457 "Prefixes s \<equiv> {sp. sp \<sqsubseteq> s}" |
442 "Prefixes s \<equiv> {sp. sp \<sqsubseteq> s}" |
458 |
443 |
459 definition Suffixes :: "string \<Rightarrow> string set" where |
444 definition Suffixes :: "string \<Rightarrow> string set" where |
460 "Suffixes s \<equiv> rev ` (Prefixes (rev s))" |
445 "Suffixes s \<equiv> rev ` (Prefixes (rev s))" |
461 |
446 |
|
447 definition SPrefixes :: "string \<Rightarrow> string set" where |
|
448 "SPrefixes s \<equiv> {sp. sp \<sqsubset> s}" |
|
449 |
|
450 definition SSuffixes :: "string \<Rightarrow> string set" where |
|
451 "SSuffixes s \<equiv> rev ` (SPrefixes (rev s))" |
|
452 |
462 lemma Suffixes_in: |
453 lemma Suffixes_in: |
463 "\<exists>s1. s1 @ s2 = s3 \<Longrightarrow> s2 \<in> Suffixes s3" |
454 "\<exists>s1. s1 @ s2 = s3 \<Longrightarrow> s2 \<in> Suffixes s3" |
464 unfolding Suffixes_def Prefixes_def prefix_def image_def |
455 unfolding Suffixes_def Prefixes_def prefix_def image_def |
465 apply(auto) |
456 apply(auto) |
466 by (metis rev_rev_ident) |
457 by (metis rev_rev_ident) |
|
458 |
|
459 lemma SSuffixes_in: |
|
460 "\<exists>s1. s1 \<noteq> [] \<and> s1 @ s2 = s3 \<Longrightarrow> s2 \<in> SSuffixes s3" |
|
461 unfolding SSuffixes_def Suffixes_def SPrefixes_def Prefixes_def sprefix_def prefix_def image_def |
|
462 apply(auto) |
|
463 by (metis append_self_conv rev.simps(1) rev_rev_ident) |
467 |
464 |
468 lemma Prefixes_Cons: |
465 lemma Prefixes_Cons: |
469 "Prefixes (c # s) = {[]} \<union> {c # sp | sp. sp \<in> Prefixes s}" |
466 "Prefixes (c # s) = {[]} \<union> {c # sp | sp. sp \<in> Prefixes s}" |
470 unfolding Prefixes_def prefix_def |
467 unfolding Prefixes_def prefix_def |
471 apply(auto simp add: append_eq_Cons_conv) |
468 apply(auto simp add: append_eq_Cons_conv) |
499 |
496 |
500 |
497 |
501 definition Values :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
498 definition Values :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
502 "Values r s \<equiv> {v. \<turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
499 "Values r s \<equiv> {v. \<turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
503 |
500 |
|
501 definition NValues :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
502 "NValues r s \<equiv> {v. \<Turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
|
503 |
|
504 lemma NValues_STAR_Nil: |
|
505 "NValues (STAR r) [] = {Star []}" |
|
506 apply(auto simp add: NValues_def prefix_def) |
|
507 apply(erule NPrf.cases) |
|
508 apply(auto) |
|
509 by (metis NPrf.intros(6)) |
|
510 |
|
511 |
504 definition rest :: "val \<Rightarrow> string \<Rightarrow> string" where |
512 definition rest :: "val \<Rightarrow> string \<Rightarrow> string" where |
505 "rest v s \<equiv> drop (length (flat v)) s" |
513 "rest v s \<equiv> drop (length (flat v)) s" |
|
514 |
|
515 lemma rest_Nil: |
|
516 "rest v [] = []" |
|
517 apply(simp add: rest_def) |
|
518 done |
506 |
519 |
507 lemma rest_Suffixes: |
520 lemma rest_Suffixes: |
508 "rest v s \<in> Suffixes s" |
521 "rest v s \<in> Suffixes s" |
509 unfolding rest_def |
522 unfolding rest_def |
510 by (metis Suffixes_in append_take_drop_id) |
523 by (metis Suffixes_in append_take_drop_id) |
|
524 |
|
525 lemma rest_SSuffixes: |
|
526 assumes "flat v \<noteq> []" "s \<noteq> []" |
|
527 shows "rest v s \<in> SSuffixes s" |
|
528 using assms |
|
529 unfolding rest_def |
|
530 thm SSuffixes_in |
|
531 apply(rule_tac SSuffixes_in) |
|
532 apply(rule_tac x="take (length (flat v)) s" in exI) |
|
533 apply(simp add: sprefix_def) |
|
534 done |
511 |
535 |
512 |
536 |
513 lemma Values_recs: |
537 lemma Values_recs: |
514 "Values (NULL) s = {}" |
538 "Values (NULL) s = {}" |
515 "Values (EMPTY) s = {Void}" |
539 "Values (EMPTY) s = {Void}" |
516 "Values (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
540 "Values (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
517 "Values (ALT r1 r2) s = {Left v | v. v \<in> Values r1 s} \<union> {Right v | v. v \<in> Values r2 s}" |
541 "Values (ALT r1 r2) s = {Left v | v. v \<in> Values r1 s} \<union> {Right v | v. v \<in> Values r2 s}" |
518 "Values (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" |
542 "Values (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" |
|
543 "Values (STAR r) s = {Star []} \<union> {Star (v # vs) | v vs. v \<in> Values r s \<and> |
|
544 Star vs \<in> Values (STAR r) (rest v s)}" |
519 unfolding Values_def |
545 unfolding Values_def |
520 apply(auto) |
546 apply(auto) |
521 (*NULL*) |
547 (*NULL*) |
522 apply(erule Prf.cases) |
548 apply(erule Prf.cases) |
523 apply(simp_all)[7] |
549 apply(simp_all)[7] |
541 apply(erule Prf.cases) |
567 apply(erule Prf.cases) |
542 apply(simp_all)[7] |
568 apply(simp_all)[7] |
543 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
569 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
544 apply (metis Prf.intros(1)) |
570 apply (metis Prf.intros(1)) |
545 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
571 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
546 done |
572 (*STAR*) |
547 |
573 apply(erule Prf.cases) |
548 (* This lemma needs to be adapted to Star |
574 apply(simp_all)[7] |
549 lemma Values_finite: |
575 apply(rule conjI) |
550 "finite (Values r s)" |
576 apply(simp add: prefix_def) |
551 apply(induct r arbitrary: s) |
577 apply(auto)[1] |
552 apply(simp_all add: Values_recs) |
578 apply(simp add: prefix_def) |
553 thm finite_surj |
579 apply(auto)[1] |
|
580 apply (metis append_eq_conv_conj rest_def) |
|
581 apply (metis Prf.intros(6)) |
|
582 apply (metis append_Nil prefix_def) |
|
583 apply (metis Prf.intros(7)) |
|
584 by (metis append_eq_conv_conj prefix_append prefix_def rest_def) |
|
585 |
|
586 lemma NValues_recs: |
|
587 "NValues (NULL) s = {}" |
|
588 "NValues (EMPTY) s = {Void}" |
|
589 "NValues (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
|
590 "NValues (ALT r1 r2) s = {Left v | v. v \<in> NValues r1 s} \<union> {Right v | v. v \<in> NValues r2 s}" |
|
591 "NValues (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> NValues r1 s \<and> v2 \<in> NValues r2 (rest v1 s)}" |
|
592 "NValues (STAR r) s = {Star []} \<union> {Star (v # vs) | v vs. v \<in> NValues r s \<and> flat v \<noteq> [] \<and> |
|
593 Star vs \<in> NValues (STAR r) (rest v s)}" |
|
594 unfolding NValues_def |
|
595 apply(auto) |
|
596 (*NULL*) |
|
597 apply(erule NPrf.cases) |
|
598 apply(simp_all)[7] |
|
599 (*EMPTY*) |
|
600 apply(erule NPrf.cases) |
|
601 apply(simp_all)[7] |
|
602 apply(rule NPrf.intros) |
|
603 apply (metis append_Nil prefix_def) |
|
604 (*CHAR*) |
|
605 apply(erule NPrf.cases) |
|
606 apply(simp_all)[7] |
|
607 apply(rule NPrf.intros) |
|
608 apply(erule NPrf.cases) |
|
609 apply(simp_all)[7] |
|
610 (*ALT*) |
|
611 apply(erule NPrf.cases) |
|
612 apply(simp_all)[7] |
|
613 apply (metis NPrf.intros(2)) |
|
614 apply (metis NPrf.intros(3)) |
|
615 (*SEQ*) |
|
616 apply(erule NPrf.cases) |
|
617 apply(simp_all)[7] |
|
618 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
619 apply (metis NPrf.intros(1)) |
|
620 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
621 (*STAR*) |
|
622 apply(erule NPrf.cases) |
|
623 apply(simp_all) |
|
624 apply(rule conjI) |
|
625 apply(simp add: prefix_def) |
|
626 apply(auto)[1] |
|
627 apply(simp add: prefix_def) |
|
628 apply(auto)[1] |
|
629 apply (metis append_eq_conv_conj rest_def) |
|
630 apply (metis NPrf.intros(6)) |
|
631 apply (metis append_Nil prefix_def) |
|
632 apply (metis NPrf.intros(7)) |
|
633 by (metis append_eq_conv_conj prefix_append prefix_def rest_def) |
|
634 |
|
635 |
|
636 lemma finite_image_set2: |
|
637 "finite {x. P x} \<Longrightarrow> finite {y. Q y} \<Longrightarrow> finite {(x, y) | x y. P x \<and> Q y}" |
|
638 by (rule finite_subset [where B = "\<Union>x \<in> {x. P x}. \<Union>y \<in> {y. Q y}. {(x, y)}"]) auto |
|
639 |
|
640 |
|
641 lemma NValues_finite_aux: |
|
642 "(\<lambda>(r, s). finite (NValues r s)) (r, s)" |
|
643 apply(rule wf_induct[of "measure size <*lex*> measure length",where P="\<lambda>(r, s). finite (NValues r s)"]) |
|
644 apply (metis wf_lex_prod wf_measure) |
|
645 apply(auto) |
|
646 apply(case_tac a) |
|
647 apply(simp_all) |
|
648 apply(simp add: NValues_recs) |
|
649 apply(simp add: NValues_recs) |
|
650 apply(simp add: NValues_recs) |
|
651 apply(simp add: NValues_recs) |
554 apply(rule_tac f="\<lambda>(x, y). Seq x y" and |
652 apply(rule_tac f="\<lambda>(x, y). Seq x y" and |
555 A="{(v1, v2) | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" in finite_surj) |
653 A="{(v1, v2) | v1 v2. v1 \<in> NValues rexp1 b \<and> v2 \<in> NValues rexp2 (rest v1 b)}" in finite_surj) |
556 prefer 2 |
654 prefer 2 |
557 apply(auto)[1] |
655 apply(auto)[1] |
558 apply(rule_tac B="\<Union>sp \<in> Suffixes s. {(v1, v2). v1 \<in> Values r1 s \<and> v2 \<in> Values r2 sp}" in finite_subset) |
656 apply(rule_tac B="\<Union>sp \<in> Suffixes b. {(v1, v2). v1 \<in> NValues rexp1 b \<and> v2 \<in> NValues rexp2 sp}" in finite_subset) |
559 apply(auto)[1] |
657 apply(auto)[1] |
560 apply (metis rest_Suffixes) |
658 apply (metis rest_Suffixes) |
561 apply(rule finite_UN_I) |
659 apply(rule finite_UN_I) |
562 apply(rule finite_Suffixes) |
660 apply(rule finite_Suffixes) |
563 apply(simp) |
661 apply(simp) |
564 done |
662 apply(simp add: NValues_recs) |
565 *) |
663 apply(clarify) |
|
664 apply(subst NValues_recs) |
|
665 apply(simp) |
|
666 apply(rule_tac f="\<lambda>(v, vs). Star (v # vs)" and |
|
667 A="{(v, vs) | v vs. v \<in> NValues rexp b \<and> (flat v \<noteq> [] \<and> Star vs \<in> NValues (STAR rexp) (rest v b))}" in finite_surj) |
|
668 prefer 2 |
|
669 apply(auto)[1] |
|
670 apply(auto) |
|
671 apply(case_tac b) |
|
672 apply(simp) |
|
673 defer |
|
674 apply(rule_tac B="\<Union>sp \<in> SSuffixes b. {(v, vs) | v vs. v \<in> NValues rexp b \<and> Star vs \<in> NValues (STAR rexp) sp}" in finite_subset) |
|
675 apply(auto)[1] |
|
676 apply(rule_tac x="rest aa (a # list)" in bexI) |
|
677 apply(simp) |
|
678 apply (rule rest_SSuffixes) |
|
679 apply(simp) |
|
680 apply(simp) |
|
681 apply(rule finite_UN_I) |
|
682 defer |
|
683 apply(frule_tac x="rexp" in spec) |
|
684 apply(drule_tac x="b" in spec) |
|
685 apply(drule conjunct1) |
|
686 apply(drule mp) |
|
687 apply(simp) |
|
688 apply(drule_tac x="STAR rexp" in spec) |
|
689 apply(drule_tac x="sp" in spec) |
|
690 apply(drule conjunct2) |
|
691 apply(drule mp) |
|
692 apply(simp) |
|
693 apply(simp add: prefix_def SPrefixes_def SSuffixes_def) |
|
694 apply(auto)[1] |
|
695 apply (metis length_Cons length_rev length_sprefix rev.simps(2)) |
|
696 apply(simp) |
|
697 apply(rule finite_cartesian_product) |
|
698 apply(simp) |
|
699 apply(rule_tac f="Star" in finite_imageD) |
|
700 prefer 2 |
|
701 apply(auto simp add: inj_on_def)[1] |
|
702 apply (metis finite_subset image_Collect_subsetI) |
|
703 apply(simp add: rest_Nil) |
|
704 apply(simp add: NValues_STAR_Nil) |
|
705 apply(rule_tac B="{(v, vs). v \<in> NValues rexp [] \<and> vs = []}" in finite_subset) |
|
706 apply(auto)[1] |
|
707 apply(simp) |
|
708 apply(rule_tac B="Suffixes b" in finite_subset) |
|
709 apply(auto simp add: SSuffixes_def Suffixes_def Prefixes_def SPrefixes_def sprefix_def)[1] |
|
710 by (metis finite_Suffixes) |
|
711 |
|
712 lemma NValues_finite: |
|
713 "finite (NValues r s)" |
|
714 using NValues_finite_aux |
|
715 apply(simp) |
|
716 done |
566 |
717 |
567 section {* Sulzmann functions *} |
718 section {* Sulzmann functions *} |
568 |
719 |
569 fun |
720 fun |
570 mkeps :: "rexp \<Rightarrow> val" |
721 mkeps :: "rexp \<Rightarrow> val" |