|
1 |
|
2 theory ReTest |
|
3 imports "Main" |
|
4 begin |
|
5 |
|
6 |
|
7 section {* Sequential Composition of Sets *} |
|
8 |
|
9 definition |
|
10 Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
11 where |
|
12 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
13 |
|
14 fun spow where |
|
15 "spow s 0 = []" |
|
16 | "spow s (Suc n) = s @ spow s n" |
|
17 |
|
18 text {* Two Simple Properties about Sequential Composition *} |
|
19 |
|
20 lemma seq_empty [simp]: |
|
21 shows "A ;; {[]} = A" |
|
22 and "{[]} ;; A = A" |
|
23 by (simp_all add: Sequ_def) |
|
24 |
|
25 lemma seq_null [simp]: |
|
26 shows "A ;; {} = {}" |
|
27 and "{} ;; A = {}" |
|
28 by (simp_all add: Sequ_def) |
|
29 |
|
30 definition |
|
31 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
|
32 where |
|
33 "Der c A \<equiv> {s. [c] @ s \<in> A}" |
|
34 |
|
35 definition |
|
36 Ders :: "string \<Rightarrow> string set \<Rightarrow> string set" |
|
37 where |
|
38 "Ders s A \<equiv> {s' | s'. s @ s' \<in> A}" |
|
39 |
|
40 lemma Der_null [simp]: |
|
41 shows "Der c {} = {}" |
|
42 unfolding Der_def |
|
43 by auto |
|
44 |
|
45 lemma Der_empty [simp]: |
|
46 shows "Der c {[]} = {}" |
|
47 unfolding Der_def |
|
48 by auto |
|
49 |
|
50 lemma Der_char [simp]: |
|
51 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
52 unfolding Der_def |
|
53 by auto |
|
54 |
|
55 lemma Der_union [simp]: |
|
56 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
57 unfolding Der_def |
|
58 by auto |
|
59 |
|
60 lemma Der_seq [simp]: |
|
61 shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})" |
|
62 unfolding Der_def Sequ_def |
|
63 apply (auto simp add: Cons_eq_append_conv) |
|
64 done |
|
65 |
|
66 lemma seq_image: |
|
67 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
68 shows "f ` (A ;; B) = (f ` A) ;; (f ` B)" |
|
69 apply(auto simp add: Sequ_def image_def) |
|
70 apply(rule_tac x="f s1" in exI) |
|
71 apply(rule_tac x="f s2" in exI) |
|
72 using assms |
|
73 apply(auto) |
|
74 apply(rule_tac x="xa @ xb" in exI) |
|
75 using assms |
|
76 apply(auto) |
|
77 done |
|
78 |
|
79 section {* Kleene Star for Sets *} |
|
80 |
|
81 inductive_set |
|
82 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
83 for A :: "string set" |
|
84 where |
|
85 start[intro]: "[] \<in> A\<star>" |
|
86 | step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>" |
|
87 |
|
88 lemma star_cases: |
|
89 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
90 unfolding Sequ_def |
|
91 by (auto) (metis Star.simps) |
|
92 |
|
93 |
|
94 fun |
|
95 pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [100,100] 100) |
|
96 where |
|
97 "A \<up> 0 = {[]}" |
|
98 | "A \<up> (Suc n) = A ;; (A \<up> n)" |
|
99 |
|
100 lemma star1: |
|
101 shows "s \<in> A\<star> \<Longrightarrow> \<exists>n. s \<in> A \<up> n" |
|
102 apply(induct rule: Star.induct) |
|
103 apply (metis pow.simps(1) insertI1) |
|
104 apply(auto) |
|
105 apply(rule_tac x="Suc n" in exI) |
|
106 apply(auto simp add: Sequ_def) |
|
107 done |
|
108 |
|
109 lemma star2: |
|
110 shows "s \<in> A \<up> n \<Longrightarrow> s \<in> A\<star>" |
|
111 apply(induct n arbitrary: s) |
|
112 apply (metis pow.simps(1) Star.simps empty_iff insertE) |
|
113 apply(auto simp add: Sequ_def) |
|
114 done |
|
115 |
|
116 lemma star3: |
|
117 shows "A\<star> = (\<Union>i. A \<up> i)" |
|
118 using star1 star2 |
|
119 apply(auto) |
|
120 done |
|
121 |
|
122 lemma star4: |
|
123 shows "s \<in> A \<up> n \<Longrightarrow> \<exists>ss. s = concat ss \<and> (\<forall>s' \<in> set ss. s' \<in> A)" |
|
124 apply(induct n arbitrary: s) |
|
125 apply(auto simp add: Sequ_def) |
|
126 apply(rule_tac x="[]" in exI) |
|
127 apply(auto) |
|
128 apply(drule_tac x="s2" in meta_spec) |
|
129 apply(auto) |
|
130 by (metis concat.simps(2) insertE set_simps(2)) |
|
131 |
|
132 lemma star5: |
|
133 assumes "f [] = []" |
|
134 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
135 shows "(f ` A) \<up> n = f ` (A \<up> n)" |
|
136 apply(induct n) |
|
137 apply(simp add: assms) |
|
138 apply(simp) |
|
139 apply(subst seq_image[OF assms(2)]) |
|
140 apply(simp) |
|
141 done |
|
142 |
|
143 lemma star6: |
|
144 assumes "f [] = []" |
|
145 assumes "\<forall>s1 s2. f (s1 @ s2) = (f s1) @ (f s2)" |
|
146 shows "(f ` A)\<star> = f ` (A\<star>)" |
|
147 apply(simp add: star3) |
|
148 apply(simp add: image_UN) |
|
149 apply(subst star5[OF assms]) |
|
150 apply(simp) |
|
151 done |
|
152 |
|
153 lemma star_decomp: |
|
154 assumes a: "c # x \<in> A\<star>" |
|
155 shows "\<exists>a b. x = a @ b \<and> c # a \<in> A \<and> b \<in> A\<star>" |
|
156 using a |
|
157 by (induct x\<equiv>"c # x" rule: Star.induct) |
|
158 (auto simp add: append_eq_Cons_conv) |
|
159 |
|
160 lemma Der_star [simp]: |
|
161 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
|
162 proof - |
|
163 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
|
164 |
|
165 by (simp only: star_cases[symmetric]) |
|
166 also have "... = Der c (A ;; A\<star>)" |
|
167 by (simp only: Der_union Der_empty) (simp) |
|
168 also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})" |
|
169 by simp |
|
170 also have "... = (Der c A) ;; A\<star>" |
|
171 unfolding Sequ_def Der_def |
|
172 by (auto dest: star_decomp) |
|
173 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
|
174 qed |
|
175 |
|
176 |
|
177 |
|
178 section {* Regular Expressions *} |
|
179 |
|
180 datatype rexp = |
|
181 NULL |
|
182 | EMPTY |
|
183 | CHAR char |
|
184 | SEQ rexp rexp |
|
185 | ALT rexp rexp |
|
186 | STAR rexp |
|
187 |
|
188 section {* Semantics of Regular Expressions *} |
|
189 |
|
190 fun |
|
191 L :: "rexp \<Rightarrow> string set" |
|
192 where |
|
193 "L (NULL) = {}" |
|
194 | "L (EMPTY) = {[]}" |
|
195 | "L (CHAR c) = {[c]}" |
|
196 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
197 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
198 | "L (STAR r) = (L r)\<star>" |
|
199 |
|
200 fun |
|
201 nullable :: "rexp \<Rightarrow> bool" |
|
202 where |
|
203 "nullable (NULL) = False" |
|
204 | "nullable (EMPTY) = True" |
|
205 | "nullable (CHAR c) = False" |
|
206 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
207 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
208 | "nullable (STAR r) = True" |
|
209 |
|
210 lemma nullable_correctness: |
|
211 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
212 apply (induct r) |
|
213 apply(auto simp add: Sequ_def) |
|
214 done |
|
215 |
|
216 |
|
217 |
|
218 section {* Values *} |
|
219 |
|
220 datatype val = |
|
221 Void |
|
222 | Char char |
|
223 | Seq val val |
|
224 | Right val |
|
225 | Left val |
|
226 | Stars "val list" |
|
227 |
|
228 section {* The string behind a value *} |
|
229 |
|
230 fun |
|
231 flat :: "val \<Rightarrow> string" |
|
232 where |
|
233 "flat (Void) = []" |
|
234 | "flat (Char c) = [c]" |
|
235 | "flat (Left v) = flat v" |
|
236 | "flat (Right v) = flat v" |
|
237 | "flat (Seq v1 v2) = (flat v1) @ (flat v2)" |
|
238 | "flat (Stars []) = []" |
|
239 | "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))" |
|
240 |
|
241 lemma [simp]: |
|
242 "flat (Stars vs) = concat (map flat vs)" |
|
243 apply(induct vs) |
|
244 apply(auto) |
|
245 done |
|
246 |
|
247 section {* Relation between values and regular expressions *} |
|
248 |
|
249 inductive |
|
250 NPrf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100) |
|
251 where |
|
252 "\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2" |
|
253 | "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2" |
|
254 | "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2" |
|
255 | "\<Turnstile> Void : EMPTY" |
|
256 | "\<Turnstile> Char c : CHAR c" |
|
257 | "\<Turnstile> Stars [] : STAR r" |
|
258 | "\<lbrakk>\<Turnstile> v : r; \<Turnstile> Stars vs : STAR r; flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (v # vs) : STAR r" |
|
259 |
|
260 inductive |
|
261 Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<turnstile> _ : _" [100, 100] 100) |
|
262 where |
|
263 "\<lbrakk>\<turnstile> v1 : r1; \<turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<turnstile> Seq v1 v2 : SEQ r1 r2" |
|
264 | "\<turnstile> v1 : r1 \<Longrightarrow> \<turnstile> Left v1 : ALT r1 r2" |
|
265 | "\<turnstile> v2 : r2 \<Longrightarrow> \<turnstile> Right v2 : ALT r1 r2" |
|
266 | "\<turnstile> Void : EMPTY" |
|
267 | "\<turnstile> Char c : CHAR c" |
|
268 | "\<turnstile> Stars [] : STAR r" |
|
269 | "\<lbrakk>\<turnstile> v : r; \<turnstile> Stars vs : STAR r\<rbrakk> \<Longrightarrow> \<turnstile> Stars (v # vs) : STAR r" |
|
270 |
|
271 lemma NPrf_imp_Prf: |
|
272 assumes "\<Turnstile> v : r" |
|
273 shows "\<turnstile> v : r" |
|
274 using assms |
|
275 apply(induct) |
|
276 apply(auto intro: Prf.intros) |
|
277 done |
|
278 |
|
279 lemma NPrf_Prf_val: |
|
280 shows "\<turnstile> v : r \<Longrightarrow> \<exists>v'. flat v' = flat v \<and> \<Turnstile> v' : r" |
|
281 and "\<turnstile> Stars vs : r \<Longrightarrow> \<exists>vs'. flat (Stars vs') = flat (Stars vs) \<and> \<Turnstile> Stars vs' : r" |
|
282 using assms |
|
283 apply(induct v and vs arbitrary: r and r rule: val.inducts) |
|
284 apply(auto)[1] |
|
285 apply(erule Prf.cases) |
|
286 apply(simp_all)[7] |
|
287 apply(rule_tac x="Void" in exI) |
|
288 apply(simp) |
|
289 apply(rule NPrf.intros) |
|
290 apply(erule Prf.cases) |
|
291 apply(simp_all)[7] |
|
292 apply(rule_tac x="Char c" in exI) |
|
293 apply(simp) |
|
294 apply(rule NPrf.intros) |
|
295 apply(erule Prf.cases) |
|
296 apply(simp_all)[7] |
|
297 apply(auto)[1] |
|
298 apply(drule_tac x="r1" in meta_spec) |
|
299 apply(drule_tac x="r2" in meta_spec) |
|
300 apply(simp) |
|
301 apply(auto)[1] |
|
302 apply(rule_tac x="Seq v' v'a" in exI) |
|
303 apply(simp) |
|
304 apply (metis NPrf.intros(1)) |
|
305 apply(erule Prf.cases) |
|
306 apply(simp_all)[7] |
|
307 apply(clarify) |
|
308 apply(drule_tac x="r2" in meta_spec) |
|
309 apply(simp) |
|
310 apply(auto)[1] |
|
311 apply(rule_tac x="Right v'" in exI) |
|
312 apply(simp) |
|
313 apply (metis NPrf.intros) |
|
314 apply(erule Prf.cases) |
|
315 apply(simp_all)[7] |
|
316 apply(clarify) |
|
317 apply(drule_tac x="r1" in meta_spec) |
|
318 apply(simp) |
|
319 apply(auto)[1] |
|
320 apply(rule_tac x="Left v'" in exI) |
|
321 apply(simp) |
|
322 apply (metis NPrf.intros) |
|
323 apply(drule_tac x="r" in meta_spec) |
|
324 apply(simp) |
|
325 apply(auto)[1] |
|
326 apply(rule_tac x="Stars vs'" in exI) |
|
327 apply(simp) |
|
328 apply(rule_tac x="[]" in exI) |
|
329 apply(simp) |
|
330 apply(erule Prf.cases) |
|
331 apply(simp_all)[7] |
|
332 apply (metis NPrf.intros(6)) |
|
333 apply(erule Prf.cases) |
|
334 apply(simp_all)[7] |
|
335 apply(auto)[1] |
|
336 apply(drule_tac x="ra" in meta_spec) |
|
337 apply(simp) |
|
338 apply(drule_tac x="STAR ra" in meta_spec) |
|
339 apply(simp) |
|
340 apply(auto) |
|
341 apply(case_tac "flat v = []") |
|
342 apply(rule_tac x="vs'" in exI) |
|
343 apply(simp) |
|
344 apply(rule_tac x="v' # vs'" in exI) |
|
345 apply(simp) |
|
346 apply(rule NPrf.intros) |
|
347 apply(auto) |
|
348 done |
|
349 |
|
350 lemma NPrf_Prf: |
|
351 shows "{flat v | v. \<turnstile> v : r} = {flat v | v. \<Turnstile> v : r}" |
|
352 apply(auto) |
|
353 apply (metis NPrf_Prf_val(1)) |
|
354 by (metis NPrf_imp_Prf) |
|
355 |
|
356 |
|
357 lemma not_nullable_flat: |
|
358 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
359 shows "flat v \<noteq> []" |
|
360 using assms |
|
361 apply(induct) |
|
362 apply(auto) |
|
363 done |
|
364 |
|
365 lemma Prf_flat_L: |
|
366 assumes "\<turnstile> v : r" shows "flat v \<in> L r" |
|
367 using assms |
|
368 apply(induct v r rule: Prf.induct) |
|
369 apply(auto simp add: Sequ_def) |
|
370 done |
|
371 |
|
372 lemma NPrf_flat_L: |
|
373 assumes "\<Turnstile> v : r" shows "flat v \<in> L r" |
|
374 using assms |
|
375 by (metis NPrf_imp_Prf Prf_flat_L) |
|
376 |
|
377 lemma Prf_Stars: |
|
378 assumes "\<forall>v \<in> set vs. \<turnstile> v : r" |
|
379 shows "\<turnstile> Stars vs : STAR r" |
|
380 using assms |
|
381 apply(induct vs) |
|
382 apply (metis Prf.intros(6)) |
|
383 by (metis Prf.intros(7) insert_iff set_simps(2)) |
|
384 |
|
385 lemma Star_string: |
|
386 assumes "s \<in> A\<star>" |
|
387 shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A)" |
|
388 using assms |
|
389 apply(induct rule: Star.induct) |
|
390 apply(auto) |
|
391 apply(rule_tac x="[]" in exI) |
|
392 apply(simp) |
|
393 apply(rule_tac x="s1#ss" in exI) |
|
394 apply(simp) |
|
395 done |
|
396 |
|
397 lemma Star_val: |
|
398 assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<turnstile> v : r" |
|
399 shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<turnstile> v : r)" |
|
400 using assms |
|
401 apply(induct ss) |
|
402 apply(auto) |
|
403 apply (metis empty_iff list.set(1)) |
|
404 by (metis concat.simps(2) list.simps(9) set_ConsD) |
|
405 |
|
406 lemma Star_valN: |
|
407 assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r" |
|
408 shows "\<exists>vs. concat (map flat vs) = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r)" |
|
409 using assms |
|
410 apply(induct ss) |
|
411 apply(auto) |
|
412 apply (metis empty_iff list.set(1)) |
|
413 by (metis concat.simps(2) list.simps(9) set_ConsD) |
|
414 |
|
415 lemma L_flat_Prf: |
|
416 "L(r) = {flat v | v. \<turnstile> v : r}" |
|
417 apply(induct r) |
|
418 apply(auto dest: Prf_flat_L simp add: Sequ_def) |
|
419 apply (metis Prf.intros(4) flat.simps(1)) |
|
420 apply (metis Prf.intros(5) flat.simps(2)) |
|
421 apply (metis Prf.intros(1) flat.simps(5)) |
|
422 apply (metis Prf.intros(2) flat.simps(3)) |
|
423 apply (metis Prf.intros(3) flat.simps(4)) |
|
424 apply(erule Prf.cases) |
|
425 apply(auto) |
|
426 apply(subgoal_tac "\<exists>vs::val list. concat (map flat vs) = x \<and> (\<forall>v \<in> set vs. \<turnstile> v : r)") |
|
427 apply(auto)[1] |
|
428 apply(rule_tac x="Stars vs" in exI) |
|
429 apply(simp) |
|
430 apply(rule Prf_Stars) |
|
431 apply(simp) |
|
432 apply(drule Star_string) |
|
433 apply(auto) |
|
434 apply(rule Star_val) |
|
435 apply(simp) |
|
436 done |
|
437 |
|
438 lemma L_flat_NPrf: |
|
439 "L(r) = {flat v | v. \<Turnstile> v : r}" |
|
440 by (metis L_flat_Prf NPrf_Prf) |
|
441 |
|
442 text {* nicer proofs by Fahad *} |
|
443 |
|
444 lemma Prf_Star_flat_L: |
|
445 assumes "\<turnstile> v : STAR r" shows "flat v \<in> (L r)\<star>" |
|
446 using assms |
|
447 apply(induct v r\<equiv>"STAR r" arbitrary: r rule: Prf.induct) |
|
448 apply(auto) |
|
449 apply(simp add: star3) |
|
450 apply(auto) |
|
451 apply(rule_tac x="Suc x" in exI) |
|
452 apply(auto simp add: Sequ_def) |
|
453 apply(rule_tac x="flat v" in exI) |
|
454 apply(rule_tac x="flat (Stars vs)" in exI) |
|
455 apply(auto) |
|
456 by (metis Prf_flat_L) |
|
457 |
|
458 lemma L_flat_Prf2: |
|
459 "L(r) = {flat v | v. \<turnstile> v : r}" |
|
460 apply(induct r) |
|
461 apply(auto) |
|
462 using L.simps(1) Prf_flat_L |
|
463 apply(blast) |
|
464 using Prf.intros(4) |
|
465 apply(force) |
|
466 using L.simps(2) Prf_flat_L |
|
467 apply(blast) |
|
468 using Prf.intros(5) apply force |
|
469 using L.simps(3) Prf_flat_L apply blast |
|
470 using L_flat_Prf apply auto[1] |
|
471 apply (smt L.simps(4) Sequ_def mem_Collect_eq) |
|
472 using Prf_flat_L |
|
473 apply(fastforce) |
|
474 apply(metis Prf.intros(2) flat.simps(3)) |
|
475 apply(metis Prf.intros(3) flat.simps(4)) |
|
476 apply(erule Prf.cases) |
|
477 apply(simp) |
|
478 apply(simp) |
|
479 apply(auto) |
|
480 using L_flat_Prf apply auto[1] |
|
481 apply (smt Collect_cong L.simps(6) mem_Collect_eq) |
|
482 using Prf_Star_flat_L |
|
483 apply(fastforce) |
|
484 done |
|
485 |
|
486 |
|
487 section {* Values Sets *} |
|
488 |
|
489 definition prefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubseteq> _" [100, 100] 100) |
|
490 where |
|
491 "s1 \<sqsubseteq> s2 \<equiv> \<exists>s3. s1 @ s3 = s2" |
|
492 |
|
493 definition sprefix :: "string \<Rightarrow> string \<Rightarrow> bool" ("_ \<sqsubset> _" [100, 100] 100) |
|
494 where |
|
495 "s1 \<sqsubset> s2 \<equiv> (s1 \<sqsubseteq> s2 \<and> s1 \<noteq> s2)" |
|
496 |
|
497 lemma length_sprefix: |
|
498 "s1 \<sqsubset> s2 \<Longrightarrow> length s1 < length s2" |
|
499 unfolding sprefix_def prefix_def |
|
500 by (auto) |
|
501 |
|
502 definition Prefixes :: "string \<Rightarrow> string set" where |
|
503 "Prefixes s \<equiv> {sp. sp \<sqsubseteq> s}" |
|
504 |
|
505 definition Suffixes :: "string \<Rightarrow> string set" where |
|
506 "Suffixes s \<equiv> rev ` (Prefixes (rev s))" |
|
507 |
|
508 definition SPrefixes :: "string \<Rightarrow> string set" where |
|
509 "SPrefixes s \<equiv> {sp. sp \<sqsubset> s}" |
|
510 |
|
511 definition SSuffixes :: "string \<Rightarrow> string set" where |
|
512 "SSuffixes s \<equiv> rev ` (SPrefixes (rev s))" |
|
513 |
|
514 lemma Suffixes_in: |
|
515 "\<exists>s1. s1 @ s2 = s3 \<Longrightarrow> s2 \<in> Suffixes s3" |
|
516 unfolding Suffixes_def Prefixes_def prefix_def image_def |
|
517 apply(auto) |
|
518 by (metis rev_rev_ident) |
|
519 |
|
520 lemma SSuffixes_in: |
|
521 "\<exists>s1. s1 \<noteq> [] \<and> s1 @ s2 = s3 \<Longrightarrow> s2 \<in> SSuffixes s3" |
|
522 unfolding SSuffixes_def Suffixes_def SPrefixes_def Prefixes_def sprefix_def prefix_def image_def |
|
523 apply(auto) |
|
524 by (metis append_self_conv rev.simps(1) rev_rev_ident) |
|
525 |
|
526 lemma Prefixes_Cons: |
|
527 "Prefixes (c # s) = {[]} \<union> {c # sp | sp. sp \<in> Prefixes s}" |
|
528 unfolding Prefixes_def prefix_def |
|
529 apply(auto simp add: append_eq_Cons_conv) |
|
530 done |
|
531 |
|
532 lemma finite_Prefixes: |
|
533 "finite (Prefixes s)" |
|
534 apply(induct s) |
|
535 apply(auto simp add: Prefixes_def prefix_def)[1] |
|
536 apply(simp add: Prefixes_Cons) |
|
537 done |
|
538 |
|
539 lemma finite_Suffixes: |
|
540 "finite (Suffixes s)" |
|
541 unfolding Suffixes_def |
|
542 apply(rule finite_imageI) |
|
543 apply(rule finite_Prefixes) |
|
544 done |
|
545 |
|
546 lemma prefix_Cons: |
|
547 "((c # s1) \<sqsubseteq> (c # s2)) = (s1 \<sqsubseteq> s2)" |
|
548 apply(auto simp add: prefix_def) |
|
549 done |
|
550 |
|
551 lemma prefix_append: |
|
552 "((s @ s1) \<sqsubseteq> (s @ s2)) = (s1 \<sqsubseteq> s2)" |
|
553 apply(induct s) |
|
554 apply(simp) |
|
555 apply(simp add: prefix_Cons) |
|
556 done |
|
557 |
|
558 |
|
559 definition Values :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
560 "Values r s \<equiv> {v. \<turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
|
561 |
|
562 definition SValues :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
563 "SValues r s \<equiv> {v. \<turnstile> v : r \<and> flat v = s}" |
|
564 |
|
565 |
|
566 definition NValues :: "rexp \<Rightarrow> string \<Rightarrow> val set" where |
|
567 "NValues r s \<equiv> {v. \<Turnstile> v : r \<and> flat v \<sqsubseteq> s}" |
|
568 |
|
569 lemma NValues_STAR_Nil: |
|
570 "NValues (STAR r) [] = {Stars []}" |
|
571 apply(auto simp add: NValues_def prefix_def) |
|
572 apply(erule NPrf.cases) |
|
573 apply(auto) |
|
574 by (metis NPrf.intros(6)) |
|
575 |
|
576 |
|
577 definition rest :: "val \<Rightarrow> string \<Rightarrow> string" where |
|
578 "rest v s \<equiv> drop (length (flat v)) s" |
|
579 |
|
580 lemma rest_Nil: |
|
581 "rest v [] = []" |
|
582 apply(simp add: rest_def) |
|
583 done |
|
584 |
|
585 lemma rest_Suffixes: |
|
586 "rest v s \<in> Suffixes s" |
|
587 unfolding rest_def |
|
588 by (metis Suffixes_in append_take_drop_id) |
|
589 |
|
590 lemma rest_SSuffixes: |
|
591 assumes "flat v \<noteq> []" "s \<noteq> []" |
|
592 shows "rest v s \<in> SSuffixes s" |
|
593 using assms |
|
594 unfolding rest_def |
|
595 thm SSuffixes_in |
|
596 apply(rule_tac SSuffixes_in) |
|
597 apply(rule_tac x="take (length (flat v)) s" in exI) |
|
598 apply(simp add: sprefix_def) |
|
599 done |
|
600 |
|
601 |
|
602 lemma Values_recs: |
|
603 "Values (NULL) s = {}" |
|
604 "Values (EMPTY) s = {Void}" |
|
605 "Values (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
|
606 "Values (ALT r1 r2) s = {Left v | v. v \<in> Values r1 s} \<union> {Right v | v. v \<in> Values r2 s}" |
|
607 "Values (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> Values r1 s \<and> v2 \<in> Values r2 (rest v1 s)}" |
|
608 "Values (STAR r) s = |
|
609 {Stars []} \<union> {Stars (v # vs) | v vs. v \<in> Values r s \<and> Stars vs \<in> Values (STAR r) (rest v s)}" |
|
610 unfolding Values_def |
|
611 apply(auto) |
|
612 (*NULL*) |
|
613 apply(erule Prf.cases) |
|
614 apply(simp_all)[7] |
|
615 (*EMPTY*) |
|
616 apply(erule Prf.cases) |
|
617 apply(simp_all)[7] |
|
618 apply(rule Prf.intros) |
|
619 apply (metis append_Nil prefix_def) |
|
620 (*CHAR*) |
|
621 apply(erule Prf.cases) |
|
622 apply(simp_all)[7] |
|
623 apply(rule Prf.intros) |
|
624 apply(erule Prf.cases) |
|
625 apply(simp_all)[7] |
|
626 (*ALT*) |
|
627 apply(erule Prf.cases) |
|
628 apply(simp_all)[7] |
|
629 apply (metis Prf.intros(2)) |
|
630 apply (metis Prf.intros(3)) |
|
631 (*SEQ*) |
|
632 apply(erule Prf.cases) |
|
633 apply(simp_all)[7] |
|
634 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
635 apply (metis Prf.intros(1)) |
|
636 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
637 (*STAR*) |
|
638 apply(erule Prf.cases) |
|
639 apply(simp_all)[7] |
|
640 apply(rule conjI) |
|
641 apply(simp add: prefix_def) |
|
642 apply(auto)[1] |
|
643 apply(simp add: prefix_def) |
|
644 apply(auto)[1] |
|
645 apply (metis append_eq_conv_conj rest_def) |
|
646 apply (metis Prf.intros(6)) |
|
647 apply (metis append_Nil prefix_def) |
|
648 apply (metis Prf.intros(7)) |
|
649 by (metis append_eq_conv_conj prefix_append prefix_def rest_def) |
|
650 |
|
651 lemma NValues_recs: |
|
652 "NValues (NULL) s = {}" |
|
653 "NValues (EMPTY) s = {Void}" |
|
654 "NValues (CHAR c) s = (if [c] \<sqsubseteq> s then {Char c} else {})" |
|
655 "NValues (ALT r1 r2) s = {Left v | v. v \<in> NValues r1 s} \<union> {Right v | v. v \<in> NValues r2 s}" |
|
656 "NValues (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. v1 \<in> NValues r1 s \<and> v2 \<in> NValues r2 (rest v1 s)}" |
|
657 "NValues (STAR r) s = |
|
658 {Stars []} \<union> {Stars (v # vs) | v vs. v \<in> NValues r s \<and> flat v \<noteq> [] \<and> Stars vs \<in> NValues (STAR r) (rest v s)}" |
|
659 unfolding NValues_def |
|
660 apply(auto) |
|
661 (*NULL*) |
|
662 apply(erule NPrf.cases) |
|
663 apply(simp_all)[7] |
|
664 (*EMPTY*) |
|
665 apply(erule NPrf.cases) |
|
666 apply(simp_all)[7] |
|
667 apply(rule NPrf.intros) |
|
668 apply (metis append_Nil prefix_def) |
|
669 (*CHAR*) |
|
670 apply(erule NPrf.cases) |
|
671 apply(simp_all)[7] |
|
672 apply(rule NPrf.intros) |
|
673 apply(erule NPrf.cases) |
|
674 apply(simp_all)[7] |
|
675 (*ALT*) |
|
676 apply(erule NPrf.cases) |
|
677 apply(simp_all)[7] |
|
678 apply (metis NPrf.intros(2)) |
|
679 apply (metis NPrf.intros(3)) |
|
680 (*SEQ*) |
|
681 apply(erule NPrf.cases) |
|
682 apply(simp_all)[7] |
|
683 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
684 apply (metis NPrf.intros(1)) |
|
685 apply (simp add: append_eq_conv_conj prefix_def rest_def) |
|
686 (*STAR*) |
|
687 apply(erule NPrf.cases) |
|
688 apply(simp_all) |
|
689 apply(rule conjI) |
|
690 apply(simp add: prefix_def) |
|
691 apply(auto)[1] |
|
692 apply(simp add: prefix_def) |
|
693 apply(auto)[1] |
|
694 apply (metis append_eq_conv_conj rest_def) |
|
695 apply (metis NPrf.intros(6)) |
|
696 apply (metis append_Nil prefix_def) |
|
697 apply (metis NPrf.intros(7)) |
|
698 by (metis append_eq_conv_conj prefix_append prefix_def rest_def) |
|
699 |
|
700 lemma SValues_recs: |
|
701 "SValues (NULL) s = {}" |
|
702 "SValues (EMPTY) s = (if s = [] then {Void} else {})" |
|
703 "SValues (CHAR c) s = (if [c] = s then {Char c} else {})" |
|
704 "SValues (ALT r1 r2) s = {Left v | v. v \<in> SValues r1 s} \<union> {Right v | v. v \<in> SValues r2 s}" |
|
705 "SValues (SEQ r1 r2) s = {Seq v1 v2 | v1 v2. \<exists>s1 s2. s = s1 @ s2 \<and> v1 \<in> SValues r1 s1 \<and> v2 \<in> SValues r2 s2}" |
|
706 "SValues (STAR r) s = (if s = [] then {Stars []} else {}) \<union> |
|
707 {Stars (v # vs) | v vs. \<exists>s1 s2. s = s1 @ s2 \<and> v \<in> SValues r s1 \<and> Stars vs \<in> SValues (STAR r) s2}" |
|
708 unfolding SValues_def |
|
709 apply(auto) |
|
710 (*NULL*) |
|
711 apply(erule Prf.cases) |
|
712 apply(simp_all)[7] |
|
713 (*EMPTY*) |
|
714 apply(erule Prf.cases) |
|
715 apply(simp_all)[7] |
|
716 apply(rule Prf.intros) |
|
717 apply(erule Prf.cases) |
|
718 apply(simp_all)[7] |
|
719 (*CHAR*) |
|
720 apply(erule Prf.cases) |
|
721 apply(simp_all)[7] |
|
722 apply (metis Prf.intros(5)) |
|
723 apply(erule Prf.cases) |
|
724 apply(simp_all)[7] |
|
725 (*ALT*) |
|
726 apply(erule Prf.cases) |
|
727 apply(simp_all)[7] |
|
728 apply metis |
|
729 apply(erule Prf.intros) |
|
730 apply(erule Prf.intros) |
|
731 (* SEQ case *) |
|
732 apply(erule Prf.cases) |
|
733 apply(simp_all)[7] |
|
734 apply (metis Prf.intros(1)) |
|
735 (* STAR case *) |
|
736 apply(erule Prf.cases) |
|
737 apply(simp_all)[7] |
|
738 apply(rule Prf.intros) |
|
739 apply (metis Prf.intros(7)) |
|
740 apply(erule Prf.cases) |
|
741 apply(simp_all)[7] |
|
742 apply (metis Prf.intros(7)) |
|
743 by (metis Prf.intros(7)) |
|
744 |
|
745 lemma finite_image_set2: |
|
746 "finite {x. P x} \<Longrightarrow> finite {y. Q y} \<Longrightarrow> finite {(x, y) | x y. P x \<and> Q y}" |
|
747 by (rule finite_subset [where B = "\<Union>x \<in> {x. P x}. \<Union>y \<in> {y. Q y}. {(x, y)}"]) auto |
|
748 |
|
749 |
|
750 lemma NValues_finite_aux: |
|
751 "(\<lambda>(r, s). finite (NValues r s)) (r, s)" |
|
752 apply(rule wf_induct[of "measure size <*lex*> measure length",where P="\<lambda>(r, s). finite (NValues r s)"]) |
|
753 apply (metis wf_lex_prod wf_measure) |
|
754 apply(auto) |
|
755 apply(case_tac a) |
|
756 apply(simp_all) |
|
757 apply(simp add: NValues_recs) |
|
758 apply(simp add: NValues_recs) |
|
759 apply(simp add: NValues_recs) |
|
760 apply(simp add: NValues_recs) |
|
761 apply(rule_tac f="\<lambda>(x, y). Seq x y" and |
|
762 A="{(v1, v2) | v1 v2. v1 \<in> NValues rexp1 b \<and> v2 \<in> NValues rexp2 (rest v1 b)}" in finite_surj) |
|
763 prefer 2 |
|
764 apply(auto)[1] |
|
765 apply(rule_tac B="\<Union>sp \<in> Suffixes b. {(v1, v2). v1 \<in> NValues rexp1 b \<and> v2 \<in> NValues rexp2 sp}" in finite_subset) |
|
766 apply(auto)[1] |
|
767 apply (metis rest_Suffixes) |
|
768 apply(rule finite_UN_I) |
|
769 apply(rule finite_Suffixes) |
|
770 apply(simp) |
|
771 apply(simp add: NValues_recs) |
|
772 apply(clarify) |
|
773 apply(subst NValues_recs) |
|
774 apply(simp) |
|
775 apply(rule_tac f="\<lambda>(v, vs). Stars (v # vs)" and |
|
776 A="{(v, vs) | v vs. v \<in> NValues rexp b \<and> (flat v \<noteq> [] \<and> Stars vs \<in> NValues (STAR rexp) (rest v b))}" in finite_surj) |
|
777 prefer 2 |
|
778 apply(auto)[1] |
|
779 apply(auto) |
|
780 apply(case_tac b) |
|
781 apply(simp) |
|
782 defer |
|
783 apply(rule_tac B="\<Union>sp \<in> SSuffixes b. {(v, vs) | v vs. v \<in> NValues rexp b \<and> Stars vs \<in> NValues (STAR rexp) sp}" in finite_subset) |
|
784 apply(auto)[1] |
|
785 apply(rule_tac x="rest aa (a # list)" in bexI) |
|
786 apply(simp) |
|
787 apply (rule rest_SSuffixes) |
|
788 apply(simp) |
|
789 apply(simp) |
|
790 apply(rule finite_UN_I) |
|
791 defer |
|
792 apply(frule_tac x="rexp" in spec) |
|
793 apply(drule_tac x="b" in spec) |
|
794 apply(drule conjunct1) |
|
795 apply(drule mp) |
|
796 apply(simp) |
|
797 apply(drule_tac x="STAR rexp" in spec) |
|
798 apply(drule_tac x="sp" in spec) |
|
799 apply(drule conjunct2) |
|
800 apply(drule mp) |
|
801 apply(simp) |
|
802 apply(simp add: prefix_def SPrefixes_def SSuffixes_def) |
|
803 apply(auto)[1] |
|
804 apply (metis length_Cons length_rev length_sprefix rev.simps(2)) |
|
805 apply(simp) |
|
806 apply(rule finite_cartesian_product) |
|
807 apply(simp) |
|
808 apply(rule_tac f="Stars" in finite_imageD) |
|
809 prefer 2 |
|
810 apply(auto simp add: inj_on_def)[1] |
|
811 apply (metis finite_subset image_Collect_subsetI) |
|
812 apply(simp add: rest_Nil) |
|
813 apply(simp add: NValues_STAR_Nil) |
|
814 apply(rule_tac B="{(v, vs). v \<in> NValues rexp [] \<and> vs = []}" in finite_subset) |
|
815 apply(auto)[1] |
|
816 apply(simp) |
|
817 apply(rule_tac B="Suffixes b" in finite_subset) |
|
818 apply(auto simp add: SSuffixes_def Suffixes_def Prefixes_def SPrefixes_def sprefix_def)[1] |
|
819 by (metis finite_Suffixes) |
|
820 |
|
821 lemma NValues_finite: |
|
822 "finite (NValues r s)" |
|
823 using NValues_finite_aux |
|
824 apply(simp) |
|
825 done |
|
826 |
|
827 section {* Sulzmann functions *} |
|
828 |
|
829 fun |
|
830 mkeps :: "rexp \<Rightarrow> val" |
|
831 where |
|
832 "mkeps(EMPTY) = Void" |
|
833 | "mkeps(SEQ r1 r2) = Seq (mkeps r1) (mkeps r2)" |
|
834 | "mkeps(ALT r1 r2) = (if nullable(r1) then Left (mkeps r1) else Right (mkeps r2))" |
|
835 | "mkeps(STAR r) = Stars []" |
|
836 |
|
837 section {* Derivatives *} |
|
838 |
|
839 fun |
|
840 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
841 where |
|
842 "der c (NULL) = NULL" |
|
843 | "der c (EMPTY) = NULL" |
|
844 | "der c (CHAR c') = (if c = c' then EMPTY else NULL)" |
|
845 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
846 | "der c (SEQ r1 r2) = |
|
847 (if nullable r1 |
|
848 then ALT (SEQ (der c r1) r2) (der c r2) |
|
849 else SEQ (der c r1) r2)" |
|
850 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
851 |
|
852 fun |
|
853 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
854 where |
|
855 "ders [] r = r" |
|
856 | "ders (c # s) r = ders s (der c r)" |
|
857 |
|
858 |
|
859 lemma der_correctness: |
|
860 shows "L (der c r) = Der c (L r)" |
|
861 apply(induct r) |
|
862 apply(simp_all add: nullable_correctness) |
|
863 done |
|
864 |
|
865 lemma ders_correctness: |
|
866 shows "L (ders s r) = Ders s (L r)" |
|
867 apply(induct s arbitrary: r) |
|
868 apply(simp add: Ders_def) |
|
869 apply(simp) |
|
870 apply(subst der_correctness) |
|
871 apply(simp add: Ders_def Der_def) |
|
872 done |
|
873 |
|
874 section {* Injection function *} |
|
875 |
|
876 fun injval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
877 where |
|
878 "injval (CHAR d) c Void = Char d" |
|
879 | "injval (ALT r1 r2) c (Left v1) = Left(injval r1 c v1)" |
|
880 | "injval (ALT r1 r2) c (Right v2) = Right(injval r2 c v2)" |
|
881 | "injval (SEQ r1 r2) c (Seq v1 v2) = Seq (injval r1 c v1) v2" |
|
882 | "injval (SEQ r1 r2) c (Left (Seq v1 v2)) = Seq (injval r1 c v1) v2" |
|
883 | "injval (SEQ r1 r2) c (Right v2) = Seq (mkeps r1) (injval r2 c v2)" |
|
884 | "injval (STAR r) c (Seq v (Stars vs)) = Stars ((injval r c v) # vs)" |
|
885 |
|
886 fun |
|
887 lex :: "rexp \<Rightarrow> string \<Rightarrow> val option" |
|
888 where |
|
889 "lex r [] = (if nullable r then Some(mkeps r) else None)" |
|
890 | "lex r (c#s) = (case (lex (der c r) s) of |
|
891 None \<Rightarrow> None |
|
892 | Some(v) \<Rightarrow> Some(injval r c v))" |
|
893 |
|
894 fun |
|
895 lex2 :: "rexp \<Rightarrow> string \<Rightarrow> val" |
|
896 where |
|
897 "lex2 r [] = mkeps r" |
|
898 | "lex2 r (c#s) = injval r c (lex2 (der c r) s)" |
|
899 |
|
900 |
|
901 section {* Projection function *} |
|
902 |
|
903 fun projval :: "rexp \<Rightarrow> char \<Rightarrow> val \<Rightarrow> val" |
|
904 where |
|
905 "projval (CHAR d) c _ = Void" |
|
906 | "projval (ALT r1 r2) c (Left v1) = Left (projval r1 c v1)" |
|
907 | "projval (ALT r1 r2) c (Right v2) = Right (projval r2 c v2)" |
|
908 | "projval (SEQ r1 r2) c (Seq v1 v2) = |
|
909 (if flat v1 = [] then Right(projval r2 c v2) |
|
910 else if nullable r1 then Left (Seq (projval r1 c v1) v2) |
|
911 else Seq (projval r1 c v1) v2)" |
|
912 | "projval (STAR r) c (Stars (v # vs)) = Seq (projval r c v) (Stars vs)" |
|
913 |
|
914 |
|
915 |
|
916 lemma mkeps_nullable: |
|
917 assumes "nullable(r)" |
|
918 shows "\<turnstile> mkeps r : r" |
|
919 using assms |
|
920 apply(induct rule: nullable.induct) |
|
921 apply(auto intro: Prf.intros) |
|
922 done |
|
923 |
|
924 lemma mkeps_flat: |
|
925 assumes "nullable(r)" |
|
926 shows "flat (mkeps r) = []" |
|
927 using assms |
|
928 apply(induct rule: nullable.induct) |
|
929 apply(auto) |
|
930 done |
|
931 |
|
932 |
|
933 lemma v3: |
|
934 assumes "\<turnstile> v : der c r" |
|
935 shows "\<turnstile> (injval r c v) : r" |
|
936 using assms |
|
937 apply(induct arbitrary: v rule: der.induct) |
|
938 apply(simp) |
|
939 apply(erule Prf.cases) |
|
940 apply(simp_all)[7] |
|
941 apply(simp) |
|
942 apply(erule Prf.cases) |
|
943 apply(simp_all)[7] |
|
944 apply(case_tac "c = c'") |
|
945 apply(simp) |
|
946 apply(erule Prf.cases) |
|
947 apply(simp_all)[7] |
|
948 apply (metis Prf.intros(5)) |
|
949 apply(simp) |
|
950 apply(erule Prf.cases) |
|
951 apply(simp_all)[7] |
|
952 apply(simp) |
|
953 apply(erule Prf.cases) |
|
954 apply(simp_all)[7] |
|
955 apply (metis Prf.intros(2)) |
|
956 apply (metis Prf.intros(3)) |
|
957 apply(simp) |
|
958 apply(case_tac "nullable r1") |
|
959 apply(simp) |
|
960 apply(erule Prf.cases) |
|
961 apply(simp_all)[7] |
|
962 apply(auto)[1] |
|
963 apply(erule Prf.cases) |
|
964 apply(simp_all)[7] |
|
965 apply(auto)[1] |
|
966 apply (metis Prf.intros(1)) |
|
967 apply(auto)[1] |
|
968 apply (metis Prf.intros(1) mkeps_nullable) |
|
969 apply(simp) |
|
970 apply(erule Prf.cases) |
|
971 apply(simp_all)[7] |
|
972 apply(auto)[1] |
|
973 apply(rule Prf.intros) |
|
974 apply(auto)[2] |
|
975 apply(simp) |
|
976 apply(erule Prf.cases) |
|
977 apply(simp_all)[7] |
|
978 apply(clarify) |
|
979 apply(rotate_tac 2) |
|
980 apply(erule Prf.cases) |
|
981 apply(simp_all)[7] |
|
982 apply(auto) |
|
983 apply (metis Prf.intros(6) Prf.intros(7)) |
|
984 by (metis Prf.intros(7)) |
|
985 |
|
986 lemma v3_proj: |
|
987 assumes "\<Turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
988 shows "\<Turnstile> (projval r c v) : der c r" |
|
989 using assms |
|
990 apply(induct rule: NPrf.induct) |
|
991 prefer 4 |
|
992 apply(simp) |
|
993 prefer 4 |
|
994 apply(simp) |
|
995 apply (metis NPrf.intros(4)) |
|
996 prefer 2 |
|
997 apply(simp) |
|
998 apply (metis NPrf.intros(2)) |
|
999 prefer 2 |
|
1000 apply(simp) |
|
1001 apply (metis NPrf.intros(3)) |
|
1002 apply(auto) |
|
1003 apply(rule NPrf.intros) |
|
1004 apply(simp) |
|
1005 apply (metis NPrf_imp_Prf not_nullable_flat) |
|
1006 apply(rule NPrf.intros) |
|
1007 apply(rule NPrf.intros) |
|
1008 apply (metis Cons_eq_append_conv) |
|
1009 apply(simp) |
|
1010 apply(rule NPrf.intros) |
|
1011 apply (metis Cons_eq_append_conv) |
|
1012 apply(simp) |
|
1013 (* Stars case *) |
|
1014 apply(rule NPrf.intros) |
|
1015 apply (metis Cons_eq_append_conv) |
|
1016 apply(auto) |
|
1017 done |
|
1018 |
|
1019 lemma v4: |
|
1020 assumes "\<turnstile> v : der c r" |
|
1021 shows "flat (injval r c v) = c # (flat v)" |
|
1022 using assms |
|
1023 apply(induct arbitrary: v rule: der.induct) |
|
1024 apply(simp) |
|
1025 apply(erule Prf.cases) |
|
1026 apply(simp_all)[7] |
|
1027 apply(simp) |
|
1028 apply(erule Prf.cases) |
|
1029 apply(simp_all)[7] |
|
1030 apply(simp) |
|
1031 apply(case_tac "c = c'") |
|
1032 apply(simp) |
|
1033 apply(auto)[1] |
|
1034 apply(erule Prf.cases) |
|
1035 apply(simp_all)[7] |
|
1036 apply(simp) |
|
1037 apply(erule Prf.cases) |
|
1038 apply(simp_all)[7] |
|
1039 apply(simp) |
|
1040 apply(erule Prf.cases) |
|
1041 apply(simp_all)[7] |
|
1042 apply(simp) |
|
1043 apply(case_tac "nullable r1") |
|
1044 apply(simp) |
|
1045 apply(erule Prf.cases) |
|
1046 apply(simp_all (no_asm_use))[7] |
|
1047 apply(auto)[1] |
|
1048 apply(erule Prf.cases) |
|
1049 apply(simp_all)[7] |
|
1050 apply(clarify) |
|
1051 apply(simp only: injval.simps flat.simps) |
|
1052 apply(auto)[1] |
|
1053 apply (metis mkeps_flat) |
|
1054 apply(simp) |
|
1055 apply(erule Prf.cases) |
|
1056 apply(simp_all)[7] |
|
1057 apply(simp) |
|
1058 apply(erule Prf.cases) |
|
1059 apply(simp_all)[7] |
|
1060 apply(auto) |
|
1061 apply(rotate_tac 2) |
|
1062 apply(erule Prf.cases) |
|
1063 apply(simp_all)[7] |
|
1064 done |
|
1065 |
|
1066 lemma v4_proj: |
|
1067 assumes "\<Turnstile> v : r" and "\<exists>s. (flat v) = c # s" |
|
1068 shows "c # flat (projval r c v) = flat v" |
|
1069 using assms |
|
1070 apply(induct rule: NPrf.induct) |
|
1071 prefer 4 |
|
1072 apply(simp) |
|
1073 prefer 4 |
|
1074 apply(simp) |
|
1075 prefer 2 |
|
1076 apply(simp) |
|
1077 prefer 2 |
|
1078 apply(simp) |
|
1079 apply(auto) |
|
1080 apply (metis Cons_eq_append_conv) |
|
1081 apply(simp add: append_eq_Cons_conv) |
|
1082 apply(auto) |
|
1083 done |
|
1084 |
|
1085 lemma v4_proj2: |
|
1086 assumes "\<Turnstile> v : r" and "(flat v) = c # s" |
|
1087 shows "flat (projval r c v) = s" |
|
1088 using assms |
|
1089 by (metis list.inject v4_proj) |
|
1090 |
|
1091 |
|
1092 definition |
|
1093 PC31 :: "string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1094 where |
|
1095 "PC31 s r r' \<equiv> s \<notin> L r" |
|
1096 |
|
1097 definition |
|
1098 PC41 :: "string \<Rightarrow> string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1099 where |
|
1100 "PC41 s s' r r' \<equiv> (\<forall>x. (s @ x \<in> L r \<longrightarrow> s' \<in> {x} ;; L r' \<longrightarrow> x = []))" |
|
1101 |
|
1102 |
|
1103 lemma |
|
1104 L1: "\<not>(nullable r1) \<longrightarrow> [] \<in> L r2 \<longrightarrow> PC31 [] r1 r2" and |
|
1105 L2: "s1 \<in> L(r1) \<longrightarrow> [] \<in> L(r2) \<longrightarrow> PC41 s1 [] r1 r2" and |
|
1106 L3: "s2 \<in> L(der c r2) \<longrightarrow> PC31 s2 (der c r1) (der c r2) \<longrightarrow> PC31 (c#s2) r1 r2" and |
|
1107 L4: "s1 \<in> L(der c r1) \<longrightarrow> s2 \<in> L(r2) \<longrightarrow> PC41 s1 s2 (der c r1) r2 \<longrightarrow> PC41 (c#s1) s2 r1 r2" and |
|
1108 L5: "nullable(r1) \<longrightarrow> s2 \<in> L(der c r2) \<longrightarrow> PC31 s2 (SEQ (der c r1) r2) (der c r2) \<longrightarrow> PC41 [] (c#s2) r1 r2" and |
|
1109 L6: "s0 \<in> L(der c r0) \<longrightarrow> s \<in> L(STAR r0) \<longrightarrow> PC41 s0 s (der c r0) (STAR r0) \<longrightarrow> PC41 (c#s0) s r0 (STAR r0)" and |
|
1110 L7: "s' \<in> L(r') \<longrightarrow> s' \<in> L(r) \<longrightarrow> \<not>PC31 s' r r'" and |
|
1111 L8: "s \<in> L(r) \<longrightarrow> s' \<in> L(r') \<longrightarrow> s @ x \<in> L(r) \<longrightarrow> s' \<in> {x} ;; (L(r') ;; {y}) \<longrightarrow> x \<noteq> [] \<longrightarrow> \<not>PC41 s s' r r'" |
|
1112 apply(auto simp add: PC31_def PC41_def)[1] |
|
1113 apply (metis nullable_correctness) |
|
1114 apply(auto simp add: PC31_def PC41_def)[1] |
|
1115 apply(simp add: Sequ_def) |
|
1116 apply(auto simp add: PC31_def PC41_def)[1] |
|
1117 apply(simp add: der_correctness Der_def) |
|
1118 apply(auto simp add: PC31_def PC41_def)[1] |
|
1119 apply(simp add: der_correctness Der_def Sequ_def) |
|
1120 apply(auto simp add: PC31_def PC41_def)[1] |
|
1121 apply(simp add: Sequ_def) |
|
1122 apply(simp add: der_correctness Der_def) |
|
1123 apply(auto)[1] |
|
1124 apply (metis append_eq_Cons_conv) |
|
1125 apply(auto simp add: PC31_def PC41_def)[1] |
|
1126 apply(simp add: Sequ_def) |
|
1127 apply(simp add: der_correctness Der_def) |
|
1128 apply(auto simp add: PC31_def PC41_def)[1] |
|
1129 apply(rule impI)+ |
|
1130 apply(rule notI) |
|
1131 (* 8 fails *) |
|
1132 oops |
|
1133 |
|
1134 definition |
|
1135 PC32 :: "string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1136 where |
|
1137 "PC32 s r r' \<equiv> \<forall>y. s \<notin> (L r ;; {y})" |
|
1138 |
|
1139 definition |
|
1140 PC42 :: "string \<Rightarrow> string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1141 where |
|
1142 "PC42 s s' r r' \<equiv> (\<forall>x. (s @ x \<in> L r \<longrightarrow> (\<exists>y. s' \<in> {x} ;; (L r' ;; {y})) \<longrightarrow> x = []))" |
|
1143 |
|
1144 |
|
1145 lemma |
|
1146 L1: "\<not>(nullable r1) \<longrightarrow> [] \<in> L r2 \<longrightarrow> PC32 [] r1 r2" and |
|
1147 L2: "s1 \<in> L(r1) \<longrightarrow> [] \<in> L(r2) \<longrightarrow> PC42 s1 [] r1 r2" and |
|
1148 L3: "s2 \<in> L(der c r2) \<longrightarrow> PC32 s2 (der c r1) (der c r2) \<longrightarrow> PC32 (c#s2) r1 r2" and |
|
1149 L4: "s1 \<in> L(der c r1) \<longrightarrow> s2 \<in> L(r2) \<longrightarrow> PC42 s1 s2 (der c r1) r2 \<longrightarrow> PC42 (c#s1) s2 r1 r2" and |
|
1150 L5: "nullable(r1) \<longrightarrow> s2 \<in> L(der c r2) \<longrightarrow> PC32 s2 (SEQ (der c r1) r2) (der c r2) \<longrightarrow> PC42 [] (c#s2) r1 r2" and |
|
1151 L6: "s0 \<in> L(der c r0) \<longrightarrow> s \<in> L(STAR r0) \<longrightarrow> PC42 s0 s (der c r0) (STAR r0) \<longrightarrow> PC42 (c#s0) s r0 (STAR r0)" and |
|
1152 L7: "s' \<in> L(r') \<longrightarrow> s' \<in> L(r) \<longrightarrow> \<not>PC32 s' r r'" and |
|
1153 L8: "s \<in> L(r) \<longrightarrow> s' \<in> L(r') \<longrightarrow> s @ x \<in> L(r) \<longrightarrow> s' \<in> {x} ;; (L(r') ;; {y}) \<longrightarrow> x \<noteq> [] \<longrightarrow> \<not>PC42 s s' r r'" |
|
1154 apply(auto simp add: PC32_def PC42_def)[1] |
|
1155 oops |
|
1156 |
|
1157 definition |
|
1158 PC33 :: "string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1159 where |
|
1160 "PC33 s r r' \<equiv> s \<notin> L r" |
|
1161 |
|
1162 definition |
|
1163 PC43 :: "string \<Rightarrow> string \<Rightarrow> rexp \<Rightarrow> rexp \<Rightarrow> bool" |
|
1164 where |
|
1165 "PC43 s s' r r' \<equiv> (\<forall>x. (s @ x \<in> L r \<longrightarrow> (\<exists>y. s' \<in> {x} ;; (L r' ;; {y})) \<longrightarrow> x = []))" |
|
1166 |
|
1167 lemma |
|
1168 L1: "\<not>(nullable r1) \<longrightarrow> [] \<in> L r2 \<longrightarrow> PC33 [] r1 r2" and |
|
1169 L2: "s1 \<in> L(r1) \<longrightarrow> [] \<in> L(r2) \<longrightarrow> PC43 s1 [] r1 r2" and |
|
1170 L3: "s2 \<in> L(der c r2) \<longrightarrow> PC33 s2 (der c r1) (der c r2) \<longrightarrow> PC33 (c#s2) r1 r2" and |
|
1171 L4: "s1 \<in> L(der c r1) \<longrightarrow> s2 \<in> L(r2) \<longrightarrow> PC43 s1 s2 (der c r1) r2 \<longrightarrow> PC43 (c#s1) s2 r1 r2" and |
|
1172 L5: "nullable(r1) \<longrightarrow> s2 \<in> L(der c r2) \<longrightarrow> PC33 s2 (SEQ (der c r1) r2) (der c r2) \<longrightarrow> PC43 [] (c#s2) r1 r2" and |
|
1173 L6: "s0 \<in> L(der c r0) \<longrightarrow> s \<in> L(STAR r0) \<longrightarrow> PC43 s0 s (der c r0) (STAR r0) \<longrightarrow> PC43 (c#s0) s r0 (STAR r0)" and |
|
1174 L7: "s' \<in> L(r') \<longrightarrow> s' \<in> L(r) \<longrightarrow> \<not>PC33 s' r r'" and |
|
1175 L8: "s \<in> L(r) \<longrightarrow> s' \<in> L(r') \<longrightarrow> s @ x \<in> L(r) \<longrightarrow> s' \<in> {x} ;; (L(r') ;; {y}) \<longrightarrow> x \<noteq> [] \<longrightarrow> \<not>PC43 s s' r r'" |
|
1176 apply(auto simp add: PC33_def PC43_def)[1] |
|
1177 apply (metis nullable_correctness) |
|
1178 apply(auto simp add: PC33_def PC43_def)[1] |
|
1179 apply(simp add: Sequ_def) |
|
1180 apply(auto simp add: PC33_def PC43_def)[1] |
|
1181 apply(simp add: der_correctness Der_def) |
|
1182 apply(auto simp add: PC33_def PC43_def)[1] |
|
1183 apply(simp add: der_correctness Der_def Sequ_def) |
|
1184 apply metis |
|
1185 (* 5 *) |
|
1186 apply(auto simp add: PC33_def PC43_def)[1] |
|
1187 apply(simp add: Sequ_def) |
|
1188 apply(simp add: der_correctness Der_def) |
|
1189 apply(auto)[1] |
|
1190 defer |
|
1191 apply(auto simp add: PC33_def PC43_def)[1] |
|
1192 apply(simp add: Sequ_def) |
|
1193 apply(simp add: der_correctness Der_def) |
|
1194 apply metis |
|
1195 apply(auto simp add: PC33_def PC43_def)[1] |
|
1196 apply(auto simp add: PC33_def PC43_def)[1] |
|
1197 (* 5 fails *) |
|
1198 apply(simp add: Cons_eq_append_conv) |
|
1199 apply(auto)[1] |
|
1200 apply(drule_tac x="ys'" in spec) |
|
1201 apply(simp) |
|
1202 oops |
|
1203 |
|
1204 section {* Roy's Definition *} |
|
1205 |
|
1206 inductive |
|
1207 Roy :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<rhd> _ : _" [100, 100] 100) |
|
1208 where |
|
1209 "\<rhd> Void : EMPTY" |
|
1210 | "\<rhd> Char c : CHAR c" |
|
1211 | "\<rhd> v : r1 \<Longrightarrow> \<rhd> Left v : ALT r1 r2" |
|
1212 | "\<lbrakk>\<rhd> v : r2; flat v \<notin> L r1\<rbrakk> \<Longrightarrow> \<rhd> Right v : ALT r1 r2" |
|
1213 | "\<lbrakk>\<rhd> v1 : r1; \<rhd> v2 : r2; \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
1214 \<rhd> Seq v1 v2 : SEQ r1 r2" |
|
1215 | "\<lbrakk>\<rhd> v : r; \<rhd> Stars vs : STAR r; flat v \<noteq> []; |
|
1216 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat (Stars vs) \<and> (flat v @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> \<Longrightarrow> |
|
1217 \<rhd> Stars (v#vs) : STAR r" |
|
1218 | "\<rhd> Stars [] : STAR r" |
|
1219 |
|
1220 lemma drop_append: |
|
1221 assumes "s1 \<sqsubseteq> s2" |
|
1222 shows "s1 @ drop (length s1) s2 = s2" |
|
1223 using assms |
|
1224 apply(simp add: prefix_def) |
|
1225 apply(auto) |
|
1226 done |
|
1227 |
|
1228 lemma royA: |
|
1229 assumes "\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" |
|
1230 shows "\<forall>s. (s \<in> L(ders (flat v1) r1) \<and> |
|
1231 s \<sqsubseteq> (flat v2) \<and> drop (length s) (flat v2) \<in> L r2 \<longrightarrow> s = [])" |
|
1232 using assms |
|
1233 apply - |
|
1234 apply(rule allI) |
|
1235 apply(rule impI) |
|
1236 apply(simp add: ders_correctness) |
|
1237 apply(simp add: Ders_def) |
|
1238 thm rest_def |
|
1239 apply(drule_tac x="s" in spec) |
|
1240 apply(simp) |
|
1241 apply(erule disjE) |
|
1242 apply(simp) |
|
1243 apply(drule_tac x="drop (length s) (flat v2)" in spec) |
|
1244 apply(simp add: drop_append) |
|
1245 done |
|
1246 |
|
1247 lemma royB: |
|
1248 assumes "\<forall>s. (s \<in> L(ders (flat v1) r1) \<and> |
|
1249 s \<sqsubseteq> (flat v2) \<and> drop (length s) (flat v2) \<in> L r2 \<longrightarrow> s = [])" |
|
1250 shows "\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" |
|
1251 using assms |
|
1252 apply - |
|
1253 apply(auto simp add: prefix_def ders_correctness Ders_def) |
|
1254 by (metis append_eq_conv_conj) |
|
1255 |
|
1256 lemma royC: |
|
1257 assumes "\<forall>s t. (s \<in> L(ders (flat v1) r1) \<and> |
|
1258 s \<sqsubseteq> (flat v2 @ t) \<and> drop (length s) (flat v2 @ t) \<in> L r2 \<longrightarrow> s = [])" |
|
1259 shows "\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = flat v2 \<and> (flat v1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" |
|
1260 using assms |
|
1261 apply - |
|
1262 apply(rule royB) |
|
1263 apply(rule allI) |
|
1264 apply(drule_tac x="s" in spec) |
|
1265 apply(drule_tac x="[]" in spec) |
|
1266 apply(simp) |
|
1267 done |
|
1268 |
|
1269 inductive |
|
1270 Roy2 :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("2\<rhd> _ : _" [100, 100] 100) |
|
1271 where |
|
1272 "2\<rhd> Void : EMPTY" |
|
1273 | "2\<rhd> Char c : CHAR c" |
|
1274 | "2\<rhd> v : r1 \<Longrightarrow> 2\<rhd> Left v : ALT r1 r2" |
|
1275 | "\<lbrakk>2\<rhd> v : r2; \<forall>t. flat v \<notin> (L r1 ;; {t})\<rbrakk> \<Longrightarrow> 2\<rhd> Right v : ALT r1 r2" |
|
1276 | "\<lbrakk>2\<rhd> v1 : r1; 2\<rhd> v2 : r2; |
|
1277 \<forall>s. ((flat v1 @ s \<in> L r1) \<and> |
|
1278 (\<exists>t. s \<sqsubseteq> (flat v2 @ t) \<and> drop (length s) (flat v2) \<in> (L r2 ;; {t}))) \<longrightarrow> s = []\<rbrakk> \<Longrightarrow> |
|
1279 2\<rhd> Seq v1 v2 : SEQ r1 r2" |
|
1280 | "\<lbrakk>2\<rhd> v : r; 2\<rhd> Stars vs : STAR r; flat v \<noteq> []; |
|
1281 \<forall>s. ((flat v @ s \<in> L r) \<and> |
|
1282 (\<exists>t. s \<sqsubseteq> (flat (Stars vs) @ t) \<and> drop (length s) (flat (Stars vs)) \<in> (L (STAR r) ;; {t}))) \<longrightarrow> s = []\<rbrakk> |
|
1283 \<Longrightarrow> 2\<rhd> Stars (v#vs) : STAR r" |
|
1284 | "2\<rhd> Stars [] : STAR r" |
|
1285 |
|
1286 lemma Roy2_props: |
|
1287 assumes "2\<rhd> v : r" |
|
1288 shows "\<turnstile> v : r" |
|
1289 using assms |
|
1290 apply(induct) |
|
1291 apply(auto intro: Prf.intros) |
|
1292 done |
|
1293 |
|
1294 lemma Roy_mkeps_nullable: |
|
1295 assumes "nullable(r)" |
|
1296 shows "2\<rhd> (mkeps r) : r" |
|
1297 using assms |
|
1298 apply(induct rule: nullable.induct) |
|
1299 apply(auto intro: Roy2.intros) |
|
1300 apply(rule Roy2.intros) |
|
1301 apply(simp_all) |
|
1302 apply(simp add: mkeps_flat) |
|
1303 apply(simp add: Sequ_def) |
|
1304 apply (metis nullable_correctness) |
|
1305 apply(rule Roy2.intros) |
|
1306 apply(simp_all) |
|
1307 apply(rule allI) |
|
1308 apply(rule impI) |
|
1309 apply(auto simp add: Sequ_def) |
|
1310 apply(simp add: mkeps_flat) |
|
1311 apply(auto simp add: prefix_def) |
|
1312 done |
|
1313 |
|
1314 section {* Alternative Posix definition *} |
|
1315 |
|
1316 inductive |
|
1317 PMatch :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100) |
|
1318 where |
|
1319 "[] \<in> EMPTY \<rightarrow> Void" |
|
1320 | "[c] \<in> (CHAR c) \<rightarrow> (Char c)" |
|
1321 | "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)" |
|
1322 | "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)" |
|
1323 | "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2; |
|
1324 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
1325 (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)" |
|
1326 | "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> []; |
|
1327 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> |
|
1328 \<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)" |
|
1329 | "[] \<in> STAR r \<rightarrow> Stars []" |
|
1330 |
|
1331 inductive |
|
1332 PMatchX :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("\<turnstile> _ \<in> _ \<rightarrow> _" [100, 100, 100] 100) |
|
1333 where |
|
1334 "\<turnstile> s \<in> EMPTY \<rightarrow> Void" |
|
1335 | "\<turnstile> (c # s) \<in> (CHAR c) \<rightarrow> (Char c)" |
|
1336 | "\<turnstile> s \<in> r1 \<rightarrow> v \<Longrightarrow> \<turnstile> s \<in> (ALT r1 r2) \<rightarrow> (Left v)" |
|
1337 | "\<lbrakk>\<turnstile> s \<in> r2 \<rightarrow> v; \<not>(\<exists>s'. s' \<sqsubseteq> s \<and> flat v \<sqsubseteq> s' \<and> s' \<in> L(r1))\<rbrakk> \<Longrightarrow> \<turnstile> s \<in> (ALT r1 r2) \<rightarrow> (Right v)" |
|
1338 | "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; \<turnstile> s2 \<in> r2 \<rightarrow> v2; |
|
1339 \<not>(\<exists>s3 s4. s3 \<noteq> [] \<and> (s3 @ s4) \<sqsubseteq> s2 \<and> (s1 @ s3) \<in> L r1 \<and> s4 \<in> L r2)\<rbrakk> \<Longrightarrow> |
|
1340 \<turnstile> (s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)" |
|
1341 | "\<lbrakk>s1 \<in> r \<rightarrow> v; \<turnstile> s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> []; |
|
1342 \<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> (s\<^sub>3 @ s\<^sub>4) \<sqsubseteq> s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk> |
|
1343 \<Longrightarrow> \<turnstile> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)" |
|
1344 | "\<turnstile> s \<in> STAR r \<rightarrow> Stars []" |
|
1345 |
|
1346 lemma PMatch1: |
|
1347 assumes "s \<in> r \<rightarrow> v" |
|
1348 shows "\<turnstile> v : r" "flat v = s" |
|
1349 using assms |
|
1350 apply(induct s r v rule: PMatch.induct) |
|
1351 apply(auto) |
|
1352 apply (metis Prf.intros(4)) |
|
1353 apply (metis Prf.intros(5)) |
|
1354 apply (metis Prf.intros(2)) |
|
1355 apply (metis Prf.intros(3)) |
|
1356 apply (metis Prf.intros(1)) |
|
1357 apply (metis Prf.intros(7)) |
|
1358 by (metis Prf.intros(6)) |
|
1359 |
|
1360 |
|
1361 lemma PMatchX1: |
|
1362 assumes "\<turnstile> s \<in> r \<rightarrow> v" |
|
1363 shows "\<turnstile> v : r" |
|
1364 using assms |
|
1365 apply(induct s r v rule: PMatchX.induct) |
|
1366 apply(auto simp add: prefix_def intro: Prf.intros) |
|
1367 apply (metis PMatch1(1) Prf.intros(1)) |
|
1368 by (metis PMatch1(1) Prf.intros(7)) |
|
1369 |
|
1370 |
|
1371 lemma PMatchX: |
|
1372 assumes "\<turnstile> s \<in> r \<rightarrow> v" |
|
1373 shows "flat v \<sqsubseteq> s" |
|
1374 using assms |
|
1375 apply(induct s r v rule: PMatchX.induct) |
|
1376 apply(auto simp add: prefix_def PMatch1) |
|
1377 done |
|
1378 |
|
1379 lemma PMatchX_PMatch: |
|
1380 assumes "\<turnstile> s \<in> r \<rightarrow> v" "flat v = s" |
|
1381 shows "s \<in> r \<rightarrow> v" |
|
1382 using assms |
|
1383 apply(induct s r v rule: PMatchX.induct) |
|
1384 apply(auto intro: PMatch.intros) |
|
1385 apply(rule PMatch.intros) |
|
1386 apply(simp) |
|
1387 apply (metis PMatchX Prefixes_def mem_Collect_eq) |
|
1388 apply (smt2 PMatch.intros(5) PMatch1(2) PMatchX append_Nil2 append_assoc append_self_conv prefix_def) |
|
1389 by (metis L.simps(6) PMatch.intros(6) PMatch1(2) append_Nil2 append_eq_conv_conj prefix_def) |
|
1390 |
|
1391 lemma PMatch_PMatchX: |
|
1392 assumes "s \<in> r \<rightarrow> v" |
|
1393 shows "\<turnstile> s \<in> r \<rightarrow> v" |
|
1394 using assms |
|
1395 apply(induct s r v arbitrary: s' rule: PMatch.induct) |
|
1396 apply(auto intro: PMatchX.intros) |
|
1397 apply(rule PMatchX.intros) |
|
1398 apply(simp) |
|
1399 apply(rule notI) |
|
1400 apply(auto)[1] |
|
1401 apply (metis PMatch1(2) append_eq_conv_conj length_sprefix less_imp_le_nat prefix_def sprefix_def take_all) |
|
1402 apply(rule PMatchX.intros) |
|
1403 apply(simp) |
|
1404 apply(simp) |
|
1405 apply(auto)[1] |
|
1406 oops |
|
1407 |
|
1408 lemma |
|
1409 assumes "\<rhd> v : r" |
|
1410 shows "(flat v) \<in> r \<rightarrow> v" |
|
1411 using assms |
|
1412 apply(induct) |
|
1413 apply(auto intro: PMatch.intros) |
|
1414 apply(rule PMatch.intros) |
|
1415 apply(simp) |
|
1416 apply(simp) |
|
1417 apply(simp) |
|
1418 apply(auto)[1] |
|
1419 done |
|
1420 |
|
1421 lemma |
|
1422 assumes "s \<in> r \<rightarrow> v" |
|
1423 shows "\<rhd> v : r" |
|
1424 using assms |
|
1425 apply(induct) |
|
1426 apply(auto intro: Roy.intros) |
|
1427 apply (metis PMatch1(2) Roy.intros(4)) |
|
1428 apply (metis PMatch1(2) Roy.intros(5)) |
|
1429 by (metis L.simps(6) PMatch1(2) Roy.intros(6)) |
|
1430 |
|
1431 |
|
1432 lemma PMatch_mkeps: |
|
1433 assumes "nullable r" |
|
1434 shows "[] \<in> r \<rightarrow> mkeps r" |
|
1435 using assms |
|
1436 apply(induct r) |
|
1437 apply(auto) |
|
1438 apply (metis PMatch.intros(1)) |
|
1439 apply(subst append.simps(1)[symmetric]) |
|
1440 apply (rule PMatch.intros) |
|
1441 apply(simp) |
|
1442 apply(simp) |
|
1443 apply(auto)[1] |
|
1444 apply (rule PMatch.intros) |
|
1445 apply(simp) |
|
1446 apply (rule PMatch.intros) |
|
1447 apply(simp) |
|
1448 apply (rule PMatch.intros) |
|
1449 apply(simp) |
|
1450 apply (metis nullable_correctness) |
|
1451 apply(metis PMatch.intros(7)) |
|
1452 done |
|
1453 |
|
1454 |
|
1455 lemma PMatch1N: |
|
1456 assumes "s \<in> r \<rightarrow> v" |
|
1457 shows "\<Turnstile> v : r" |
|
1458 using assms |
|
1459 apply(induct s r v rule: PMatch.induct) |
|
1460 apply(auto) |
|
1461 apply (metis NPrf.intros(4)) |
|
1462 apply (metis NPrf.intros(5)) |
|
1463 apply (metis NPrf.intros(2)) |
|
1464 apply (metis NPrf.intros(3)) |
|
1465 apply (metis NPrf.intros(1)) |
|
1466 apply(rule NPrf.intros) |
|
1467 apply(simp) |
|
1468 apply(simp) |
|
1469 apply(simp) |
|
1470 apply(rule NPrf.intros) |
|
1471 done |
|
1472 |
|
1473 lemma PMatch_determ: |
|
1474 shows "\<lbrakk>s \<in> r \<rightarrow> v1; s \<in> r \<rightarrow> v2\<rbrakk> \<Longrightarrow> v1 = v2" |
|
1475 and "\<lbrakk>s \<in> (STAR r) \<rightarrow> Stars vs1; s \<in> (STAR r) \<rightarrow> Stars vs2\<rbrakk> \<Longrightarrow> vs1 = vs2" |
|
1476 apply(induct v1 and vs1 arbitrary: s r v2 and s r vs2 rule: val.inducts) |
|
1477 apply(erule PMatch.cases) |
|
1478 apply(simp_all)[7] |
|
1479 apply(erule PMatch.cases) |
|
1480 apply(simp_all)[7] |
|
1481 apply(erule PMatch.cases) |
|
1482 apply(simp_all)[7] |
|
1483 apply(erule PMatch.cases) |
|
1484 apply(simp_all)[7] |
|
1485 apply(erule PMatch.cases) |
|
1486 apply(simp_all)[7] |
|
1487 apply(erule PMatch.cases) |
|
1488 apply(simp_all)[7] |
|
1489 apply(clarify) |
|
1490 apply(subgoal_tac "s1 = s1a \<and> s2 = s2a") |
|
1491 apply metis |
|
1492 apply(rule conjI) |
|
1493 apply(simp add: append_eq_append_conv2) |
|
1494 apply(auto)[1] |
|
1495 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1496 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1497 apply(simp add: append_eq_append_conv2) |
|
1498 apply(auto)[1] |
|
1499 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1500 apply (metis PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1501 apply(erule PMatch.cases) |
|
1502 apply(simp_all)[7] |
|
1503 apply(clarify) |
|
1504 apply(erule PMatch.cases) |
|
1505 apply(simp_all)[7] |
|
1506 apply(clarify) |
|
1507 apply (metis NPrf_flat_L PMatch1(2) PMatch1N) |
|
1508 apply(erule PMatch.cases) |
|
1509 apply(simp_all)[7] |
|
1510 apply(clarify) |
|
1511 apply(erule PMatch.cases) |
|
1512 apply(simp_all)[7] |
|
1513 apply(clarify) |
|
1514 apply (metis NPrf_flat_L PMatch1(2) PMatch1N) |
|
1515 (* star case *) |
|
1516 defer |
|
1517 apply(erule PMatch.cases) |
|
1518 apply(simp_all)[7] |
|
1519 apply(clarify) |
|
1520 apply(erule PMatch.cases) |
|
1521 apply(simp_all)[7] |
|
1522 apply(clarify) |
|
1523 apply (metis PMatch1(2)) |
|
1524 apply(rotate_tac 3) |
|
1525 apply(erule PMatch.cases) |
|
1526 apply(simp_all)[7] |
|
1527 apply(clarify) |
|
1528 apply(erule PMatch.cases) |
|
1529 apply(simp_all)[7] |
|
1530 apply(clarify) |
|
1531 apply(subgoal_tac "s1 = s1a \<and> s2 = s2a") |
|
1532 apply metis |
|
1533 apply(simp add: append_eq_append_conv2) |
|
1534 apply(auto)[1] |
|
1535 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1536 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1537 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1538 apply (metis L.simps(6) PMatch1(1) PMatch1(2) Prf_flat_L) |
|
1539 apply(erule PMatch.cases) |
|
1540 apply(simp_all)[7] |
|
1541 apply(clarify) |
|
1542 apply (metis PMatch1(2)) |
|
1543 apply(erule PMatch.cases) |
|
1544 apply(simp_all)[7] |
|
1545 apply(clarify) |
|
1546 apply(erule PMatch.cases) |
|
1547 apply(simp_all)[7] |
|
1548 apply(clarify) |
|
1549 apply(subgoal_tac "s1 = s1a \<and> s2 = s2a") |
|
1550 apply(drule_tac x="s1 @ s2" in meta_spec) |
|
1551 apply(drule_tac x="rb" in meta_spec) |
|
1552 apply(drule_tac x="(va#vsa)" in meta_spec) |
|
1553 apply(simp) |
|
1554 apply(drule meta_mp) |
|
1555 apply (metis L.simps(6) PMatch.intros(6)) |
|
1556 apply (metis L.simps(6) PMatch.intros(6)) |
|
1557 apply(simp add: append_eq_append_conv2) |
|
1558 apply(auto)[1] |
|
1559 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1560 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1561 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1562 apply (metis L.simps(6) NPrf_flat_L PMatch1(2) PMatch1N) |
|
1563 apply (metis PMatch1(2)) |
|
1564 apply(erule PMatch.cases) |
|
1565 apply(simp_all)[7] |
|
1566 apply(clarify) |
|
1567 by (metis PMatch1(2)) |
|
1568 |
|
1569 |
|
1570 lemma PMatch_Values: |
|
1571 assumes "s \<in> r \<rightarrow> v" |
|
1572 shows "v \<in> Values r s" |
|
1573 using assms |
|
1574 apply(simp add: Values_def PMatch1) |
|
1575 by (metis append_Nil2 prefix_def) |
|
1576 |
|
1577 lemma PMatch2: |
|
1578 assumes "s \<in> (der c r) \<rightarrow> v" |
|
1579 shows "(c#s) \<in> r \<rightarrow> (injval r c v)" |
|
1580 using assms |
|
1581 apply(induct c r arbitrary: s v rule: der.induct) |
|
1582 apply(auto) |
|
1583 apply(erule PMatch.cases) |
|
1584 apply(simp_all)[7] |
|
1585 apply(erule PMatch.cases) |
|
1586 apply(simp_all)[7] |
|
1587 apply(case_tac "c = c'") |
|
1588 apply(simp) |
|
1589 apply(erule PMatch.cases) |
|
1590 apply(simp_all)[7] |
|
1591 apply (metis PMatch.intros(2)) |
|
1592 apply(simp) |
|
1593 apply(erule PMatch.cases) |
|
1594 apply(simp_all)[7] |
|
1595 apply(erule PMatch.cases) |
|
1596 apply(simp_all)[7] |
|
1597 apply (metis PMatch.intros(3)) |
|
1598 apply(clarify) |
|
1599 apply(rule PMatch.intros) |
|
1600 apply metis |
|
1601 apply(simp add: L_flat_NPrf) |
|
1602 apply(auto)[1] |
|
1603 apply(frule_tac c="c" in v3_proj) |
|
1604 apply metis |
|
1605 apply(drule_tac x="projval r1 c v" in spec) |
|
1606 apply(drule mp) |
|
1607 apply (metis v4_proj2) |
|
1608 apply (metis NPrf_imp_Prf) |
|
1609 (* SEQ case *) |
|
1610 apply(case_tac "nullable r1") |
|
1611 apply(simp) |
|
1612 prefer 2 |
|
1613 apply(simp) |
|
1614 apply(erule PMatch.cases) |
|
1615 apply(simp_all)[7] |
|
1616 apply(clarify) |
|
1617 apply(subst append.simps(2)[symmetric]) |
|
1618 apply(rule PMatch.intros) |
|
1619 apply metis |
|
1620 apply metis |
|
1621 apply(auto)[1] |
|
1622 apply(simp add: der_correctness Der_def) |
|
1623 apply(auto)[1] |
|
1624 (* nullable case *) |
|
1625 apply(erule PMatch.cases) |
|
1626 apply(simp_all)[7] |
|
1627 apply(clarify) |
|
1628 apply(erule PMatch.cases) |
|
1629 apply(simp_all)[4] |
|
1630 apply(clarify) |
|
1631 apply(simp (no_asm)) |
|
1632 apply(subst append.simps(2)[symmetric]) |
|
1633 apply(rule PMatch.intros) |
|
1634 apply metis |
|
1635 apply metis |
|
1636 apply(erule contrapos_nn) |
|
1637 apply(erule exE)+ |
|
1638 apply(auto)[1] |
|
1639 apply(simp add: L_flat_NPrf) |
|
1640 apply(auto)[1] |
|
1641 thm v3_proj |
|
1642 apply(frule_tac c="c" in v3_proj) |
|
1643 apply metis |
|
1644 apply(rule_tac x="s\<^sub>3" in exI) |
|
1645 apply(simp) |
|
1646 apply (metis NPrf_imp_Prf v4_proj2) |
|
1647 apply(simp) |
|
1648 (* interesting case *) |
|
1649 apply(clarify) |
|
1650 apply(clarify) |
|
1651 apply(simp) |
|
1652 apply(subst (asm) L.simps(4)[symmetric]) |
|
1653 apply(simp only: L_flat_Prf) |
|
1654 apply(simp) |
|
1655 apply(subst append.simps(1)[symmetric]) |
|
1656 apply(rule PMatch.intros) |
|
1657 apply (metis PMatch_mkeps) |
|
1658 apply metis |
|
1659 apply(auto) |
|
1660 apply(simp only: L_flat_NPrf) |
|
1661 apply(simp) |
|
1662 apply(auto) |
|
1663 apply(drule_tac x="Seq (projval r1 c v) vb" in spec) |
|
1664 apply(drule mp) |
|
1665 apply(simp) |
|
1666 apply (metis append_Cons butlast_snoc list.sel(1) neq_Nil_conv rotate1.simps(2) v4_proj2) |
|
1667 apply(subgoal_tac "\<turnstile> projval r1 c v : der c r1") |
|
1668 apply (metis NPrf_imp_Prf Prf.intros(1)) |
|
1669 apply(rule NPrf_imp_Prf) |
|
1670 apply(rule v3_proj) |
|
1671 apply(simp) |
|
1672 apply (metis Cons_eq_append_conv) |
|
1673 (* Stars case *) |
|
1674 apply(erule PMatch.cases) |
|
1675 apply(simp_all)[7] |
|
1676 apply(clarify) |
|
1677 apply(rotate_tac 2) |
|
1678 apply(frule_tac PMatch1) |
|
1679 apply(erule PMatch.cases) |
|
1680 apply(simp_all)[7] |
|
1681 apply(subst append.simps(2)[symmetric]) |
|
1682 apply(rule PMatch.intros) |
|
1683 apply metis |
|
1684 apply(auto)[1] |
|
1685 apply(rule PMatch.intros) |
|
1686 apply(simp) |
|
1687 apply(simp) |
|
1688 apply(simp) |
|
1689 apply (metis L.simps(6)) |
|
1690 apply(subst v4) |
|
1691 apply (metis NPrf_imp_Prf PMatch1N) |
|
1692 apply(simp) |
|
1693 apply(auto)[1] |
|
1694 apply(drule_tac x="s\<^sub>3" in spec) |
|
1695 apply(drule mp) |
|
1696 defer |
|
1697 apply metis |
|
1698 apply(clarify) |
|
1699 apply(drule_tac x="s1" in meta_spec) |
|
1700 apply(drule_tac x="v1" in meta_spec) |
|
1701 apply(simp) |
|
1702 apply(rotate_tac 2) |
|
1703 apply(drule PMatch.intros(6)) |
|
1704 apply(rule PMatch.intros(7)) |
|
1705 apply (metis PMatch1(1) list.distinct(1) v4) |
|
1706 apply (metis Nil_is_append_conv) |
|
1707 apply(simp) |
|
1708 apply(subst der_correctness) |
|
1709 apply(simp add: Der_def) |
|
1710 done |
|
1711 |
|
1712 |
|
1713 |
|
1714 lemma Sequ_single: |
|
1715 "(A ;; {t}) = {s @ t | s . s \<in> A}" |
|
1716 apply(simp add: Sequ_def) |
|
1717 done |
|
1718 |
|
1719 lemma Sequ_not: |
|
1720 assumes "\<forall>t. s \<notin> (L(der c r1) ;; {t})" "L r1 \<noteq> {}" |
|
1721 shows "\<forall>t. c # s \<notin> (L r1 ;; {t})" |
|
1722 using assms |
|
1723 apply(simp add: der_correctness) |
|
1724 apply(simp add: Der_def) |
|
1725 apply(simp add: Sequ_def) |
|
1726 apply(rule allI)+ |
|
1727 apply(rule impI) |
|
1728 apply(simp add: Cons_eq_append_conv) |
|
1729 apply(auto) |
|
1730 |
|
1731 oops |
|
1732 |
|
1733 lemma PMatch_Roy2: |
|
1734 assumes "2\<rhd> v : (der c r)" "\<exists>s. c # s \<in> L r" |
|
1735 shows "2\<rhd> (injval r c v) : r" |
|
1736 using assms |
|
1737 apply(induct c r arbitrary: v rule: der.induct) |
|
1738 apply(auto) |
|
1739 apply(erule Roy2.cases) |
|
1740 apply(simp_all) |
|
1741 apply (metis Roy2.intros(2)) |
|
1742 (* alt case *) |
|
1743 apply(erule Roy2.cases) |
|
1744 apply(simp_all) |
|
1745 apply(clarify) |
|
1746 apply (metis Roy2.intros(3)) |
|
1747 apply(clarify) |
|
1748 apply(rule Roy2.intros(4)) |
|
1749 apply (metis (full_types) Prf_flat_L Roy2_props v3 v4) |
|
1750 apply(subgoal_tac "\<forall>t. c # flat va \<notin> L r1 ;; {t}") |
|
1751 prefer 2 |
|
1752 apply(simp add: der_correctness) |
|
1753 apply(simp add: Der_def) |
|
1754 apply(simp add: Sequ_def) |
|
1755 apply(rule allI)+ |
|
1756 apply(rule impI) |
|
1757 apply(simp add: Cons_eq_append_conv) |
|
1758 apply(erule disjE) |
|
1759 apply(erule conjE) |
|
1760 prefer 2 |
|
1761 apply metis |
|
1762 apply(simp) |
|
1763 apply(drule_tac x="[]" in spec) |
|
1764 apply(drule_tac x="drop 1 t" in spec) |
|
1765 apply(clarify) |
|
1766 apply(simp) |
|
1767 oops |
|
1768 |
|
1769 lemma lex_correct1: |
|
1770 assumes "s \<notin> L r" |
|
1771 shows "lex r s = None" |
|
1772 using assms |
|
1773 apply(induct s arbitrary: r) |
|
1774 apply(simp) |
|
1775 apply (metis nullable_correctness) |
|
1776 apply(auto) |
|
1777 apply(drule_tac x="der a r" in meta_spec) |
|
1778 apply(drule meta_mp) |
|
1779 apply(auto) |
|
1780 apply(simp add: L_flat_Prf) |
|
1781 by (metis v3 v4) |
|
1782 |
|
1783 |
|
1784 lemma lex_correct2: |
|
1785 assumes "s \<in> L r" |
|
1786 shows "\<exists>v. lex r s = Some(v) \<and> \<turnstile> v : r \<and> flat v = s" |
|
1787 using assms |
|
1788 apply(induct s arbitrary: r) |
|
1789 apply(simp) |
|
1790 apply (metis mkeps_flat mkeps_nullable nullable_correctness) |
|
1791 apply(drule_tac x="der a r" in meta_spec) |
|
1792 apply(drule meta_mp) |
|
1793 apply(simp add: L_flat_NPrf) |
|
1794 apply(auto) |
|
1795 apply (metis v3_proj v4_proj2) |
|
1796 apply (metis v3) |
|
1797 apply(rule v4) |
|
1798 by metis |
|
1799 |
|
1800 lemma lex_correct3: |
|
1801 assumes "s \<in> L r" |
|
1802 shows "\<exists>v. lex r s = Some(v) \<and> s \<in> r \<rightarrow> v" |
|
1803 using assms |
|
1804 apply(induct s arbitrary: r) |
|
1805 apply(simp) |
|
1806 apply (metis PMatch_mkeps nullable_correctness) |
|
1807 apply(drule_tac x="der a r" in meta_spec) |
|
1808 apply(drule meta_mp) |
|
1809 apply(simp add: L_flat_NPrf) |
|
1810 apply(auto) |
|
1811 apply (metis v3_proj v4_proj2) |
|
1812 apply(rule PMatch2) |
|
1813 apply(simp) |
|
1814 done |
|
1815 |
|
1816 lemma lex_correct4: |
|
1817 assumes "s \<in> L r" |
|
1818 shows "\<exists>v. lex r s = Some(v) \<and> \<Turnstile> v : r \<and> flat v = s" |
|
1819 using lex_correct3[OF assms] |
|
1820 apply(auto) |
|
1821 apply (metis PMatch1N) |
|
1822 by (metis PMatch1(2)) |
|
1823 |
|
1824 |
|
1825 lemma lex_correct5: |
|
1826 assumes "s \<in> L r" |
|
1827 shows "s \<in> r \<rightarrow> (lex2 r s)" |
|
1828 using assms |
|
1829 apply(induct s arbitrary: r) |
|
1830 apply(simp) |
|
1831 apply (metis PMatch_mkeps nullable_correctness) |
|
1832 apply(simp) |
|
1833 apply(rule PMatch2) |
|
1834 apply(drule_tac x="der a r" in meta_spec) |
|
1835 apply(drule meta_mp) |
|
1836 apply(simp add: L_flat_NPrf) |
|
1837 apply(auto) |
|
1838 apply (metis v3_proj v4_proj2) |
|
1839 done |
|
1840 |
|
1841 lemma |
|
1842 "lex2 (ALT (CHAR a) (ALT (CHAR b) (SEQ (CHAR a) (CHAR b)))) [a,b] = Right (Right (Seq (Char a) (Char b)))" |
|
1843 apply(simp) |
|
1844 done |
|
1845 |
|
1846 |
|
1847 (* NOT DONE YET *) |
|
1848 |
|
1849 section {* Sulzmann's Ordering of values *} |
|
1850 |
|
1851 inductive ValOrd :: "val \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<succ>_ _" [100, 100, 100] 100) |
|
1852 where |
|
1853 "v2 \<succ>r2 v2' \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1 v2')" |
|
1854 | "\<lbrakk>v1 \<succ>r1 v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) \<succ>(SEQ r1 r2) (Seq v1' v2')" |
|
1855 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Right v2)" |
|
1856 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Left v1)" |
|
1857 | "v2 \<succ>r2 v2' \<Longrightarrow> (Right v2) \<succ>(ALT r1 r2) (Right v2')" |
|
1858 | "v1 \<succ>r1 v1' \<Longrightarrow> (Left v1) \<succ>(ALT r1 r2) (Left v1')" |
|
1859 | "Void \<succ>EMPTY Void" |
|
1860 | "(Char c) \<succ>(CHAR c) (Char c)" |
|
1861 | "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) \<succ>(STAR r) (Stars (v # vs))" |
|
1862 | "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) \<succ>(STAR r) (Stars [])" |
|
1863 | "\<lbrakk>v1 \<succ>r v2; v1 \<noteq> v2\<rbrakk> \<Longrightarrow> (Stars (v1 # vs1)) \<succ>(STAR r) (Stars (v2 # vs2))" |
|
1864 | "(Stars vs1) \<succ>(STAR r) (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) \<succ>(STAR r) (Stars (v # vs2))" |
|
1865 | "(Stars []) \<succ>(STAR r) (Stars [])" |
|
1866 |
|
1867 lemma PMatch_ValOrd: |
|
1868 assumes "s \<in> r \<rightarrow> v" "v' \<in> SValues r s" |
|
1869 shows "v \<succ>r v'" |
|
1870 using assms |
|
1871 apply(induct r arbitrary: v v' s rule: rexp.induct) |
|
1872 apply(simp add: SValues_recs) |
|
1873 apply(simp add: SValues_recs) |
|
1874 apply(erule PMatch.cases) |
|
1875 apply(simp_all)[7] |
|
1876 apply (metis ValOrd.intros(7)) |
|
1877 apply(simp add: SValues_recs) |
|
1878 apply(erule PMatch.cases) |
|
1879 apply(simp_all)[7] |
|
1880 apply (metis ValOrd.intros(8) empty_iff singletonD) |
|
1881 apply(simp add: SValues_recs) |
|
1882 apply(clarify) |
|
1883 apply(erule PMatch.cases) |
|
1884 apply(simp_all)[7] |
|
1885 apply(clarify) |
|
1886 apply(case_tac "v1a = v1") |
|
1887 apply(simp) |
|
1888 apply(rule ValOrd.intros) |
|
1889 apply(rotate_tac 1) |
|
1890 apply(drule_tac x="v2a" in meta_spec) |
|
1891 apply(rotate_tac 8) |
|
1892 apply(drule_tac x="v2" in meta_spec) |
|
1893 apply(drule_tac x="s2a" in meta_spec) |
|
1894 apply(simp) |
|
1895 apply(drule_tac meta_mp) |
|
1896 apply(simp add: SValues_def) |
|
1897 apply (metis PMatch1(2) same_append_eq) |
|
1898 apply(simp) |
|
1899 apply(rule ValOrd.intros) |
|
1900 apply(drule_tac x="v1a" in meta_spec) |
|
1901 apply(rotate_tac 8) |
|
1902 apply(drule_tac x="v1" in meta_spec) |
|
1903 apply(drule_tac x="s1a" in meta_spec) |
|
1904 apply(simp) |
|
1905 apply(drule_tac meta_mp) |
|
1906 apply(simp add: append_eq_append_conv2) |
|
1907 apply(auto)[1] |
|
1908 apply(case_tac "us=[]") |
|
1909 apply(simp) |
|
1910 apply(drule_tac x="us" in spec) |
|
1911 apply(drule mp) |
|
1912 apply(simp add: SValues_def) |
|
1913 apply (metis Prf_flat_L) |
|
1914 apply(erule disjE) |
|
1915 apply(simp) |
|
1916 apply(simp) |
|
1917 apply(simp add: SValues_def) |
|
1918 apply (metis Prf_flat_L) |
|
1919 |
|
1920 apply(subst (asm) (2) Values_def) |
|
1921 apply(simp) |
|
1922 apply(clarify) |
|
1923 apply(simp add: rest_def) |
|
1924 apply(simp add: prefix_def) |
|
1925 apply(auto)[1] |
|
1926 apply(simp add: append_eq_append_conv2) |
|
1927 apply(auto)[1] |
|
1928 apply(case_tac "us = []") |
|
1929 apply(simp) |
|
1930 apply(simp add: Values_def) |
|
1931 apply (metis append_Nil2 prefix_def) |
|
1932 apply(drule_tac x="us" in spec) |
|
1933 apply(simp) |
|
1934 apply(drule_tac mp) |
|
1935 |
|
1936 |
|
1937 oops |
|
1938 (*HERE *) |
|
1939 |
|
1940 inductive ValOrd2 :: "val \<Rightarrow> string \<Rightarrow> val \<Rightarrow> bool" ("_ 2\<succ>_ _" [100, 100, 100] 100) |
|
1941 where |
|
1942 "v2 2\<succ>s v2' \<Longrightarrow> (Seq v1 v2) 2\<succ>(flat v1 @ s) (Seq v1 v2')" |
|
1943 | "\<lbrakk>v1 2\<succ>s v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) 2\<succ>s (Seq v1' v2')" |
|
1944 | "(flat v2) \<sqsubseteq> (flat v1) \<Longrightarrow> (Left v1) 2\<succ>(flat v1) (Right v2)" |
|
1945 | "(flat v1) \<sqsubset> (flat v2) \<Longrightarrow> (Right v2) 2\<succ>(flat v2) (Left v1)" |
|
1946 | "v2 2\<succ>s v2' \<Longrightarrow> (Right v2) 2\<succ>s (Right v2')" |
|
1947 | "v1 2\<succ>s v1' \<Longrightarrow> (Left v1) 2\<succ>s (Left v1')" |
|
1948 | "Void 2\<succ>[] Void" |
|
1949 | "(Char c) 2\<succ>[c] (Char c)" |
|
1950 | "flat (Stars (v # vs)) = [] \<Longrightarrow> (Stars []) 2\<succ>[] (Stars (v # vs))" |
|
1951 | "flat (Stars (v # vs)) \<noteq> [] \<Longrightarrow> (Stars (v # vs)) 2\<succ>(flat (Stars (v # vs))) (Stars [])" |
|
1952 | "\<lbrakk>v1 2\<succ>s v2; v1 \<noteq> v2\<rbrakk> \<Longrightarrow> (Stars (v1 # vs1)) 2\<succ>s (Stars (v2 # vs2))" |
|
1953 | "(Stars vs1) 2\<succ>s (Stars vs2) \<Longrightarrow> (Stars (v # vs1)) 2\<succ>(flat v @ s) (Stars (v # vs2))" |
|
1954 | "(Stars []) 2\<succ>[] (Stars [])" |
|
1955 |
|
1956 lemma ValOrd2_string1: |
|
1957 assumes "v1 2\<succ>s v2" |
|
1958 shows "s \<sqsubseteq> flat v1" |
|
1959 using assms |
|
1960 apply(induct) |
|
1961 apply(auto simp add: prefix_def) |
|
1962 apply (metis append_assoc) |
|
1963 by (metis append_assoc) |
|
1964 |
|
1965 |
|
1966 lemma admissibility: |
|
1967 assumes "s \<in> r \<rightarrow> v" "\<turnstile> v' : r" |
|
1968 shows "(\<forall>s'. (s' \<in> L(r) \<and> s' \<sqsubseteq> s) \<longrightarrow> v 2\<succ>s' v')" |
|
1969 using assms |
|
1970 apply(induct arbitrary: v') |
|
1971 apply(erule Prf.cases) |
|
1972 apply(simp_all)[7] |
|
1973 apply (metis ValOrd2.intros(7)) |
|
1974 apply(erule Prf.cases) |
|
1975 apply(simp_all)[7] |
|
1976 apply (metis ValOrd2.intros(8) append_Nil2 prefix_Cons prefix_append prefix_def) |
|
1977 apply(erule Prf.cases) |
|
1978 apply(simp_all)[7] |
|
1979 apply(auto)[1] |
|
1980 apply (metis ValOrd2.intros(6)) |
|
1981 apply(rule ValOrd2.intros) |
|
1982 apply(drule_tac x="v1" in meta_spec) |
|
1983 apply(simp) |
|
1984 |
|
1985 apply(clarify) |
|
1986 apply (metis PMatch1(2) ValOrd2.intros(3)) |
|
1987 apply(erule Prf.cases) |
|
1988 apply(simp_all)[7] |
|
1989 apply(auto) |
|
1990 |
|
1991 apply(case_tac "v1 = v1a") |
|
1992 apply(simp) |
|
1993 apply(rotate_tac 3) |
|
1994 apply(drule_tac x="v2a" in meta_spec) |
|
1995 apply(drule meta_mp) |
|
1996 apply(simp) |
|
1997 apply(auto) |
|
1998 apply(rule_tac x="flat v1a @ s'" in exI) |
|
1999 apply (metis PMatch1(2) ValOrd2.intros(1) prefix_append) |
|
2000 apply (metis PMatch1(2) ValOrd2.intros(2) ValOrd2_string1 flat.simps(5)) |
|
2001 prefer 4 |
|
2002 apply(erule Prf.cases) |
|
2003 apply(simp_all)[7] |
|
2004 prefer 2 |
|
2005 apply (metis ValOrd2.intros(5)) |
|
2006 |
|
2007 |
|
2008 apply (metis ValOrd.intros(6)) |
|
2009 oops |
|
2010 |
|
2011 |
|
2012 lemma admissibility: |
|
2013 assumes "\<turnstile> s \<in> r \<rightarrow> v" "\<turnstile> v' : r" |
|
2014 shows "v \<succ>r v'" |
|
2015 using assms |
|
2016 apply(induct arbitrary: v') |
|
2017 apply(erule Prf.cases) |
|
2018 apply(simp_all)[7] |
|
2019 apply (metis ValOrd.intros(7)) |
|
2020 apply(erule Prf.cases) |
|
2021 apply(simp_all)[7] |
|
2022 apply (metis ValOrd.intros(8)) |
|
2023 apply(erule Prf.cases) |
|
2024 apply(simp_all)[7] |
|
2025 apply (metis ValOrd.intros(6)) |
|
2026 oops |
|
2027 |
|
2028 lemma admissibility: |
|
2029 assumes "2\<rhd> v : r" "\<turnstile> v' : r" "flat v' \<sqsubseteq> flat v" |
|
2030 shows "v \<succ>r v'" |
|
2031 using assms |
|
2032 apply(induct arbitrary: v') |
|
2033 apply(erule Prf.cases) |
|
2034 apply(simp_all)[7] |
|
2035 apply (metis ValOrd.intros(7)) |
|
2036 apply(erule Prf.cases) |
|
2037 apply(simp_all)[7] |
|
2038 apply (metis ValOrd.intros(8)) |
|
2039 apply(erule Prf.cases) |
|
2040 apply(simp_all)[7] |
|
2041 apply (metis ValOrd.intros(6)) |
|
2042 apply (metis ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2043 apply(erule Prf.cases) |
|
2044 apply(simp_all)[7] |
|
2045 apply (metis Prf_flat_L ValOrd.intros(4) length_sprefix seq_empty(1) sprefix_def) |
|
2046 apply (metis ValOrd.intros(5)) |
|
2047 oops |
|
2048 |
|
2049 |
|
2050 lemma admisibility: |
|
2051 assumes "\<rhd> v : r" "\<turnstile> v' : r" |
|
2052 shows "v \<succ>r v'" |
|
2053 using assms |
|
2054 apply(induct arbitrary: v') |
|
2055 prefer 5 |
|
2056 apply(drule royA) |
|
2057 apply(erule Prf.cases) |
|
2058 apply(simp_all)[7] |
|
2059 apply(clarify) |
|
2060 apply(case_tac "v1 = v1a") |
|
2061 apply(simp) |
|
2062 apply(rule ValOrd.intros) |
|
2063 apply metis |
|
2064 apply (metis ValOrd.intros(2)) |
|
2065 apply(erule Prf.cases) |
|
2066 apply(simp_all)[7] |
|
2067 apply (metis ValOrd.intros(7)) |
|
2068 apply(erule Prf.cases) |
|
2069 apply(simp_all)[7] |
|
2070 apply (metis ValOrd.intros(8)) |
|
2071 apply(erule Prf.cases) |
|
2072 apply(simp_all)[7] |
|
2073 apply (metis ValOrd.intros(6)) |
|
2074 apply(rule ValOrd.intros) |
|
2075 defer |
|
2076 apply(erule Prf.cases) |
|
2077 apply(simp_all)[7] |
|
2078 apply(clarify) |
|
2079 apply(rule ValOrd.intros) |
|
2080 (* seq case goes through *) |
|
2081 oops |
|
2082 |
|
2083 |
|
2084 lemma admisibility: |
|
2085 assumes "\<rhd> v : r" "\<turnstile> v' : r" "flat v' \<sqsubseteq> flat v" |
|
2086 shows "v \<succ>r v'" |
|
2087 using assms |
|
2088 apply(induct arbitrary: v') |
|
2089 prefer 5 |
|
2090 apply(drule royA) |
|
2091 apply(erule Prf.cases) |
|
2092 apply(simp_all)[7] |
|
2093 apply(clarify) |
|
2094 apply(case_tac "v1 = v1a") |
|
2095 apply(simp) |
|
2096 apply(rule ValOrd.intros) |
|
2097 apply(subst (asm) (3) prefix_def) |
|
2098 apply(erule exE) |
|
2099 apply(simp) |
|
2100 apply (metis prefix_def) |
|
2101 (* the unequal case *) |
|
2102 apply(subgoal_tac "flat v1 \<sqsubset> flat v1a \<or> flat v1a \<sqsubseteq> flat v1") |
|
2103 prefer 2 |
|
2104 apply(simp add: prefix_def sprefix_def) |
|
2105 apply (metis append_eq_append_conv2) |
|
2106 apply(erule disjE) |
|
2107 (* first case flat v1 \<sqsubset> flat v1a *) |
|
2108 apply(subst (asm) sprefix_def) |
|
2109 apply(subst (asm) (5) prefix_def) |
|
2110 apply(clarify) |
|
2111 apply(subgoal_tac "(s3 @ flat v2a) \<sqsubseteq> flat v2") |
|
2112 prefer 2 |
|
2113 apply(simp) |
|
2114 apply (metis append_assoc prefix_append) |
|
2115 apply(subgoal_tac "s3 \<noteq> []") |
|
2116 prefer 2 |
|
2117 apply (metis append_Nil2) |
|
2118 (* HERE *) |
|
2119 apply(subst (asm) (5) prefix_def) |
|
2120 apply(erule exE) |
|
2121 apply(simp add: ders_correctness Ders_def) |
|
2122 apply(simp add: prefix_def) |
|
2123 apply(clarify) |
|
2124 apply(subst (asm) append_eq_append_conv2) |
|
2125 apply(erule exE) |
|
2126 apply(erule disjE) |
|
2127 apply(clarify) |
|
2128 oops |
|
2129 |
|
2130 |
|
2131 |
|
2132 lemma ValOrd_refl: |
|
2133 assumes "\<turnstile> v : r" |
|
2134 shows "v \<succ>r v" |
|
2135 using assms |
|
2136 apply(induct) |
|
2137 apply(auto intro: ValOrd.intros) |
|
2138 done |
|
2139 |
|
2140 lemma ValOrd_total: |
|
2141 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2 \<or> v2 \<succ>r v1" |
|
2142 apply(induct r arbitrary: v1 v2) |
|
2143 apply(auto) |
|
2144 apply(erule Prf.cases) |
|
2145 apply(simp_all)[7] |
|
2146 apply(erule Prf.cases) |
|
2147 apply(simp_all)[7] |
|
2148 apply(erule Prf.cases) |
|
2149 apply(simp_all)[7] |
|
2150 apply (metis ValOrd.intros(7)) |
|
2151 apply(erule Prf.cases) |
|
2152 apply(simp_all)[7] |
|
2153 apply(erule Prf.cases) |
|
2154 apply(simp_all)[7] |
|
2155 apply (metis ValOrd.intros(8)) |
|
2156 apply(erule Prf.cases) |
|
2157 apply(simp_all)[7] |
|
2158 apply(erule Prf.cases) |
|
2159 apply(simp_all)[7] |
|
2160 apply(clarify) |
|
2161 apply(case_tac "v1a = v1b") |
|
2162 apply(simp) |
|
2163 apply(rule ValOrd.intros(1)) |
|
2164 apply (metis ValOrd.intros(1)) |
|
2165 apply(rule ValOrd.intros(2)) |
|
2166 apply(auto)[2] |
|
2167 apply(erule contrapos_np) |
|
2168 apply(rule ValOrd.intros(2)) |
|
2169 apply(auto) |
|
2170 apply(erule Prf.cases) |
|
2171 apply(simp_all)[7] |
|
2172 apply(erule Prf.cases) |
|
2173 apply(simp_all)[7] |
|
2174 apply(clarify) |
|
2175 apply (metis ValOrd.intros(6)) |
|
2176 apply(rule ValOrd.intros) |
|
2177 apply(erule contrapos_np) |
|
2178 apply(rule ValOrd.intros) |
|
2179 apply (metis le_eq_less_or_eq neq_iff) |
|
2180 apply(erule Prf.cases) |
|
2181 apply(simp_all)[7] |
|
2182 apply(rule ValOrd.intros) |
|
2183 apply(erule contrapos_np) |
|
2184 apply(rule ValOrd.intros) |
|
2185 apply (metis le_eq_less_or_eq neq_iff) |
|
2186 apply(rule ValOrd.intros) |
|
2187 apply(erule contrapos_np) |
|
2188 apply(rule ValOrd.intros) |
|
2189 apply(metis) |
|
2190 apply(erule Prf.cases) |
|
2191 apply(simp_all)[7] |
|
2192 apply(erule Prf.cases) |
|
2193 apply(simp_all)[7] |
|
2194 apply(auto) |
|
2195 apply (metis ValOrd.intros(13)) |
|
2196 apply (metis ValOrd.intros(10) ValOrd.intros(9)) |
|
2197 apply(erule Prf.cases) |
|
2198 apply(simp_all)[7] |
|
2199 apply(auto) |
|
2200 apply (metis ValOrd.intros(10) ValOrd.intros(9)) |
|
2201 apply(case_tac "v = va") |
|
2202 prefer 2 |
|
2203 apply (metis ValOrd.intros(11)) |
|
2204 apply(simp) |
|
2205 apply(rule ValOrd.intros(12)) |
|
2206 apply(erule contrapos_np) |
|
2207 apply(rule ValOrd.intros(12)) |
|
2208 oops |
|
2209 |
|
2210 lemma Roy_posix: |
|
2211 assumes "\<rhd> v : r" "\<turnstile> v' : r" "flat v' \<sqsubseteq> flat v" |
|
2212 shows "v \<succ>r v'" |
|
2213 using assms |
|
2214 apply(induct r arbitrary: v v' rule: rexp.induct) |
|
2215 apply(erule Prf.cases) |
|
2216 apply(simp_all)[7] |
|
2217 apply(erule Prf.cases) |
|
2218 apply(simp_all)[7] |
|
2219 apply(erule Roy.cases) |
|
2220 apply(simp_all) |
|
2221 apply (metis ValOrd.intros(7)) |
|
2222 apply(erule Prf.cases) |
|
2223 apply(simp_all)[7] |
|
2224 apply(erule Roy.cases) |
|
2225 apply(simp_all) |
|
2226 apply (metis ValOrd.intros(8)) |
|
2227 prefer 2 |
|
2228 apply(erule Prf.cases) |
|
2229 apply(simp_all)[7] |
|
2230 apply(erule Roy.cases) |
|
2231 apply(simp_all) |
|
2232 apply(clarify) |
|
2233 apply (metis ValOrd.intros(6)) |
|
2234 apply(clarify) |
|
2235 apply (metis Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2236 apply(erule Roy.cases) |
|
2237 apply(simp_all) |
|
2238 apply (metis ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2239 apply(clarify) |
|
2240 apply (metis ValOrd.intros(5)) |
|
2241 apply(erule Prf.cases) |
|
2242 apply(simp_all)[7] |
|
2243 apply(erule Roy.cases) |
|
2244 apply(simp_all) |
|
2245 apply(clarify) |
|
2246 apply(case_tac "v1a = v1") |
|
2247 apply(simp) |
|
2248 apply(rule ValOrd.intros) |
|
2249 apply (metis prefix_append) |
|
2250 apply(rule ValOrd.intros) |
|
2251 prefer 2 |
|
2252 apply(simp) |
|
2253 apply(simp add: prefix_def) |
|
2254 apply(auto)[1] |
|
2255 apply(simp add: append_eq_append_conv2) |
|
2256 apply(auto)[1] |
|
2257 apply(drule_tac x="v1a" in meta_spec) |
|
2258 apply(rotate_tac 9) |
|
2259 apply(drule_tac x="v1" in meta_spec) |
|
2260 apply(drule_tac meta_mp) |
|
2261 apply(simp) |
|
2262 apply(drule_tac meta_mp) |
|
2263 apply(simp) |
|
2264 apply(drule_tac meta_mp) |
|
2265 apply(simp) |
|
2266 apply(drule_tac x="us" in spec) |
|
2267 apply(drule_tac mp) |
|
2268 apply (metis Prf_flat_L) |
|
2269 apply(auto)[1] |
|
2270 oops |
|
2271 |
|
2272 |
|
2273 lemma ValOrd_anti: |
|
2274 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r; v1 \<succ>r v2; v2 \<succ>r v1\<rbrakk> \<Longrightarrow> v1 = v2" |
|
2275 and "\<lbrakk>\<turnstile> Stars vs1 : r; \<turnstile> Stars vs2 : r; Stars vs1 \<succ>r Stars vs2; Stars vs2 \<succ>r Stars vs1\<rbrakk> \<Longrightarrow> vs1 = vs2" |
|
2276 apply(induct v1 and vs1 arbitrary: r v2 and r vs2 rule: val.inducts) |
|
2277 apply(erule Prf.cases) |
|
2278 apply(simp_all)[7] |
|
2279 apply(erule Prf.cases) |
|
2280 apply(simp_all)[7] |
|
2281 apply(erule Prf.cases) |
|
2282 apply(simp_all)[7] |
|
2283 apply(erule Prf.cases) |
|
2284 apply(simp_all)[7] |
|
2285 apply(erule Prf.cases) |
|
2286 apply(simp_all)[7] |
|
2287 apply(erule Prf.cases) |
|
2288 apply(simp_all)[7] |
|
2289 apply(erule ValOrd.cases) |
|
2290 apply(simp_all) |
|
2291 apply(erule ValOrd.cases) |
|
2292 apply(simp_all) |
|
2293 apply(erule ValOrd.cases) |
|
2294 apply(simp_all) |
|
2295 apply(erule Prf.cases) |
|
2296 apply(simp_all)[7] |
|
2297 apply(erule Prf.cases) |
|
2298 apply(simp_all)[7] |
|
2299 apply(erule ValOrd.cases) |
|
2300 apply(simp_all) |
|
2301 apply(erule ValOrd.cases) |
|
2302 apply(simp_all) |
|
2303 apply(erule ValOrd.cases) |
|
2304 apply(simp_all) |
|
2305 apply(erule ValOrd.cases) |
|
2306 apply(simp_all) |
|
2307 apply(erule Prf.cases) |
|
2308 apply(simp_all)[7] |
|
2309 apply(erule Prf.cases) |
|
2310 apply(simp_all)[7] |
|
2311 apply(erule ValOrd.cases) |
|
2312 apply(simp_all) |
|
2313 apply(erule ValOrd.cases) |
|
2314 apply(simp_all) |
|
2315 apply(erule ValOrd.cases) |
|
2316 apply(simp_all) |
|
2317 apply(erule ValOrd.cases) |
|
2318 apply(simp_all) |
|
2319 apply(erule Prf.cases) |
|
2320 apply(simp_all)[7] |
|
2321 apply(erule Prf.cases) |
|
2322 apply(simp_all)[7] |
|
2323 apply(erule ValOrd.cases) |
|
2324 apply(simp_all) |
|
2325 apply(erule ValOrd.cases) |
|
2326 apply(simp_all) |
|
2327 apply(erule Prf.cases) |
|
2328 apply(simp_all)[7] |
|
2329 apply(erule ValOrd.cases) |
|
2330 apply(simp_all) |
|
2331 apply(erule ValOrd.cases) |
|
2332 apply(simp_all) |
|
2333 apply(erule ValOrd.cases) |
|
2334 apply(simp_all) |
|
2335 apply(erule ValOrd.cases) |
|
2336 apply(simp_all) |
|
2337 apply(auto)[1] |
|
2338 prefer 2 |
|
2339 oops |
|
2340 |
|
2341 |
|
2342 (* |
|
2343 |
|
2344 lemma ValOrd_PMatch: |
|
2345 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 \<sqsubseteq> s" |
|
2346 shows "v1 \<succ>r v2" |
|
2347 using assms |
|
2348 apply(induct r arbitrary: s v1 v2 rule: rexp.induct) |
|
2349 apply(erule Prf.cases) |
|
2350 apply(simp_all)[7] |
|
2351 apply(erule Prf.cases) |
|
2352 apply(simp_all)[7] |
|
2353 apply(erule PMatch.cases) |
|
2354 apply(simp_all)[7] |
|
2355 apply (metis ValOrd.intros(7)) |
|
2356 apply(erule Prf.cases) |
|
2357 apply(simp_all)[7] |
|
2358 apply(erule PMatch.cases) |
|
2359 apply(simp_all)[7] |
|
2360 apply (metis ValOrd.intros(8)) |
|
2361 defer |
|
2362 apply(erule Prf.cases) |
|
2363 apply(simp_all)[7] |
|
2364 apply(erule PMatch.cases) |
|
2365 apply(simp_all)[7] |
|
2366 apply (metis ValOrd.intros(6)) |
|
2367 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2368 apply(clarify) |
|
2369 apply(erule PMatch.cases) |
|
2370 apply(simp_all)[7] |
|
2371 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2372 apply(clarify) |
|
2373 apply (metis ValOrd.intros(5)) |
|
2374 (* Stars case *) |
|
2375 apply(erule Prf.cases) |
|
2376 apply(simp_all)[7] |
|
2377 apply(erule PMatch.cases) |
|
2378 apply(simp_all) |
|
2379 apply (metis Nil_is_append_conv ValOrd.intros(10) flat.simps(7)) |
|
2380 apply (metis ValOrd.intros(13)) |
|
2381 apply(clarify) |
|
2382 apply(erule PMatch.cases) |
|
2383 apply(simp_all) |
|
2384 prefer 2 |
|
2385 apply(rule ValOrd.intros) |
|
2386 apply(simp add: prefix_def) |
|
2387 apply(rule ValOrd.intros) |
|
2388 apply(drule_tac x="s1" in meta_spec) |
|
2389 apply(drule_tac x="va" in meta_spec) |
|
2390 apply(drule_tac x="v" in meta_spec) |
|
2391 apply(drule_tac meta_mp) |
|
2392 apply(simp) |
|
2393 apply(drule_tac meta_mp) |
|
2394 apply(simp) |
|
2395 apply(drule_tac meta_mp) |
|
2396 apply(simp add: prefix_def) |
|
2397 apply(auto)[1] |
|
2398 prefer 3 |
|
2399 (* Seq case *) |
|
2400 apply(erule Prf.cases) |
|
2401 apply(simp_all)[5] |
|
2402 apply(auto) |
|
2403 apply(erule PMatch.cases) |
|
2404 apply(simp_all)[5] |
|
2405 apply(auto) |
|
2406 apply(case_tac "v1b = v1a") |
|
2407 apply(auto) |
|
2408 apply(simp add: prefix_def) |
|
2409 apply(auto)[1] |
|
2410 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2411 apply(simp add: prefix_def) |
|
2412 apply(auto)[1] |
|
2413 apply(simp add: append_eq_append_conv2) |
|
2414 apply(auto) |
|
2415 prefer 2 |
|
2416 apply (metis ValOrd.intros(2)) |
|
2417 prefer 2 |
|
2418 apply (metis ValOrd.intros(2)) |
|
2419 apply(case_tac "us = []") |
|
2420 apply(simp) |
|
2421 apply (metis ValOrd.intros(2) append_Nil2) |
|
2422 apply(drule_tac x="us" in spec) |
|
2423 apply(simp) |
|
2424 apply(drule_tac mp) |
|
2425 apply (metis Prf_flat_L) |
|
2426 apply(drule_tac x="s1 @ us" in meta_spec) |
|
2427 apply(drule_tac x="v1b" in meta_spec) |
|
2428 apply(drule_tac x="v1a" in meta_spec) |
|
2429 apply(drule_tac meta_mp) |
|
2430 |
|
2431 apply(simp) |
|
2432 apply(drule_tac meta_mp) |
|
2433 apply(simp) |
|
2434 apply(simp) |
|
2435 apply(simp) |
|
2436 apply(clarify) |
|
2437 apply (metis ValOrd.intros(6)) |
|
2438 apply(clarify) |
|
2439 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2440 apply(erule Prf.cases) |
|
2441 apply(simp_all)[5] |
|
2442 apply(clarify) |
|
2443 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2444 apply (metis ValOrd.intros(5)) |
|
2445 (* Seq case *) |
|
2446 apply(erule Prf.cases) |
|
2447 apply(simp_all)[5] |
|
2448 apply(auto) |
|
2449 apply(case_tac "v1 = v1a") |
|
2450 apply(auto) |
|
2451 apply(simp add: prefix_def) |
|
2452 apply(auto)[1] |
|
2453 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2454 apply(simp add: prefix_def) |
|
2455 apply(auto)[1] |
|
2456 apply(frule PMatch1) |
|
2457 apply(frule PMatch1(2)[symmetric]) |
|
2458 apply(clarify) |
|
2459 apply(simp add: append_eq_append_conv2) |
|
2460 apply(auto) |
|
2461 prefer 2 |
|
2462 apply (metis ValOrd.intros(2)) |
|
2463 prefer 2 |
|
2464 apply (metis ValOrd.intros(2)) |
|
2465 apply(case_tac "us = []") |
|
2466 apply(simp) |
|
2467 apply (metis ValOrd.intros(2) append_Nil2) |
|
2468 apply(drule_tac x="us" in spec) |
|
2469 apply(simp) |
|
2470 apply(drule mp) |
|
2471 apply (metis Prf_flat_L) |
|
2472 apply(drule_tac x="v1a" in meta_spec) |
|
2473 apply(drule_tac meta_mp) |
|
2474 apply(simp) |
|
2475 apply(drule_tac meta_mp) |
|
2476 apply(simp) |
|
2477 |
|
2478 lemma ValOrd_PMatch: |
|
2479 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 \<sqsubseteq> s" |
|
2480 shows "v1 \<succ>r v2" |
|
2481 using assms |
|
2482 apply(induct arbitrary: v2 rule: .induct) |
|
2483 apply(erule Prf.cases) |
|
2484 apply(simp_all)[5] |
|
2485 apply (metis ValOrd.intros(7)) |
|
2486 apply(erule Prf.cases) |
|
2487 apply(simp_all)[5] |
|
2488 apply (metis ValOrd.intros(8)) |
|
2489 apply(erule Prf.cases) |
|
2490 apply(simp_all)[5] |
|
2491 apply(clarify) |
|
2492 apply (metis ValOrd.intros(6)) |
|
2493 apply(clarify) |
|
2494 apply (metis PMatch1(2) ValOrd.intros(3) length_sprefix less_imp_le_nat order_refl sprefix_def) |
|
2495 apply(erule Prf.cases) |
|
2496 apply(simp_all)[5] |
|
2497 apply(clarify) |
|
2498 apply (metis PMatch1(2) Prf_flat_L ValOrd.intros(4) length_sprefix sprefix_def) |
|
2499 apply (metis ValOrd.intros(5)) |
|
2500 (* Seq case *) |
|
2501 apply(erule Prf.cases) |
|
2502 apply(simp_all)[5] |
|
2503 apply(auto) |
|
2504 apply(case_tac "v1 = v1a") |
|
2505 apply(auto) |
|
2506 apply(simp add: prefix_def) |
|
2507 apply(auto)[1] |
|
2508 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2509 apply(simp add: prefix_def) |
|
2510 apply(auto)[1] |
|
2511 apply(frule PMatch1) |
|
2512 apply(frule PMatch1(2)[symmetric]) |
|
2513 apply(clarify) |
|
2514 apply(simp add: append_eq_append_conv2) |
|
2515 apply(auto) |
|
2516 prefer 2 |
|
2517 apply (metis ValOrd.intros(2)) |
|
2518 prefer 2 |
|
2519 apply (metis ValOrd.intros(2)) |
|
2520 apply(case_tac "us = []") |
|
2521 apply(simp) |
|
2522 apply (metis ValOrd.intros(2) append_Nil2) |
|
2523 apply(drule_tac x="us" in spec) |
|
2524 apply(simp) |
|
2525 apply(drule mp) |
|
2526 apply (metis Prf_flat_L) |
|
2527 apply(drule_tac x="v1a" in meta_spec) |
|
2528 apply(drule_tac meta_mp) |
|
2529 apply(simp) |
|
2530 apply(drule_tac meta_mp) |
|
2531 apply(simp) |
|
2532 |
|
2533 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2534 apply(rule ValOrd.intros(2)) |
|
2535 apply(auto) |
|
2536 apply(drule_tac x="v1a" in meta_spec) |
|
2537 apply(drule_tac meta_mp) |
|
2538 apply(simp) |
|
2539 apply(drule_tac meta_mp) |
|
2540 prefer 2 |
|
2541 apply(simp) |
|
2542 thm append_eq_append_conv |
|
2543 apply(simp add: append_eq_append_conv2) |
|
2544 apply(auto) |
|
2545 apply (metis Prf_flat_L) |
|
2546 apply(case_tac "us = []") |
|
2547 apply(simp) |
|
2548 apply(drule_tac x="us" in spec) |
|
2549 apply(drule mp) |
|
2550 |
|
2551 |
|
2552 inductive ValOrd2 :: "val \<Rightarrow> val \<Rightarrow> bool" ("_ 2\<succ> _" [100, 100] 100) |
|
2553 where |
|
2554 "v2 2\<succ> v2' \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1 v2')" |
|
2555 | "\<lbrakk>v1 2\<succ> v1'; v1 \<noteq> v1'\<rbrakk> \<Longrightarrow> (Seq v1 v2) 2\<succ> (Seq v1' v2')" |
|
2556 | "length (flat v1) \<ge> length (flat v2) \<Longrightarrow> (Left v1) 2\<succ> (Right v2)" |
|
2557 | "length (flat v2) > length (flat v1) \<Longrightarrow> (Right v2) 2\<succ> (Left v1)" |
|
2558 | "v2 2\<succ> v2' \<Longrightarrow> (Right v2) 2\<succ> (Right v2')" |
|
2559 | "v1 2\<succ> v1' \<Longrightarrow> (Left v1) 2\<succ> (Left v1')" |
|
2560 | "Void 2\<succ> Void" |
|
2561 | "(Char c) 2\<succ> (Char c)" |
|
2562 |
|
2563 lemma Ord1: |
|
2564 "v1 \<succ>r v2 \<Longrightarrow> v1 2\<succ> v2" |
|
2565 apply(induct rule: ValOrd.induct) |
|
2566 apply(auto intro: ValOrd2.intros) |
|
2567 done |
|
2568 |
|
2569 lemma Ord2: |
|
2570 "v1 2\<succ> v2 \<Longrightarrow> \<exists>r. v1 \<succ>r v2" |
|
2571 apply(induct v1 v2 rule: ValOrd2.induct) |
|
2572 apply(auto intro: ValOrd.intros) |
|
2573 done |
|
2574 |
|
2575 lemma Ord3: |
|
2576 "\<lbrakk>v1 2\<succ> v2; \<turnstile> v1 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2" |
|
2577 apply(induct v1 v2 arbitrary: r rule: ValOrd2.induct) |
|
2578 apply(auto intro: ValOrd.intros elim: Prf.cases) |
|
2579 done |
|
2580 |
|
2581 section {* Posix definition *} |
|
2582 |
|
2583 definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
2584 where |
|
2585 "POSIX v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v' \<sqsubseteq> flat v) \<longrightarrow> v \<succ>r v'))" |
|
2586 |
|
2587 lemma ValOrd_refl: |
|
2588 assumes "\<turnstile> v : r" |
|
2589 shows "v \<succ>r v" |
|
2590 using assms |
|
2591 apply(induct) |
|
2592 apply(auto intro: ValOrd.intros) |
|
2593 done |
|
2594 |
|
2595 lemma ValOrd_total: |
|
2596 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r\<rbrakk> \<Longrightarrow> v1 \<succ>r v2 \<or> v2 \<succ>r v1" |
|
2597 apply(induct r arbitrary: v1 v2) |
|
2598 apply(auto) |
|
2599 apply(erule Prf.cases) |
|
2600 apply(simp_all)[5] |
|
2601 apply(erule Prf.cases) |
|
2602 apply(simp_all)[5] |
|
2603 apply(erule Prf.cases) |
|
2604 apply(simp_all)[5] |
|
2605 apply (metis ValOrd.intros(7)) |
|
2606 apply(erule Prf.cases) |
|
2607 apply(simp_all)[5] |
|
2608 apply(erule Prf.cases) |
|
2609 apply(simp_all)[5] |
|
2610 apply (metis ValOrd.intros(8)) |
|
2611 apply(erule Prf.cases) |
|
2612 apply(simp_all)[5] |
|
2613 apply(erule Prf.cases) |
|
2614 apply(simp_all)[5] |
|
2615 apply(clarify) |
|
2616 apply(case_tac "v1a = v1b") |
|
2617 apply(simp) |
|
2618 apply(rule ValOrd.intros(1)) |
|
2619 apply (metis ValOrd.intros(1)) |
|
2620 apply(rule ValOrd.intros(2)) |
|
2621 apply(auto)[2] |
|
2622 apply(erule contrapos_np) |
|
2623 apply(rule ValOrd.intros(2)) |
|
2624 apply(auto) |
|
2625 apply(erule Prf.cases) |
|
2626 apply(simp_all)[5] |
|
2627 apply(erule Prf.cases) |
|
2628 apply(simp_all)[5] |
|
2629 apply (metis Ord1 Ord3 Prf.intros(2) ValOrd2.intros(6)) |
|
2630 apply(rule ValOrd.intros) |
|
2631 apply(erule contrapos_np) |
|
2632 apply(rule ValOrd.intros) |
|
2633 apply (metis le_eq_less_or_eq neq_iff) |
|
2634 apply(erule Prf.cases) |
|
2635 apply(simp_all)[5] |
|
2636 apply(rule ValOrd.intros) |
|
2637 apply(erule contrapos_np) |
|
2638 apply(rule ValOrd.intros) |
|
2639 apply (metis le_eq_less_or_eq neq_iff) |
|
2640 apply(rule ValOrd.intros) |
|
2641 apply(erule contrapos_np) |
|
2642 apply(rule ValOrd.intros) |
|
2643 by metis |
|
2644 |
|
2645 lemma ValOrd_anti: |
|
2646 shows "\<lbrakk>\<turnstile> v1 : r; \<turnstile> v2 : r; v1 \<succ>r v2; v2 \<succ>r v1\<rbrakk> \<Longrightarrow> v1 = v2" |
|
2647 apply(induct r arbitrary: v1 v2) |
|
2648 apply(erule Prf.cases) |
|
2649 apply(simp_all)[5] |
|
2650 apply(erule Prf.cases) |
|
2651 apply(simp_all)[5] |
|
2652 apply(erule Prf.cases) |
|
2653 apply(simp_all)[5] |
|
2654 apply(erule Prf.cases) |
|
2655 apply(simp_all)[5] |
|
2656 apply(erule Prf.cases) |
|
2657 apply(simp_all)[5] |
|
2658 apply(erule Prf.cases) |
|
2659 apply(simp_all)[5] |
|
2660 apply(erule Prf.cases) |
|
2661 apply(simp_all)[5] |
|
2662 apply(erule ValOrd.cases) |
|
2663 apply(simp_all)[8] |
|
2664 apply(erule ValOrd.cases) |
|
2665 apply(simp_all)[8] |
|
2666 apply(erule ValOrd.cases) |
|
2667 apply(simp_all)[8] |
|
2668 apply(erule Prf.cases) |
|
2669 apply(simp_all)[5] |
|
2670 apply(erule Prf.cases) |
|
2671 apply(simp_all)[5] |
|
2672 apply(erule ValOrd.cases) |
|
2673 apply(simp_all)[8] |
|
2674 apply(erule ValOrd.cases) |
|
2675 apply(simp_all)[8] |
|
2676 apply(erule ValOrd.cases) |
|
2677 apply(simp_all)[8] |
|
2678 apply(erule ValOrd.cases) |
|
2679 apply(simp_all)[8] |
|
2680 apply(erule Prf.cases) |
|
2681 apply(simp_all)[5] |
|
2682 apply(erule ValOrd.cases) |
|
2683 apply(simp_all)[8] |
|
2684 apply(erule ValOrd.cases) |
|
2685 apply(simp_all)[8] |
|
2686 apply(erule ValOrd.cases) |
|
2687 apply(simp_all)[8] |
|
2688 apply(erule ValOrd.cases) |
|
2689 apply(simp_all)[8] |
|
2690 done |
|
2691 |
|
2692 lemma POSIX_ALT_I1: |
|
2693 assumes "POSIX v1 r1" |
|
2694 shows "POSIX (Left v1) (ALT r1 r2)" |
|
2695 using assms |
|
2696 unfolding POSIX_def |
|
2697 apply(auto) |
|
2698 apply (metis Prf.intros(2)) |
|
2699 apply(rotate_tac 2) |
|
2700 apply(erule Prf.cases) |
|
2701 apply(simp_all)[5] |
|
2702 apply(auto) |
|
2703 apply(rule ValOrd.intros) |
|
2704 apply(auto) |
|
2705 apply(rule ValOrd.intros) |
|
2706 by (metis le_eq_less_or_eq length_sprefix sprefix_def) |
|
2707 |
|
2708 lemma POSIX_ALT_I2: |
|
2709 assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')" |
|
2710 shows "POSIX (Right v2) (ALT r1 r2)" |
|
2711 using assms |
|
2712 unfolding POSIX_def |
|
2713 apply(auto) |
|
2714 apply (metis Prf.intros) |
|
2715 apply(rotate_tac 3) |
|
2716 apply(erule Prf.cases) |
|
2717 apply(simp_all)[5] |
|
2718 apply(auto) |
|
2719 apply(rule ValOrd.intros) |
|
2720 apply metis |
|
2721 apply(rule ValOrd.intros) |
|
2722 apply metis |
|
2723 done |
|
2724 |
|
2725 thm PMatch.intros[no_vars] |
|
2726 |
|
2727 lemma POSIX_PMatch: |
|
2728 assumes "s \<in> r \<rightarrow> v" "\<turnstile> v' : r" |
|
2729 shows "length (flat v') \<le> length (flat v)" |
|
2730 using assms |
|
2731 apply(induct arbitrary: s v v' rule: rexp.induct) |
|
2732 apply(erule Prf.cases) |
|
2733 apply(simp_all)[5] |
|
2734 apply(erule Prf.cases) |
|
2735 apply(simp_all)[5] |
|
2736 apply(erule Prf.cases) |
|
2737 apply(simp_all)[5] |
|
2738 apply(erule PMatch.cases) |
|
2739 apply(simp_all)[5] |
|
2740 defer |
|
2741 apply(erule Prf.cases) |
|
2742 apply(simp_all)[5] |
|
2743 apply(erule PMatch.cases) |
|
2744 apply(simp_all)[5] |
|
2745 apply(clarify) |
|
2746 apply(simp add: L_flat_Prf) |
|
2747 |
|
2748 apply(clarify) |
|
2749 apply (metis ValOrd.intros(8)) |
|
2750 apply (metis POSIX_ALT_I1) |
|
2751 apply(rule POSIX_ALT_I2) |
|
2752 apply(simp) |
|
2753 apply(auto)[1] |
|
2754 apply(simp add: POSIX_def) |
|
2755 apply(frule PMatch1(1)) |
|
2756 apply(frule PMatch1(2)) |
|
2757 apply(simp) |
|
2758 |
|
2759 |
|
2760 lemma POSIX_PMatch: |
|
2761 assumes "s \<in> r \<rightarrow> v" |
|
2762 shows "POSIX v r" |
|
2763 using assms |
|
2764 apply(induct arbitrary: rule: PMatch.induct) |
|
2765 apply(auto) |
|
2766 apply(simp add: POSIX_def) |
|
2767 apply(auto)[1] |
|
2768 apply (metis Prf.intros(4)) |
|
2769 apply(erule Prf.cases) |
|
2770 apply(simp_all)[5] |
|
2771 apply (metis ValOrd.intros(7)) |
|
2772 apply(simp add: POSIX_def) |
|
2773 apply(auto)[1] |
|
2774 apply (metis Prf.intros(5)) |
|
2775 apply(erule Prf.cases) |
|
2776 apply(simp_all)[5] |
|
2777 apply (metis ValOrd.intros(8)) |
|
2778 apply (metis POSIX_ALT_I1) |
|
2779 apply(rule POSIX_ALT_I2) |
|
2780 apply(simp) |
|
2781 apply(auto)[1] |
|
2782 apply(simp add: POSIX_def) |
|
2783 apply(frule PMatch1(1)) |
|
2784 apply(frule PMatch1(2)) |
|
2785 apply(simp) |
|
2786 |
|
2787 |
|
2788 |
|
2789 lemma ValOrd_PMatch: |
|
2790 assumes "s \<in> r \<rightarrow> v1" "\<turnstile> v2 : r" "flat v2 = s" |
|
2791 shows "v1 \<succ>r v2" |
|
2792 using assms |
|
2793 apply(induct arbitrary: v2 rule: PMatch.induct) |
|
2794 apply(erule Prf.cases) |
|
2795 apply(simp_all)[5] |
|
2796 apply (metis ValOrd.intros(7)) |
|
2797 apply(erule Prf.cases) |
|
2798 apply(simp_all)[5] |
|
2799 apply (metis ValOrd.intros(8)) |
|
2800 apply(erule Prf.cases) |
|
2801 apply(simp_all)[5] |
|
2802 apply(clarify) |
|
2803 apply (metis ValOrd.intros(6)) |
|
2804 apply(clarify) |
|
2805 apply (metis PMatch1(2) ValOrd.intros(3) order_refl) |
|
2806 apply(erule Prf.cases) |
|
2807 apply(simp_all)[5] |
|
2808 apply(clarify) |
|
2809 apply (metis Prf_flat_L) |
|
2810 apply (metis ValOrd.intros(5)) |
|
2811 (* Seq case *) |
|
2812 apply(erule Prf.cases) |
|
2813 apply(simp_all)[5] |
|
2814 apply(auto) |
|
2815 apply(case_tac "v1 = v1a") |
|
2816 apply(auto) |
|
2817 apply (metis PMatch1(2) ValOrd.intros(1) same_append_eq) |
|
2818 apply(rule ValOrd.intros(2)) |
|
2819 apply(auto) |
|
2820 apply(drule_tac x="v1a" in meta_spec) |
|
2821 apply(drule_tac meta_mp) |
|
2822 apply(simp) |
|
2823 apply(drule_tac meta_mp) |
|
2824 prefer 2 |
|
2825 apply(simp) |
|
2826 apply(simp add: append_eq_append_conv2) |
|
2827 apply(auto) |
|
2828 apply (metis Prf_flat_L) |
|
2829 apply(case_tac "us = []") |
|
2830 apply(simp) |
|
2831 apply(drule_tac x="us" in spec) |
|
2832 apply(drule mp) |
|
2833 |
|
2834 thm L_flat_Prf |
|
2835 apply(simp add: L_flat_Prf) |
|
2836 thm append_eq_append_conv2 |
|
2837 apply(simp add: append_eq_append_conv2) |
|
2838 apply(auto) |
|
2839 apply(drule_tac x="us" in spec) |
|
2840 apply(drule mp) |
|
2841 apply metis |
|
2842 apply (metis append_Nil2) |
|
2843 apply(case_tac "us = []") |
|
2844 apply(auto) |
|
2845 apply(drule_tac x="s2" in spec) |
|
2846 apply(drule mp) |
|
2847 |
|
2848 apply(auto)[1] |
|
2849 apply(drule_tac x="v1a" in meta_spec) |
|
2850 apply(simp) |
|
2851 |
|
2852 lemma refl_on_ValOrd: |
|
2853 "refl_on (Values r s) {(v1, v2). v1 \<succ>r v2 \<and> v1 \<in> Values r s \<and> v2 \<in> Values r s}" |
|
2854 unfolding refl_on_def |
|
2855 apply(auto) |
|
2856 apply(rule ValOrd_refl) |
|
2857 apply(simp add: Values_def) |
|
2858 done |
|
2859 |
|
2860 |
|
2861 section {* Posix definition *} |
|
2862 |
|
2863 definition POSIX :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
2864 where |
|
2865 "POSIX v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v \<succ>r v'))" |
|
2866 |
|
2867 definition POSIX2 :: "val \<Rightarrow> rexp \<Rightarrow> bool" |
|
2868 where |
|
2869 "POSIX2 v r \<equiv> (\<turnstile> v : r \<and> (\<forall>v'. (\<turnstile> v' : r \<and> flat v = flat v') \<longrightarrow> v 2\<succ> v'))" |
|
2870 |
|
2871 lemma "POSIX v r = POSIX2 v r" |
|
2872 unfolding POSIX_def POSIX2_def |
|
2873 apply(auto) |
|
2874 apply(rule Ord1) |
|
2875 apply(auto) |
|
2876 apply(rule Ord3) |
|
2877 apply(auto) |
|
2878 done |
|
2879 |
|
2880 section {* POSIX for some constructors *} |
|
2881 |
|
2882 lemma POSIX_SEQ1: |
|
2883 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
2884 shows "POSIX v1 r1" |
|
2885 using assms |
|
2886 unfolding POSIX_def |
|
2887 apply(auto) |
|
2888 apply(drule_tac x="Seq v' v2" in spec) |
|
2889 apply(simp) |
|
2890 apply(erule impE) |
|
2891 apply(rule Prf.intros) |
|
2892 apply(simp) |
|
2893 apply(simp) |
|
2894 apply(erule ValOrd.cases) |
|
2895 apply(simp_all) |
|
2896 apply(clarify) |
|
2897 by (metis ValOrd_refl) |
|
2898 |
|
2899 lemma POSIX_SEQ2: |
|
2900 assumes "POSIX (Seq v1 v2) (SEQ r1 r2)" "\<turnstile> v1 : r1" "\<turnstile> v2 : r2" |
|
2901 shows "POSIX v2 r2" |
|
2902 using assms |
|
2903 unfolding POSIX_def |
|
2904 apply(auto) |
|
2905 apply(drule_tac x="Seq v1 v'" in spec) |
|
2906 apply(simp) |
|
2907 apply(erule impE) |
|
2908 apply(rule Prf.intros) |
|
2909 apply(simp) |
|
2910 apply(simp) |
|
2911 apply(erule ValOrd.cases) |
|
2912 apply(simp_all) |
|
2913 done |
|
2914 |
|
2915 lemma POSIX_ALT2: |
|
2916 assumes "POSIX (Left v1) (ALT r1 r2)" |
|
2917 shows "POSIX v1 r1" |
|
2918 using assms |
|
2919 unfolding POSIX_def |
|
2920 apply(auto) |
|
2921 apply(erule Prf.cases) |
|
2922 apply(simp_all)[5] |
|
2923 apply(drule_tac x="Left v'" in spec) |
|
2924 apply(simp) |
|
2925 apply(drule mp) |
|
2926 apply(rule Prf.intros) |
|
2927 apply(auto) |
|
2928 apply(erule ValOrd.cases) |
|
2929 apply(simp_all) |
|
2930 done |
|
2931 |
|
2932 lemma POSIX_ALT1a: |
|
2933 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
2934 shows "POSIX v2 r2" |
|
2935 using assms |
|
2936 unfolding POSIX_def |
|
2937 apply(auto) |
|
2938 apply(erule Prf.cases) |
|
2939 apply(simp_all)[5] |
|
2940 apply(drule_tac x="Right v'" in spec) |
|
2941 apply(simp) |
|
2942 apply(drule mp) |
|
2943 apply(rule Prf.intros) |
|
2944 apply(auto) |
|
2945 apply(erule ValOrd.cases) |
|
2946 apply(simp_all) |
|
2947 done |
|
2948 |
|
2949 lemma POSIX_ALT1b: |
|
2950 assumes "POSIX (Right v2) (ALT r1 r2)" |
|
2951 shows "(\<forall>v'. (\<turnstile> v' : r2 \<and> flat v' = flat v2) \<longrightarrow> v2 \<succ>r2 v')" |
|
2952 using assms |
|
2953 apply(drule_tac POSIX_ALT1a) |
|
2954 unfolding POSIX_def |
|
2955 apply(auto) |
|
2956 done |
|
2957 |
|
2958 lemma POSIX_ALT_I1: |
|
2959 assumes "POSIX v1 r1" |
|
2960 shows "POSIX (Left v1) (ALT r1 r2)" |
|
2961 using assms |
|
2962 unfolding POSIX_def |
|
2963 apply(auto) |
|
2964 apply (metis Prf.intros(2)) |
|
2965 apply(rotate_tac 2) |
|
2966 apply(erule Prf.cases) |
|
2967 apply(simp_all)[5] |
|
2968 apply(auto) |
|
2969 apply(rule ValOrd.intros) |
|
2970 apply(auto) |
|
2971 apply(rule ValOrd.intros) |
|
2972 by simp |
|
2973 |
|
2974 lemma POSIX_ALT_I2: |
|
2975 assumes "POSIX v2 r2" "\<forall>v'. \<turnstile> v' : r1 \<longrightarrow> length (flat v2) > length (flat v')" |
|
2976 shows "POSIX (Right v2) (ALT r1 r2)" |
|
2977 using assms |
|
2978 unfolding POSIX_def |
|
2979 apply(auto) |
|
2980 apply (metis Prf.intros) |
|
2981 apply(rotate_tac 3) |
|
2982 apply(erule Prf.cases) |
|
2983 apply(simp_all)[5] |
|
2984 apply(auto) |
|
2985 apply(rule ValOrd.intros) |
|
2986 apply metis |
|
2987 done |
|
2988 |
|
2989 lemma mkeps_POSIX: |
|
2990 assumes "nullable r" |
|
2991 shows "POSIX (mkeps r) r" |
|
2992 using assms |
|
2993 apply(induct r) |
|
2994 apply(auto)[1] |
|
2995 apply(simp add: POSIX_def) |
|
2996 apply(auto)[1] |
|
2997 apply (metis Prf.intros(4)) |
|
2998 apply(erule Prf.cases) |
|
2999 apply(simp_all)[5] |
|
3000 apply (metis ValOrd.intros) |
|
3001 apply(simp) |
|
3002 apply(auto)[1] |
|
3003 apply(simp add: POSIX_def) |
|
3004 apply(auto)[1] |
|
3005 apply (metis mkeps.simps(2) mkeps_nullable nullable.simps(5)) |
|
3006 apply(rotate_tac 6) |
|
3007 apply(erule Prf.cases) |
|
3008 apply(simp_all)[5] |
|
3009 apply (simp add: mkeps_flat) |
|
3010 apply(case_tac "mkeps r1a = v1") |
|
3011 apply(simp) |
|
3012 apply (metis ValOrd.intros(1)) |
|
3013 apply (rule ValOrd.intros(2)) |
|
3014 apply metis |
|
3015 apply(simp) |
|
3016 (* ALT case *) |
|
3017 thm mkeps.simps |
|
3018 apply(simp) |
|
3019 apply(erule disjE) |
|
3020 apply(simp) |
|
3021 apply (metis POSIX_ALT_I1) |
|
3022 (* *) |
|
3023 apply(auto)[1] |
|
3024 thm POSIX_ALT_I1 |
|
3025 apply (metis POSIX_ALT_I1) |
|
3026 apply(simp (no_asm) add: POSIX_def) |
|
3027 apply(auto)[1] |
|
3028 apply(rule Prf.intros(3)) |
|
3029 apply(simp only: POSIX_def) |
|
3030 apply(rotate_tac 4) |
|
3031 apply(erule Prf.cases) |
|
3032 apply(simp_all)[5] |
|
3033 thm mkeps_flat |
|
3034 apply(simp add: mkeps_flat) |
|
3035 apply(auto)[1] |
|
3036 thm Prf_flat_L nullable_correctness |
|
3037 apply (metis Prf_flat_L nullable_correctness) |
|
3038 apply(rule ValOrd.intros) |
|
3039 apply(subst (asm) POSIX_def) |
|
3040 apply(clarify) |
|
3041 apply(drule_tac x="v2" in spec) |
|
3042 by simp |
|
3043 |
|
3044 |
|
3045 |
|
3046 text {* |
|
3047 Injection value is related to r |
|
3048 *} |
|
3049 |
|
3050 |
|
3051 |
|
3052 text {* |
|
3053 The string behind the injection value is an added c |
|
3054 *} |
|
3055 |
|
3056 |
|
3057 lemma injval_inj: "inj_on (injval r c) {v. \<turnstile> v : der c r}" |
|
3058 apply(induct c r rule: der.induct) |
|
3059 unfolding inj_on_def |
|
3060 apply(auto)[1] |
|
3061 apply(erule Prf.cases) |
|
3062 apply(simp_all)[5] |
|
3063 apply(auto)[1] |
|
3064 apply(erule Prf.cases) |
|
3065 apply(simp_all)[5] |
|
3066 apply(auto)[1] |
|
3067 apply(erule Prf.cases) |
|
3068 apply(simp_all)[5] |
|
3069 apply(erule Prf.cases) |
|
3070 apply(simp_all)[5] |
|
3071 apply(erule Prf.cases) |
|
3072 apply(simp_all)[5] |
|
3073 apply(auto)[1] |
|
3074 apply(erule Prf.cases) |
|
3075 apply(simp_all)[5] |
|
3076 apply(erule Prf.cases) |
|
3077 apply(simp_all)[5] |
|
3078 apply(erule Prf.cases) |
|
3079 apply(simp_all)[5] |
|
3080 apply(auto)[1] |
|
3081 apply(erule Prf.cases) |
|
3082 apply(simp_all)[5] |
|
3083 apply(erule Prf.cases) |
|
3084 apply(simp_all)[5] |
|
3085 apply(clarify) |
|
3086 apply(erule Prf.cases) |
|
3087 apply(simp_all)[5] |
|
3088 apply(erule Prf.cases) |
|
3089 apply(simp_all)[5] |
|
3090 apply(clarify) |
|
3091 apply(erule Prf.cases) |
|
3092 apply(simp_all)[5] |
|
3093 apply(clarify) |
|
3094 apply (metis list.distinct(1) mkeps_flat v4) |
|
3095 apply(erule Prf.cases) |
|
3096 apply(simp_all)[5] |
|
3097 apply(clarify) |
|
3098 apply(rotate_tac 6) |
|
3099 apply(erule Prf.cases) |
|
3100 apply(simp_all)[5] |
|
3101 apply (metis list.distinct(1) mkeps_flat v4) |
|
3102 apply(erule Prf.cases) |
|
3103 apply(simp_all)[5] |
|
3104 apply(erule Prf.cases) |
|
3105 apply(simp_all)[5] |
|
3106 done |
|
3107 |
|
3108 lemma Values_nullable: |
|
3109 assumes "nullable r1" |
|
3110 shows "mkeps r1 \<in> Values r1 s" |
|
3111 using assms |
|
3112 apply(induct r1 arbitrary: s) |
|
3113 apply(simp_all) |
|
3114 apply(simp add: Values_recs) |
|
3115 apply(simp add: Values_recs) |
|
3116 apply(simp add: Values_recs) |
|
3117 apply(auto)[1] |
|
3118 done |
|
3119 |
|
3120 lemma Values_injval: |
|
3121 assumes "v \<in> Values (der c r) s" |
|
3122 shows "injval r c v \<in> Values r (c#s)" |
|
3123 using assms |
|
3124 apply(induct c r arbitrary: v s rule: der.induct) |
|
3125 apply(simp add: Values_recs) |
|
3126 apply(simp add: Values_recs) |
|
3127 apply(case_tac "c = c'") |
|
3128 apply(simp) |
|
3129 apply(simp add: Values_recs) |
|
3130 apply(simp add: prefix_def) |
|
3131 apply(simp) |
|
3132 apply(simp add: Values_recs) |
|
3133 apply(simp) |
|
3134 apply(simp add: Values_recs) |
|
3135 apply(auto)[1] |
|
3136 apply(case_tac "nullable r1") |
|
3137 apply(simp) |
|
3138 apply(simp add: Values_recs) |
|
3139 apply(auto)[1] |
|
3140 apply(simp add: rest_def) |
|
3141 apply(subst v4) |
|
3142 apply(simp add: Values_def) |
|
3143 apply(simp add: Values_def) |
|
3144 apply(rule Values_nullable) |
|
3145 apply(assumption) |
|
3146 apply(simp add: rest_def) |
|
3147 apply(subst mkeps_flat) |
|
3148 apply(assumption) |
|
3149 apply(simp) |
|
3150 apply(simp) |
|
3151 apply(simp add: Values_recs) |
|
3152 apply(auto)[1] |
|
3153 apply(simp add: rest_def) |
|
3154 apply(subst v4) |
|
3155 apply(simp add: Values_def) |
|
3156 apply(simp add: Values_def) |
|
3157 done |
|
3158 |
|
3159 lemma Values_projval: |
|
3160 assumes "v \<in> Values r (c#s)" "\<exists>s. flat v = c # s" |
|
3161 shows "projval r c v \<in> Values (der c r) s" |
|
3162 using assms |
|
3163 apply(induct r arbitrary: v s c rule: rexp.induct) |
|
3164 apply(simp add: Values_recs) |
|
3165 apply(simp add: Values_recs) |
|
3166 apply(case_tac "c = char") |
|
3167 apply(simp) |
|
3168 apply(simp add: Values_recs) |
|
3169 apply(simp) |
|
3170 apply(simp add: Values_recs) |
|
3171 apply(simp add: prefix_def) |
|
3172 apply(case_tac "nullable rexp1") |
|
3173 apply(simp) |
|
3174 apply(simp add: Values_recs) |
|
3175 apply(auto)[1] |
|
3176 apply(simp add: rest_def) |
|
3177 apply (metis hd_Cons_tl hd_append2 list.sel(1)) |
|
3178 apply(simp add: rest_def) |
|
3179 apply(simp add: append_eq_Cons_conv) |
|
3180 apply(auto)[1] |
|
3181 apply(subst v4_proj2) |
|
3182 apply(simp add: Values_def) |
|
3183 apply(assumption) |
|
3184 apply(simp) |
|
3185 apply(simp) |
|
3186 apply(simp add: Values_recs) |
|
3187 apply(auto)[1] |
|
3188 apply(auto simp add: Values_def not_nullable_flat)[1] |
|
3189 apply(simp add: append_eq_Cons_conv) |
|
3190 apply(auto)[1] |
|
3191 apply(simp add: append_eq_Cons_conv) |
|
3192 apply(auto)[1] |
|
3193 apply(simp add: rest_def) |
|
3194 apply(subst v4_proj2) |
|
3195 apply(simp add: Values_def) |
|
3196 apply(assumption) |
|
3197 apply(simp) |
|
3198 apply(simp add: Values_recs) |
|
3199 apply(auto)[1] |
|
3200 done |
|
3201 |
|
3202 |
|
3203 definition "MValue v r s \<equiv> (v \<in> Values r s \<and> (\<forall>v' \<in> Values r s. v 2\<succ> v'))" |
|
3204 |
|
3205 lemma MValue_ALTE: |
|
3206 assumes "MValue v (ALT r1 r2) s" |
|
3207 shows "(\<exists>vl. v = Left vl \<and> MValue vl r1 s \<and> (\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl))) \<or> |
|
3208 (\<exists>vr. v = Right vr \<and> MValue vr r2 s \<and> (\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)))" |
|
3209 using assms |
|
3210 apply(simp add: MValue_def) |
|
3211 apply(simp add: Values_recs) |
|
3212 apply(auto) |
|
3213 apply(drule_tac x="Left x" in bspec) |
|
3214 apply(simp) |
|
3215 apply(erule ValOrd2.cases) |
|
3216 apply(simp_all) |
|
3217 apply(drule_tac x="Right vr" in bspec) |
|
3218 apply(simp) |
|
3219 apply(erule ValOrd2.cases) |
|
3220 apply(simp_all) |
|
3221 apply(drule_tac x="Right x" in bspec) |
|
3222 apply(simp) |
|
3223 apply(erule ValOrd2.cases) |
|
3224 apply(simp_all) |
|
3225 apply(drule_tac x="Left vl" in bspec) |
|
3226 apply(simp) |
|
3227 apply(erule ValOrd2.cases) |
|
3228 apply(simp_all) |
|
3229 done |
|
3230 |
|
3231 lemma MValue_ALTI1: |
|
3232 assumes "MValue vl r1 s" "\<forall>vr \<in> Values r2 s. length (flat vr) \<le> length (flat vl)" |
|
3233 shows "MValue (Left vl) (ALT r1 r2) s" |
|
3234 using assms |
|
3235 apply(simp add: MValue_def) |
|
3236 apply(simp add: Values_recs) |
|
3237 apply(auto) |
|
3238 apply(rule ValOrd2.intros) |
|
3239 apply metis |
|
3240 apply(rule ValOrd2.intros) |
|
3241 apply metis |
|
3242 done |
|
3243 |
|
3244 lemma MValue_ALTI2: |
|
3245 assumes "MValue vr r2 s" "\<forall>vl \<in> Values r1 s. length (flat vl) < length (flat vr)" |
|
3246 shows "MValue (Right vr) (ALT r1 r2) s" |
|
3247 using assms |
|
3248 apply(simp add: MValue_def) |
|
3249 apply(simp add: Values_recs) |
|
3250 apply(auto) |
|
3251 apply(rule ValOrd2.intros) |
|
3252 apply metis |
|
3253 apply(rule ValOrd2.intros) |
|
3254 apply metis |
|
3255 done |
|
3256 |
|
3257 lemma t: "(c#xs = c#ys) \<Longrightarrow> xs = ys" |
|
3258 by (metis list.sel(3)) |
|
3259 |
|
3260 lemma t2: "(xs = ys) \<Longrightarrow> (c#xs) = (c#ys)" |
|
3261 by (metis) |
|
3262 |
|
3263 lemma "\<not>(nullable r) \<Longrightarrow> \<not>(\<exists>v. \<turnstile> v : r \<and> flat v = [])" |
|
3264 by (metis Prf_flat_L nullable_correctness) |
|
3265 |
|
3266 |
|
3267 lemma LeftRight: |
|
3268 assumes "(Left v1) \<succ>(der c (ALT r1 r2)) (Right v2)" |
|
3269 and "\<turnstile> v1 : der c r1" "\<turnstile> v2 : der c r2" |
|
3270 shows "(injval (ALT r1 r2) c (Left v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Right v2))" |
|
3271 using assms |
|
3272 apply(simp) |
|
3273 apply(erule ValOrd.cases) |
|
3274 apply(simp_all)[8] |
|
3275 apply(rule ValOrd.intros) |
|
3276 apply(clarify) |
|
3277 apply(subst v4) |
|
3278 apply(simp) |
|
3279 apply(subst v4) |
|
3280 apply(simp) |
|
3281 apply(simp) |
|
3282 done |
|
3283 |
|
3284 lemma RightLeft: |
|
3285 assumes "(Right v1) \<succ>(der c (ALT r1 r2)) (Left v2)" |
|
3286 and "\<turnstile> v1 : der c r2" "\<turnstile> v2 : der c r1" |
|
3287 shows "(injval (ALT r1 r2) c (Right v1)) \<succ>(ALT r1 r2) (injval (ALT r1 r2) c (Left v2))" |
|
3288 using assms |
|
3289 apply(simp) |
|
3290 apply(erule ValOrd.cases) |
|
3291 apply(simp_all)[8] |
|
3292 apply(rule ValOrd.intros) |
|
3293 apply(clarify) |
|
3294 apply(subst v4) |
|
3295 apply(simp) |
|
3296 apply(subst v4) |
|
3297 apply(simp) |
|
3298 apply(simp) |
|
3299 done |
|
3300 |
|
3301 lemma h: |
|
3302 assumes "nullable r1" "\<turnstile> v1 : der c r1" |
|
3303 shows "injval r1 c v1 \<succ>r1 mkeps r1" |
|
3304 using assms |
|
3305 apply(induct r1 arbitrary: v1 rule: der.induct) |
|
3306 apply(simp) |
|
3307 apply(simp) |
|
3308 apply(erule Prf.cases) |
|
3309 apply(simp_all)[5] |
|
3310 apply(simp) |
|
3311 apply(simp) |
|
3312 apply(erule Prf.cases) |
|
3313 apply(simp_all)[5] |
|
3314 apply(clarify) |
|
3315 apply(auto)[1] |
|
3316 apply (metis ValOrd.intros(6)) |
|
3317 apply (metis ValOrd.intros(6)) |
|
3318 apply (metis ValOrd.intros(3) le_add2 list.size(3) mkeps_flat monoid_add_class.add.right_neutral) |
|
3319 apply(auto)[1] |
|
3320 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
3321 apply (metis ValOrd.intros(4) length_greater_0_conv list.distinct(1) list.size(3) mkeps_flat v4) |
|
3322 apply (metis ValOrd.intros(5)) |
|
3323 apply(simp) |
|
3324 apply(erule Prf.cases) |
|
3325 apply(simp_all)[5] |
|
3326 apply(clarify) |
|
3327 apply(erule Prf.cases) |
|
3328 apply(simp_all)[5] |
|
3329 apply(clarify) |
|
3330 apply (metis ValOrd.intros(2) list.distinct(1) mkeps_flat v4) |
|
3331 apply(clarify) |
|
3332 by (metis ValOrd.intros(1)) |
|
3333 |
|
3334 lemma LeftRightSeq: |
|
3335 assumes "(Left (Seq v1 v2)) \<succ>(der c (SEQ r1 r2)) (Right v3)" |
|
3336 and "nullable r1" "\<turnstile> v1 : der c r1" |
|
3337 shows "(injval (SEQ r1 r2) c (Seq v1 v2)) \<succ>(SEQ r1 r2) (injval (SEQ r1 r2) c (Right v2))" |
|
3338 using assms |
|
3339 apply(simp) |
|
3340 apply(erule ValOrd.cases) |
|
3341 apply(simp_all)[8] |
|
3342 apply(clarify) |
|
3343 apply(simp) |
|
3344 apply(rule ValOrd.intros(2)) |
|
3345 prefer 2 |
|
3346 apply (metis list.distinct(1) mkeps_flat v4) |
|
3347 by (metis h) |
|
3348 |
|
3349 lemma rr1: |
|
3350 assumes "\<turnstile> v : r" "\<not>nullable r" |
|
3351 shows "flat v \<noteq> []" |
|
3352 using assms |
|
3353 by (metis Prf_flat_L nullable_correctness) |
|
3354 |
|
3355 (* HERE *) |
|
3356 |
|
3357 lemma Prf_inj_test: |
|
3358 assumes "v1 \<succ>(der c r) v2" |
|
3359 "v1 \<in> Values (der c r) s" |
|
3360 "v2 \<in> Values (der c r) s" |
|
3361 "injval r c v1 \<in> Values r (c#s)" |
|
3362 "injval r c v2 \<in> Values r (c#s)" |
|
3363 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
3364 using assms |
|
3365 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
3366 (* NULL case *) |
|
3367 apply(simp add: Values_recs) |
|
3368 (* EMPTY case *) |
|
3369 apply(simp add: Values_recs) |
|
3370 (* CHAR case *) |
|
3371 apply(case_tac "c = c'") |
|
3372 apply(simp) |
|
3373 apply(simp add: Values_recs) |
|
3374 apply (metis ValOrd2.intros(8)) |
|
3375 apply(simp add: Values_recs) |
|
3376 (* ALT case *) |
|
3377 apply(simp) |
|
3378 apply(simp add: Values_recs) |
|
3379 apply(auto)[1] |
|
3380 apply(erule ValOrd.cases) |
|
3381 apply(simp_all)[8] |
|
3382 apply (metis ValOrd2.intros(6)) |
|
3383 apply(erule ValOrd.cases) |
|
3384 apply(simp_all)[8] |
|
3385 apply(rule ValOrd2.intros) |
|
3386 apply(subst v4) |
|
3387 apply(simp add: Values_def) |
|
3388 apply(subst v4) |
|
3389 apply(simp add: Values_def) |
|
3390 apply(simp) |
|
3391 apply(erule ValOrd.cases) |
|
3392 apply(simp_all)[8] |
|
3393 apply(rule ValOrd2.intros) |
|
3394 apply(subst v4) |
|
3395 apply(simp add: Values_def) |
|
3396 apply(subst v4) |
|
3397 apply(simp add: Values_def) |
|
3398 apply(simp) |
|
3399 apply(erule ValOrd.cases) |
|
3400 apply(simp_all)[8] |
|
3401 apply (metis ValOrd2.intros(5)) |
|
3402 (* SEQ case*) |
|
3403 apply(simp) |
|
3404 apply(case_tac "nullable r1") |
|
3405 apply(simp) |
|
3406 defer |
|
3407 apply(simp) |
|
3408 apply(simp add: Values_recs) |
|
3409 apply(auto)[1] |
|
3410 apply(erule ValOrd.cases) |
|
3411 apply(simp_all)[8] |
|
3412 apply(clarify) |
|
3413 apply(rule ValOrd2.intros) |
|
3414 apply(simp) |
|
3415 apply (metis Ord1) |
|
3416 apply(clarify) |
|
3417 apply(rule ValOrd2.intros) |
|
3418 apply(subgoal_tac "rest v1 (flat v1 @ flat v2) = flat v2") |
|
3419 apply(simp) |
|
3420 apply(subgoal_tac "rest (injval r1 c v1) (c # flat v1 @ flat v2) = flat v2") |
|
3421 apply(simp) |
|
3422 oops |
|
3423 |
|
3424 lemma Prf_inj_test: |
|
3425 assumes "v1 \<succ>(der c r) v2" |
|
3426 "v1 \<in> Values (der c r) s" |
|
3427 "v2 \<in> Values (der c r) s" |
|
3428 "injval r c v1 \<in> Values r (c#s)" |
|
3429 "injval r c v2 \<in> Values r (c#s)" |
|
3430 shows "(injval r c v1) 2\<succ> (injval r c v2)" |
|
3431 using assms |
|
3432 apply(induct c r arbitrary: v1 v2 s rule: der.induct) |
|
3433 (* NULL case *) |
|
3434 apply(simp add: Values_recs) |
|
3435 (* EMPTY case *) |
|
3436 apply(simp add: Values_recs) |
|
3437 (* CHAR case *) |
|
3438 apply(case_tac "c = c'") |
|
3439 apply(simp) |
|
3440 apply(simp add: Values_recs) |
|
3441 apply (metis ValOrd2.intros(8)) |
|
3442 apply(simp add: Values_recs) |
|
3443 (* ALT case *) |
|
3444 apply(simp) |
|
3445 apply(simp add: Values_recs) |
|
3446 apply(auto)[1] |
|
3447 apply(erule ValOrd.cases) |
|
3448 apply(simp_all)[8] |
|
3449 apply (metis ValOrd2.intros(6)) |
|
3450 apply(erule ValOrd.cases) |
|
3451 apply(simp_all)[8] |
|
3452 apply(rule ValOrd2.intros) |
|
3453 apply(subst v4) |
|
3454 apply(simp add: Values_def) |
|
3455 apply(subst v4) |
|
3456 apply(simp add: Values_def) |
|
3457 apply(simp) |
|
3458 apply(erule ValOrd.cases) |
|
3459 apply(simp_all)[8] |
|
3460 apply(rule ValOrd2.intros) |
|
3461 apply(subst v4) |
|
3462 apply(simp add: Values_def) |
|
3463 apply(subst v4) |
|
3464 apply(simp add: Values_def) |
|
3465 apply(simp) |
|
3466 apply(erule ValOrd.cases) |
|
3467 apply(simp_all)[8] |
|
3468 apply (metis ValOrd2.intros(5)) |
|
3469 (* SEQ case*) |
|
3470 apply(simp) |
|
3471 apply(case_tac "nullable r1") |
|
3472 apply(simp) |
|
3473 defer |
|
3474 apply(simp) |
|
3475 apply(simp add: Values_recs) |
|
3476 apply(auto)[1] |
|
3477 apply(erule ValOrd.cases) |
|
3478 apply(simp_all)[8] |
|
3479 apply(clarify) |
|
3480 apply(rule ValOrd2.intros) |
|
3481 apply(simp) |
|
3482 apply (metis Ord1) |
|
3483 apply(clarify) |
|
3484 apply(rule ValOrd2.intros) |
|
3485 apply metis |
|
3486 using injval_inj |
|
3487 apply(simp add: Values_def inj_on_def) |
|
3488 apply metis |
|
3489 apply(simp add: Values_recs) |
|
3490 apply(auto)[1] |
|
3491 apply(erule ValOrd.cases) |
|
3492 apply(simp_all)[8] |
|
3493 apply(clarify) |
|
3494 apply(erule ValOrd.cases) |
|
3495 apply(simp_all)[8] |
|
3496 apply(clarify) |
|
3497 apply (metis Ord1 ValOrd2.intros(1)) |
|
3498 apply(clarify) |
|
3499 apply(rule ValOrd2.intros(2)) |
|
3500 apply metis |
|
3501 using injval_inj |
|
3502 apply(simp add: Values_def inj_on_def) |
|
3503 apply metis |
|
3504 apply(erule ValOrd.cases) |
|
3505 apply(simp_all)[8] |
|
3506 apply(rule ValOrd2.intros(2)) |
|
3507 thm h |
|
3508 apply(rule Ord1) |
|
3509 apply(rule h) |
|
3510 apply(simp) |
|
3511 apply(simp add: Values_def) |
|
3512 apply(simp add: Values_def) |
|
3513 apply (metis list.distinct(1) mkeps_flat v4) |
|
3514 apply(erule ValOrd.cases) |
|
3515 apply(simp_all)[8] |
|
3516 apply(clarify) |
|
3517 apply(simp add: Values_def) |
|
3518 defer |
|
3519 apply(erule ValOrd.cases) |
|
3520 apply(simp_all)[8] |
|
3521 apply(clarify) |
|
3522 apply(rule ValOrd2.intros(1)) |
|
3523 apply(rotate_tac 1) |
|
3524 apply(drule_tac x="v2" in meta_spec) |
|
3525 apply(rotate_tac 8) |
|
3526 apply(drule_tac x="v2'" in meta_spec) |
|
3527 apply(rotate_tac 8) |
|
3528 oops |
|
3529 |
|
3530 lemma POSIX_der: |
|
3531 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
3532 shows "POSIX (injval r c v) r" |
|
3533 using assms |
|
3534 unfolding POSIX_def |
|
3535 apply(auto) |
|
3536 thm v3 |
|
3537 apply (erule v3) |
|
3538 thm v4 |
|
3539 apply(subst (asm) v4) |
|
3540 apply(assumption) |
|
3541 apply(drule_tac x="projval r c v'" in spec) |
|
3542 apply(drule mp) |
|
3543 apply(rule conjI) |
|
3544 thm v3_proj |
|
3545 apply(rule v3_proj) |
|
3546 apply(simp) |
|
3547 apply(rule_tac x="flat v" in exI) |
|
3548 apply(simp) |
|
3549 thm t |
|
3550 apply(rule_tac c="c" in t) |
|
3551 apply(simp) |
|
3552 thm v4_proj |
|
3553 apply(subst v4_proj) |
|
3554 apply(simp) |
|
3555 apply(rule_tac x="flat v" in exI) |
|
3556 apply(simp) |
|
3557 apply(simp) |
|
3558 oops |
|
3559 |
|
3560 lemma POSIX_der: |
|
3561 assumes "POSIX v (der c r)" "\<turnstile> v : der c r" |
|
3562 shows "POSIX (injval r c v) r" |
|
3563 using assms |
|
3564 apply(induct c r arbitrary: v rule: der.induct) |
|
3565 (* null case*) |
|
3566 apply(simp add: POSIX_def) |
|
3567 apply(auto)[1] |
|
3568 apply(erule Prf.cases) |
|
3569 apply(simp_all)[5] |
|
3570 apply(erule Prf.cases) |
|
3571 apply(simp_all)[5] |
|
3572 (* empty case *) |
|
3573 apply(simp add: POSIX_def) |
|
3574 apply(auto)[1] |
|
3575 apply(erule Prf.cases) |
|
3576 apply(simp_all)[5] |
|
3577 apply(erule Prf.cases) |
|
3578 apply(simp_all)[5] |
|
3579 (* char case *) |
|
3580 apply(simp add: POSIX_def) |
|
3581 apply(case_tac "c = c'") |
|
3582 apply(auto)[1] |
|
3583 apply(erule Prf.cases) |
|
3584 apply(simp_all)[5] |
|
3585 apply (metis Prf.intros(5)) |
|
3586 apply(erule Prf.cases) |
|
3587 apply(simp_all)[5] |
|
3588 apply(erule Prf.cases) |
|
3589 apply(simp_all)[5] |
|
3590 apply (metis ValOrd.intros(8)) |
|
3591 apply(auto)[1] |
|
3592 apply(erule Prf.cases) |
|
3593 apply(simp_all)[5] |
|
3594 apply(erule Prf.cases) |
|
3595 apply(simp_all)[5] |
|
3596 (* alt case *) |
|
3597 apply(erule Prf.cases) |
|
3598 apply(simp_all)[5] |
|
3599 apply(clarify) |
|
3600 apply(simp (no_asm) add: POSIX_def) |
|
3601 apply(auto)[1] |
|
3602 apply (metis Prf.intros(2) v3) |
|
3603 apply(rotate_tac 4) |
|
3604 apply(erule Prf.cases) |
|
3605 apply(simp_all)[5] |
|
3606 apply (metis POSIX_ALT2 POSIX_def ValOrd.intros(6)) |
|
3607 apply (metis ValOrd.intros(3) order_refl) |
|
3608 apply(simp (no_asm) add: POSIX_def) |
|
3609 apply(auto)[1] |
|
3610 apply (metis Prf.intros(3) v3) |
|
3611 apply(rotate_tac 4) |
|
3612 apply(erule Prf.cases) |
|
3613 apply(simp_all)[5] |
|
3614 defer |
|
3615 apply (metis POSIX_ALT1a POSIX_def ValOrd.intros(5)) |
|
3616 prefer 2 |
|
3617 apply(subst (asm) (5) POSIX_def) |
|
3618 apply(auto)[1] |
|
3619 apply(rotate_tac 5) |
|
3620 apply(erule Prf.cases) |
|
3621 apply(simp_all)[5] |
|
3622 apply(rule ValOrd.intros) |
|
3623 apply(subst (asm) v4) |
|
3624 apply(simp) |
|
3625 apply(drule_tac x="Left (projval r1a c v1)" in spec) |
|
3626 apply(clarify) |
|
3627 apply(drule mp) |
|
3628 apply(rule conjI) |
|
3629 apply (metis Prf.intros(2) v3_proj) |
|
3630 apply(simp) |
|
3631 apply (metis v4_proj2) |
|
3632 apply(erule ValOrd.cases) |
|
3633 apply(simp_all)[8] |
|
3634 apply (metis less_not_refl v4_proj2) |
|
3635 (* seq case *) |
|
3636 apply(case_tac "nullable r1") |
|
3637 defer |
|
3638 apply(simp add: POSIX_def) |
|
3639 apply(auto)[1] |
|
3640 apply(erule Prf.cases) |
|
3641 apply(simp_all)[5] |
|
3642 apply (metis Prf.intros(1) v3) |
|
3643 apply(erule Prf.cases) |
|
3644 apply(simp_all)[5] |
|
3645 apply(erule Prf.cases) |
|
3646 apply(simp_all)[5] |
|
3647 apply(clarify) |
|
3648 apply(subst (asm) (3) v4) |
|
3649 apply(simp) |
|
3650 apply(simp) |
|
3651 apply(subgoal_tac "flat v1a \<noteq> []") |
|
3652 prefer 2 |
|
3653 apply (metis Prf_flat_L nullable_correctness) |
|
3654 apply(subgoal_tac "\<exists>s. flat v1a = c # s") |
|
3655 prefer 2 |
|
3656 apply (metis append_eq_Cons_conv) |
|
3657 apply(auto)[1] |
|
3658 oops |
|
3659 |
|
3660 |
|
3661 lemma POSIX_ex: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r" |
|
3662 apply(induct r arbitrary: v) |
|
3663 apply(erule Prf.cases) |
|
3664 apply(simp_all)[5] |
|
3665 apply(erule Prf.cases) |
|
3666 apply(simp_all)[5] |
|
3667 apply(rule_tac x="Void" in exI) |
|
3668 apply(simp add: POSIX_def) |
|
3669 apply(auto)[1] |
|
3670 apply (metis Prf.intros(4)) |
|
3671 apply(erule Prf.cases) |
|
3672 apply(simp_all)[5] |
|
3673 apply (metis ValOrd.intros(7)) |
|
3674 apply(erule Prf.cases) |
|
3675 apply(simp_all)[5] |
|
3676 apply(rule_tac x="Char c" in exI) |
|
3677 apply(simp add: POSIX_def) |
|
3678 apply(auto)[1] |
|
3679 apply (metis Prf.intros(5)) |
|
3680 apply(erule Prf.cases) |
|
3681 apply(simp_all)[5] |
|
3682 apply (metis ValOrd.intros(8)) |
|
3683 apply(erule Prf.cases) |
|
3684 apply(simp_all)[5] |
|
3685 apply(auto)[1] |
|
3686 apply(drule_tac x="v1" in meta_spec) |
|
3687 apply(drule_tac x="v2" in meta_spec) |
|
3688 apply(auto)[1] |
|
3689 defer |
|
3690 apply(erule Prf.cases) |
|
3691 apply(simp_all)[5] |
|
3692 apply(auto)[1] |
|
3693 apply (metis POSIX_ALT_I1) |
|
3694 apply (metis POSIX_ALT_I1 POSIX_ALT_I2) |
|
3695 apply(case_tac "nullable r1a") |
|
3696 apply(rule_tac x="Seq (mkeps r1a) va" in exI) |
|
3697 apply(auto simp add: POSIX_def)[1] |
|
3698 apply (metis Prf.intros(1) mkeps_nullable) |
|
3699 apply(simp add: mkeps_flat) |
|
3700 apply(rotate_tac 7) |
|
3701 apply(erule Prf.cases) |
|
3702 apply(simp_all)[5] |
|
3703 apply(case_tac "mkeps r1 = v1a") |
|
3704 apply(simp) |
|
3705 apply (rule ValOrd.intros(1)) |
|
3706 apply (metis append_Nil mkeps_flat) |
|
3707 apply (rule ValOrd.intros(2)) |
|
3708 apply(drule mkeps_POSIX) |
|
3709 apply(simp add: POSIX_def) |
|
3710 oops |
|
3711 |
|
3712 lemma POSIX_ex2: "\<turnstile> v : r \<Longrightarrow> \<exists>v. POSIX v r \<and> \<turnstile> v : r" |
|
3713 apply(induct r arbitrary: v) |
|
3714 apply(erule Prf.cases) |
|
3715 apply(simp_all)[5] |
|
3716 apply(erule Prf.cases) |
|
3717 apply(simp_all)[5] |
|
3718 apply(rule_tac x="Void" in exI) |
|
3719 apply(simp add: POSIX_def) |
|
3720 apply(auto)[1] |
|
3721 oops |
|
3722 |
|
3723 lemma POSIX_ALT_cases: |
|
3724 assumes "\<turnstile> v : (ALT r1 r2)" "POSIX v (ALT r1 r2)" |
|
3725 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
3726 using assms |
|
3727 apply(erule_tac Prf.cases) |
|
3728 apply(simp_all) |
|
3729 unfolding POSIX_def |
|
3730 apply(auto) |
|
3731 apply (metis POSIX_ALT2 POSIX_def assms(2)) |
|
3732 by (metis POSIX_ALT1b assms(2)) |
|
3733 |
|
3734 lemma POSIX_ALT_cases2: |
|
3735 assumes "POSIX v (ALT r1 r2)" "\<turnstile> v : (ALT r1 r2)" |
|
3736 shows "(\<exists>v1. v = Left v1 \<and> POSIX v1 r1) \<or> (\<exists>v2. v = Right v2 \<and> POSIX v2 r2)" |
|
3737 using assms POSIX_ALT_cases by auto |
|
3738 |
|
3739 lemma Prf_flat_empty: |
|
3740 assumes "\<turnstile> v : r" "flat v = []" |
|
3741 shows "nullable r" |
|
3742 using assms |
|
3743 apply(induct) |
|
3744 apply(auto) |
|
3745 done |
|
3746 |
|
3747 lemma POSIX_proj: |
|
3748 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
3749 shows "POSIX (projval r c v) (der c r)" |
|
3750 using assms |
|
3751 apply(induct r c v arbitrary: rule: projval.induct) |
|
3752 defer |
|
3753 defer |
|
3754 defer |
|
3755 defer |
|
3756 apply(erule Prf.cases) |
|
3757 apply(simp_all)[5] |
|
3758 apply(erule Prf.cases) |
|
3759 apply(simp_all)[5] |
|
3760 apply(erule Prf.cases) |
|
3761 apply(simp_all)[5] |
|
3762 apply(erule Prf.cases) |
|
3763 apply(simp_all)[5] |
|
3764 apply(erule Prf.cases) |
|
3765 apply(simp_all)[5] |
|
3766 apply(erule Prf.cases) |
|
3767 apply(simp_all)[5] |
|
3768 apply(erule Prf.cases) |
|
3769 apply(simp_all)[5] |
|
3770 apply(erule Prf.cases) |
|
3771 apply(simp_all)[5] |
|
3772 apply(erule Prf.cases) |
|
3773 apply(simp_all)[5] |
|
3774 apply(erule Prf.cases) |
|
3775 apply(simp_all)[5] |
|
3776 apply(simp add: POSIX_def) |
|
3777 apply(auto)[1] |
|
3778 apply(erule Prf.cases) |
|
3779 apply(simp_all)[5] |
|
3780 oops |
|
3781 |
|
3782 lemma POSIX_proj: |
|
3783 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
3784 shows "POSIX (projval r c v) (der c r)" |
|
3785 using assms |
|
3786 apply(induct r arbitrary: c v rule: rexp.induct) |
|
3787 apply(erule Prf.cases) |
|
3788 apply(simp_all)[5] |
|
3789 apply(erule Prf.cases) |
|
3790 apply(simp_all)[5] |
|
3791 apply(erule Prf.cases) |
|
3792 apply(simp_all)[5] |
|
3793 apply(simp add: POSIX_def) |
|
3794 apply(auto)[1] |
|
3795 apply(erule Prf.cases) |
|
3796 apply(simp_all)[5] |
|
3797 oops |
|
3798 |
|
3799 lemma POSIX_proj: |
|
3800 assumes "POSIX v r" "\<turnstile> v : r" "\<exists>s. flat v = c#s" |
|
3801 shows "POSIX (projval r c v) (der c r)" |
|
3802 using assms |
|
3803 apply(induct r c v arbitrary: rule: projval.induct) |
|
3804 defer |
|
3805 defer |
|
3806 defer |
|
3807 defer |
|
3808 apply(erule Prf.cases) |
|
3809 apply(simp_all)[5] |
|
3810 apply(erule Prf.cases) |
|
3811 apply(simp_all)[5] |
|
3812 apply(erule Prf.cases) |
|
3813 apply(simp_all)[5] |
|
3814 apply(erule Prf.cases) |
|
3815 apply(simp_all)[5] |
|
3816 apply(erule Prf.cases) |
|
3817 apply(simp_all)[5] |
|
3818 apply(erule Prf.cases) |
|
3819 apply(simp_all)[5] |
|
3820 apply(erule Prf.cases) |
|
3821 apply(simp_all)[5] |
|
3822 apply(erule Prf.cases) |
|
3823 apply(simp_all)[5] |
|
3824 apply(erule Prf.cases) |
|
3825 apply(simp_all)[5] |
|
3826 apply(erule Prf.cases) |
|
3827 apply(simp_all)[5] |
|
3828 apply(simp add: POSIX_def) |
|
3829 apply(auto)[1] |
|
3830 apply(erule Prf.cases) |
|
3831 apply(simp_all)[5] |
|
3832 oops |
|
3833 |
|
3834 lemma Prf_inj: |
|
3835 assumes "v1 \<succ>(der c r) v2" "\<turnstile> v1 : der c r" "\<turnstile> v2 : der c r" "flat v1 = flat v2" |
|
3836 shows "(injval r c v1) \<succ>r (injval r c v2)" |
|
3837 using assms |
|
3838 apply(induct arbitrary: v1 v2 rule: der.induct) |
|
3839 (* NULL case *) |
|
3840 apply(simp) |
|
3841 apply(erule ValOrd.cases) |
|
3842 apply(simp_all)[8] |
|
3843 (* EMPTY case *) |
|
3844 apply(erule ValOrd.cases) |
|
3845 apply(simp_all)[8] |
|
3846 (* CHAR case *) |
|
3847 apply(case_tac "c = c'") |
|
3848 apply(simp) |
|
3849 apply(erule ValOrd.cases) |
|
3850 apply(simp_all)[8] |
|
3851 apply(rule ValOrd.intros) |
|
3852 apply(simp) |
|
3853 apply(erule ValOrd.cases) |
|
3854 apply(simp_all)[8] |
|
3855 (* ALT case *) |
|
3856 apply(simp) |
|
3857 apply(erule ValOrd.cases) |
|
3858 apply(simp_all)[8] |
|
3859 apply(rule ValOrd.intros) |
|
3860 apply(subst v4) |
|
3861 apply(clarify) |
|
3862 apply(rotate_tac 3) |
|
3863 apply(erule Prf.cases) |
|
3864 apply(simp_all)[5] |
|
3865 apply(subst v4) |
|
3866 apply(clarify) |
|
3867 apply(rotate_tac 2) |
|
3868 apply(erule Prf.cases) |
|
3869 apply(simp_all)[5] |
|
3870 apply(simp) |
|
3871 apply(rule ValOrd.intros) |
|
3872 apply(clarify) |
|
3873 apply(rotate_tac 3) |
|
3874 apply(erule Prf.cases) |
|
3875 apply(simp_all)[5] |
|
3876 apply(clarify) |
|
3877 apply(erule Prf.cases) |
|
3878 apply(simp_all)[5] |
|
3879 apply(rule ValOrd.intros) |
|
3880 apply(clarify) |
|
3881 apply(erule Prf.cases) |
|
3882 apply(simp_all)[5] |
|
3883 apply(erule Prf.cases) |
|
3884 apply(simp_all)[5] |
|
3885 (* SEQ case*) |
|
3886 apply(simp) |
|
3887 apply(case_tac "nullable r1") |
|
3888 defer |
|
3889 apply(simp) |
|
3890 apply(erule ValOrd.cases) |
|
3891 apply(simp_all)[8] |
|
3892 apply(clarify) |
|
3893 apply(erule Prf.cases) |
|
3894 apply(simp_all)[5] |
|
3895 apply(erule Prf.cases) |
|
3896 apply(simp_all)[5] |
|
3897 apply(clarify) |
|
3898 apply(rule ValOrd.intros) |
|
3899 apply(simp) |
|
3900 oops |
|
3901 |
|
3902 |
|
3903 text {* |
|
3904 Injection followed by projection is the identity. |
|
3905 *} |
|
3906 |
|
3907 lemma proj_inj_id: |
|
3908 assumes "\<turnstile> v : der c r" |
|
3909 shows "projval r c (injval r c v) = v" |
|
3910 using assms |
|
3911 apply(induct r arbitrary: c v rule: rexp.induct) |
|
3912 apply(simp) |
|
3913 apply(erule Prf.cases) |
|
3914 apply(simp_all)[5] |
|
3915 apply(simp) |
|
3916 apply(erule Prf.cases) |
|
3917 apply(simp_all)[5] |
|
3918 apply(simp) |
|
3919 apply(case_tac "c = char") |
|
3920 apply(simp) |
|
3921 apply(erule Prf.cases) |
|
3922 apply(simp_all)[5] |
|
3923 apply(simp) |
|
3924 apply(erule Prf.cases) |
|
3925 apply(simp_all)[5] |
|
3926 defer |
|
3927 apply(simp) |
|
3928 apply(erule Prf.cases) |
|
3929 apply(simp_all)[5] |
|
3930 apply(simp) |
|
3931 apply(case_tac "nullable rexp1") |
|
3932 apply(simp) |
|
3933 apply(erule Prf.cases) |
|
3934 apply(simp_all)[5] |
|
3935 apply(auto)[1] |
|
3936 apply(erule Prf.cases) |
|
3937 apply(simp_all)[5] |
|
3938 apply(auto)[1] |
|
3939 apply (metis list.distinct(1) v4) |
|
3940 apply(auto)[1] |
|
3941 apply (metis mkeps_flat) |
|
3942 apply(auto) |
|
3943 apply(erule Prf.cases) |
|
3944 apply(simp_all)[5] |
|
3945 apply(auto)[1] |
|
3946 apply(simp add: v4) |
|
3947 done |
|
3948 |
|
3949 text {* |
|
3950 |
|
3951 HERE: Crucial lemma that does not go through in the sequence case. |
|
3952 |
|
3953 *} |
|
3954 lemma v5: |
|
3955 assumes "\<turnstile> v : der c r" "POSIX v (der c r)" |
|
3956 shows "POSIX (injval r c v) r" |
|
3957 using assms |
|
3958 apply(induct arbitrary: v rule: der.induct) |
|
3959 (* NULL case *) |
|
3960 apply(simp) |
|
3961 apply(erule Prf.cases) |
|
3962 apply(simp_all)[5] |
|
3963 (* EMPTY case *) |
|
3964 apply(simp) |
|
3965 apply(erule Prf.cases) |
|
3966 apply(simp_all)[5] |
|
3967 (* CHAR case *) |
|
3968 apply(simp) |
|
3969 apply(case_tac "c = c'") |
|
3970 apply(auto simp add: POSIX_def)[1] |
|
3971 apply(erule Prf.cases) |
|
3972 apply(simp_all)[5] |
|
3973 oops |
|
3974 *) |
|
3975 |
|
3976 |
|
3977 end |