  1328 
       
  1329 lemma evo3_aux2:
       
  1330   shows "rders_simp r a = RONE \<Longrightarrow> rsimp_SEQ (rders_simp (rders_simp r a) [x]) (RSTAR r) = RZERO"
       
  1331   by simp
       
  1332 lemma evo3_aux3:
       
  1333   shows "rsimp (rsimp_ALTs (RZERO # rs)) = rsimp (rsimp_ALTs rs)"
       
  1334   by (metis list.simps(8) list.simps(9) rdistinct.simps(1) rflts.simps(1) rflts.simps(2) rsimp.simps(2) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3) rsimp_alts_idem)
       
  1335 
       
  1336 lemma evo3_aux4:
       
  1337   shows " rsimp
       
  1338             (rsimp_ALTs
       
  1339               [RSEQ (rder x r) (RSTAR r),
       
  1340                rsimp (rsimp_ALTs rs)]) =
       
  1341            rsimp
       
  1342             (rsimp_ALTs
       
  1343               (rsimp_SEQ (rders_simp r [x]) (RSTAR r) # rs))"
       
  1344   by (metis rders_simp_one_char rsimp.simps(1) rsimp.simps(6) rsimp_alts_idem rsimp_alts_idem2)
       
  1345 
       
  1346 lemma evo3_aux5:
       
  1347   shows "rders_simp r a \<noteq> RONE \<and> rders_simp r a \<noteq> RZERO \<Longrightarrow> rsimp_SEQ (rders_simp r a) (RSTAR r) = RSEQ (rders_simp r a) (RSTAR r)"
       
  1348   using idiot2 by blast
       
  1349 
       
  1350 
       
  1351 lemma evolution_step3:
       
  1352   shows" \<And>a Ss.
       
  1353        rsimp (rsimp_ALTs (map (\<lambda>s1. rder x (rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss)) =
       
  1354        rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss))) \<Longrightarrow>
       
  1355        rsimp
       
  1356         (rsimp_ALTs
       
  1357           [rder x (rsimp_SEQ (rders_simp r a) (RSTAR r)),
       
  1358            rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r Ss)))]) =
       
  1359        rsimp (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) (star_update x r (a # Ss))))"
       
  1360   apply(case_tac "rders_simp r a = RONE")
       
  1361    apply(subst rsimp_seq_aux1)
       
  1362     apply simp
       
  1363   apply(subst rder.simps(6))
       
  1364    apply(subgoal_tac "rnullable (rders_simp r a)")
       
  1365     prefer 2
       
  1366   using rnullable.simps(2) apply presburger
       
  1367    apply(subst star_update_case1)
       
  1368     apply simp
       
  1369 
       
  1370    apply(subst List.list.map)+
       
  1371   apply(subst rders_simp_append)
       
  1372    apply(subst evo3_aux2)
       
  1373     apply simp
       
  1374    apply(subst evo3_aux3)
       
  1375    apply(subst evo3_aux4)
       
  1376    apply simp
       
  1377   apply(case_tac "rders_simp r a = RZERO")
       
  1378 
       
  1379    apply (simp add: rsimp_alts_idem2)
       
  1380    apply(subgoal_tac "rders_simp r (a @ [x]) = RZERO")
       
  1381   prefer 2
       
  1382   using rder.simps(1) rders_simp_append rders_simp_one_char rsimp.simps(3) apply presburger
       
  1383   using rflts.simps(2) rsimp.simps(3) rsimp_SEQ.simps(1) apply presburger
       
  1384   apply(subst evo3_aux5)
       
  1385    apply simp
       
  1386   apply(case_tac "rnullable (rders_simp r a) ")
       
  1387   using evo3_main_nullable apply blast
       
  1388   using evo3_main_notnullable apply blast
       
  1389   done
  1059 
  1390 
  1060 (*
  1391 (*
  1061 proof (prove)
  1392 proof (prove)
  1062 goal (1 subgoal):
  1393 goal (1 subgoal):
  1063  1. map f (a # s) = f a # map f s 
  1394  1. map f (a # s) = f a # map f s 
  1073   apply(induct Ss)
  1404   apply(induct Ss)
  1074    apply simp
  1405    apply simp
  1075   apply(subst List.list.map(2))
  1406   apply(subst List.list.map(2))
  1076   apply(subst evolution_step2)
  1407   apply(subst evolution_step2)
  1077    apply simp
  1408    apply simp
  1078   apply(case_tac "rnullable (rders_simp r a)")
  1409 
  1079    apply(subst star_update_case1)
  1410 
  1080     apply simp
       
  1081    apply(subst List.list.map)+
       
  1082   sledgehammer
       
  1083   sorry
  1411   sorry
  1084 
  1412 
  1085 
  1413 
  1086 lemma star_seqs_produce_star_seqs:
  1414 lemma star_seqs_produce_star_seqs:
  1087   shows "rsimp (rsimp_ALTs (map (rder x \<circ> (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss))
  1415   shows "rsimp (rsimp_ALTs (map (rder x \<circ> (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss))
  1092   shows "map (rder x) (map (\<lambda>s. f s) Ss) = map (\<lambda>s. (rder x (f s))) Ss"
  1420   shows "map (rder x) (map (\<lambda>s. f s) Ss) = map (\<lambda>s. (rder x (f s))) Ss"
  1093   by force
  1421   by force
  1094 
  1422 
  1095 lemma ralts_vs_rsimpalts:
  1423 lemma ralts_vs_rsimpalts:
  1096   shows "rsimp (RALTS rs) = rsimp (rsimp_ALTs rs)"
  1424   shows "rsimp (RALTS rs) = rsimp (rsimp_ALTs rs)"
  1097   sorry
  1425   by (metis evo3_aux3 rsimp_ALTs.simps(2) rsimp_ALTs.simps(3) simp_flatten2)
       
  1426   
  1098 
  1427 
  1099 lemma linearity_of_list_of_star_or_starseqs: 
  1428 lemma linearity_of_list_of_star_or_starseqs: 
  1100   fixes r::rrexp and Ss::"char list list" and x::char
  1429   fixes r::rrexp and Ss::"char list list" and x::char
  1101   shows "\<exists>Ssa. rsimp (rder x (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) Ss))) =
  1430   shows "\<exists>Ssa. rsimp (rder x (rsimp_ALTs (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) Ss))) =
  1102                  rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) Ssa)))"
  1431                  rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) Ssa)))"
  1154           rsimp (RALTS (map (\<lambda>s1. rder x (rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss))")
  1483           rsimp (RALTS (map (\<lambda>s1. rder x (rsimp_SEQ (rders_simp r s1) (RSTAR r))) Ss))")
  1155   prefer 2
  1484   prefer 2
  1156   using star_list_push_der apply presburger
  1485   using star_list_push_der apply presburger
  1157 
  1486 
  1158 
  1487 
  1159   sorry
  1488   by (metis ralts_vs_rsimpalts starseq_list_evolution)
       
  1489 
       
  1490 
       
  1491 lemma starder_is_a_list:
       
  1492   shows " \<exists>Ss. rders_simp (RSTAR r) s = rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r s1) (RSTAR r)) Ss))) \<or> rders_simp (RSTAR r) s = RSTAR r"
       
  1493   apply(case_tac s)
       
  1494   prefer 2
       
  1495   apply (metis neq_Nil_conv starder_is_a_list_of_stars_or_starseqs)
       
  1496   apply simp
       
  1497   done
       
  1498 
       
  1499 
       
  1500 (** start about bounds here**)
       
  1501 
       
  1502 
       
  1503 lemma list_simp_size:
       
  1504   shows "rlist_size (map rsimp rs) \<le> rlist_size rs"
       
  1505   apply(induct rs)
       
  1506    apply simp
       
  1507   apply simp
       
  1508   apply (subgoal_tac "rsize (rsimp a) \<le> rsize a")
       
  1509   prefer 2
       
  1510   using rsimp_mono apply fastforce
       
  1511   using add_le_mono by presburger
       
  1512 
       
  1513 lemma inside_list_simp_inside_list:
       
  1514   shows "r \<in> set rs \<Longrightarrow> rsimp r \<in> set (map rsimp rs)"
       
  1515   apply (induct rs)
       
  1516    apply simp
       
  1517   apply auto
       
  1518   done
       
  1519 
       
  1520 
       
  1521 lemma rsize_star_seq_list:
       
  1522   shows "(\<forall>s. rsize (rders_simp r0 s) < N0 ) \<Longrightarrow>  \<exists>N3.\<forall>Ss.  
       
  1523 rlist_size (rdistinct (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss) {}) < N3"
       
  1524   sorry
       
  1525 
       
  1526 
       
  1527 lemma rdistinct_bound_by_no_simp:
       
  1528   shows "
       
  1529 
       
  1530    rlist_size (rdistinct  (map rsimp rs) (set (map rsimp ss)))
       
  1531  \<le> (rlist_size (rdistinct rs (set ss)))
       
  1532 "
       
  1533   apply(induct rs arbitrary: ss)
       
  1534    apply simp
       
  1535   apply(case_tac "a \<in> set ss")
       
  1536    apply(subgoal_tac "rsimp a \<in> set (map rsimp ss)")
       
  1537   prefer 2
       
  1538   using inside_list_simp_inside_list apply blast
       
  1539 
       
  1540    apply simp
       
  1541   apply simp
       
  1542   by (metis List.set_insert add_le_mono image_insert insert_absorb rsimp_mono trans_le_add2)
       
  1543 
       
  1544 
       
  1545 lemma starder_closed_form_bound_aux1:
       
  1546   shows 
       
  1547 "\<forall>Ss. rsize (rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss)))) \<le>
       
  1548   Suc (rlist_size ( (rdistinct ( ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss))) {}))) "
       
  1549   
       
  1550   sorry
       
  1551 
       
  1552 lemma starder_closed_form_bound:
       
  1553   shows "(\<forall>s. rsize (rders_simp r0 s) < N0 ) \<Longrightarrow> \<exists>N3.\<forall>Ss.  
       
  1554 rsize(rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss)))) < N3"
       
  1555   apply(subgoal_tac " \<exists>N3.\<forall>Ss.  
       
  1556 rlist_size (rdistinct (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss) {}) < N3")
       
  1557   prefer 2
       
  1558   
       
  1559   using rsize_star_seq_list apply auto[1]
       
  1560   apply(erule exE)
       
  1561   apply(rule_tac x = "Suc N3" in exI)
       
  1562   apply(subgoal_tac "\<forall>Ss. rsize (rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss)))) \<le>
       
  1563  Suc (rlist_size ( (rdistinct ( ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss))) {})))")
       
  1564   prefer 2
       
  1565   using starder_closed_form_bound_aux1 apply blast
       
  1566   by (meson less_trans_Suc linorder_not_le not_less_eq)
       
  1567 
       
  1568   
       
  1569 thm starder_closed_form_bound_aux1
       
  1570 
       
  1571 (*
       
  1572  "ralts_vs_rsimpalts", , and "starder_closed_form_bound_aux1", which could be due to a bug in Sledgehammer or to inconsistent axioms (including "sorry"s) 
       
  1573 *)
       
  1574 
       
  1575 lemma starder_size_bound:
       
  1576   shows "(\<forall>s. rsize (rders_simp r0 s) < N0 ) \<Longrightarrow> \<exists>N3.\<forall>Ss.  
       
  1577 rsize(rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss)))) < N3 \<and>
       
  1578 rsize (RSTAR r0) < N3"
       
  1579   apply(subgoal_tac " \<exists>N3.\<forall>Ss.  
       
  1580 rsize(rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss)))) < N3")
       
  1581   prefer 2
       
  1582   using starder_closed_form_bound apply blast
       
  1583   apply(erule exE)
       
  1584   apply(rule_tac x = "max N3 (Suc (rsize (RSTAR r0)))" in exI)
       
  1585   using less_max_iff_disj by blast
       
  1586 
       
  1587 
  1160 
  1588 
  1161 
  1589 
  1162 lemma finite_star:
  1590 lemma finite_star:
  1163   shows "(\<forall>s. rsize (rders_simp r0 s) < N0 )
  1591   shows "(\<forall>s. rsize (rders_simp r0 s) < N0 )
  1164            \<Longrightarrow> \<exists>N3. \<forall>s.(rsize (rders_simp (RSTAR r0) s)) < N3"
  1592            \<Longrightarrow> \<exists>N3. \<forall>s.(rsize (rders_simp (RSTAR r0) s)) < N3"
  1165 
  1593   apply(subgoal_tac  " \<exists>N3. \<forall>Ss. 
  1166   sorry
  1594 rsize(rsimp (RALTS ( (map (\<lambda>s1. rsimp_SEQ (rders_simp r0 s1) (RSTAR r0)) Ss)))) < N3 \<and>
       
  1595 rsize (RSTAR r0) < N3")
       
  1596   prefer 2
       
  1597   using starder_size_bound apply blast
       
  1598   apply(erule exE)
       
  1599   apply(rule_tac x = N3 in exI)
       
  1600   by (metis starder_is_a_list)
  1167 
  1601 
  1168 
  1602 
  1169 lemma rderssimp_zero:
  1603 lemma rderssimp_zero:
  1170   shows"rders_simp RZERO s = RZERO"
  1604   shows"rders_simp RZERO s = RZERO"
  1171   apply(induction s)
  1605   apply(induction s)