ChengsongTanPhdThesis/Chapters/Finite.tex
changeset 562 57e33978e55d
parent 561 486fb297ac7c
child 564 3cbcd7cda0a9
equal deleted inserted replaced
561:486fb297ac7c 562:57e33978e55d
  1479 \noindent
  1479 \noindent
  1480 \begin{proof}
  1480 \begin{proof}
  1481 We prove this by induction on $r$. The base cases for $\RZERO$,
  1481 We prove this by induction on $r$. The base cases for $\RZERO$,
  1482 $\RONE $ and $\RCHAR{c}$ are straightforward. 
  1482 $\RONE $ and $\RCHAR{c}$ are straightforward. 
  1483 In the sequence $r_1 \cdot r_2$ case,
  1483 In the sequence $r_1 \cdot r_2$ case,
  1484 the inductive hypotheses state $\exists N_1. \forall s. \; \llbracket \rderssimp{r}{s} \rrbracket \leq N_1$ and
  1484 the inductive hypotheses state 
  1485 $\exists N_2. \forall s. \; \llbracket \rderssimp{r_2}{s} \rrbracket \leq N_2$. We can reason as follows
  1485 $\exists N_1. \forall s. \; \llbracket \rderssimp{r}{s} \rrbracket \leq N_1$ and
       
  1486 $\exists N_2. \forall s. \; \llbracket \rderssimp{r_2}{s} \rrbracket \leq N_2$. 
       
  1487 
       
  1488 When the string $s$ is not empty, we can reason as follows
  1486 %
  1489 %
  1487 \begin{center}
  1490 \begin{center}
  1488 \begin{tabular}{lcll}
  1491 \begin{tabular}{lcll}
  1489 & & $ \llbracket   \rderssimp{r_1\cdot r_2 }{s} \rrbracket_r $\\
  1492 & & $ \llbracket   \rderssimp{r_1\cdot r_2 }{s} \rrbracket_r $\\
  1490 & $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash_{rsimp} s \cdot r_2 \; \;  :: \; \; 
  1493 & $ = $ & $\llbracket \rsimp{(\sum(r_1 \backslash_{rsimp} s \cdot r_2 \; \;  :: \; \; 
  1491 \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\			
  1494 \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r})))} \rrbracket_r $ & (1) \\			
  1492 & $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimp} s \cdot r_2 \; \;  :: \; \; 
  1495 & $\leq$ & $\llbracket \rdistinct{(r_1 \backslash_{rsimp} s \cdot r_2 \; \;  :: \; \; 
  1493 \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r  + 1$ & (2) \\
  1496 \map \; (r_2\backslash_{rsimp} \_)\; (\vsuf{s}{r}))}{\varnothing} \rrbracket_r  + 1$ & (2) \\
  1494 										     & $\leq$ & $2 + N_1 + \rsize{r_2} + (N_2 * (card\;(\sizeNregex \; N_2)))$ & (3)\\
  1497 										     & $\leq$ & $2 + N_1 + \rsize{r_2} + (N_2 * (card\;(\sizeNregex \; N_2)))$ & (3)\\
  1495 $\rsize{(r_1 \cdot r_2) \backslash_r s}$& $\leq$ & $max \; (2 + N_1 + \llbracket r_2 \rrbracket_r + N_2 * (card\; (\sizeNregex \; N_2))) \; \rsize{r_1\cdot r_2}$ & (4)
       
  1496 \end{tabular}
  1498 \end{tabular}
  1497 \end{center}
  1499 \end{center}
  1498 \noindent
  1500 \noindent
  1499 (1) is by the corollary \ref{seqEstimate1}.
  1501 (1) is by the corollary \ref{seqEstimate1}.
  1500 (2) is by \ref{altsSimpControl}.
  1502 (2) is by \ref{altsSimpControl}.
  1501 (3) is by \ref{finiteSizeNCorollary}.
  1503 (3) is by \ref{finiteSizeNCorollary}.
  1502 (4) is by splitting the case when $s = []$ and $s \neq []$.
  1504 
  1503 
  1505 
  1504 We reason similarly for  $\STAR$.\medskip
  1506 Combining the cases when $s = []$ and $s \neq []$, we get (4):
       
  1507 \begin{center}
       
  1508 	\begin{tabular}{lcll}
       
  1509 		$\rsize{(r_1 \cdot r_2) \backslash_r s}$ & $\leq$ & 
       
  1510 		$max \; (2 + N_1 + 
       
  1511 		\llbracket r_2 \rrbracket_r + 
       
  1512 		N_2 * (card\; (\sizeNregex \; N_2))) \; \rsize{r_1\cdot r_2}$ & (4)
       
  1513 	\end{tabular}
       
  1514 \end{center}
       
  1515 
       
  1516 We reason similarly for  $\STAR$.
       
  1517 The inductive hypothesis is
       
  1518 $\exists N. \forall s. \; \llbracket \rderssimp{r}{s} \rrbracket \leq N$.
       
  1519 Let $\n_r = \llbracket r^* \rrbracket_r$.
       
  1520 When $s = c :: cs$ is not empty,
       
  1521 \begin{center}
       
  1522 \begin{tabular}{lcll}
       
  1523 & & $ \llbracket   \rderssimp{r^* }{c::cs} \rrbracket_r $\\
       
  1524 & $ = $ & $\llbracket \rsimp{(\sum (\map \; (\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \; (\starupdates\; 
       
  1525 cs \; r \; [[c]] )) )} \rrbracket_r $ & (5) \\			
       
  1526 & $\leq$ & $\llbracket 
       
  1527 \rdistinct{
       
  1528 	(\map \; 
       
  1529 		(\lambda s. (r \backslash_{rsimp} s) \cdot r^*) \; 
       
  1530 		(\starupdates\; cs \; r \; [[c]] )
       
  1531 	)}
       
  1532 	{\varnothing} \rrbracket_r  + 1$ & (6) \\
       
  1533 					 & $\leq$ & $1 + (\textit{card} (\sizeNregex \; (N + n_r)))
       
  1534 	* (1 + (N + n_r)) $ & (7)\\
       
  1535 \end{tabular}
       
  1536 \end{center}
       
  1537 \noindent
       
  1538 (5) is by the lemma  \ref{starClosedForm}.
       
  1539 (6) is by \ref{altsSimpControl}.
       
  1540 (7) is by \ref{finiteSizeNCorollary}.
       
  1541 Combining with the case when $s = []$, one gets
       
  1542 \begin{center}
       
  1543 \begin{tabular}{lcll}
       
  1544 	$\rsize{r^* \backslash_r s}$ & $\leq$ & $max \; n_r \; 1 + (\textit{card} (\sizeNregex \; (N + n_r)))
       
  1545 	* (1 + (N + n_r)) $ & (8)\\
       
  1546 \end{tabular}
       
  1547 \end{center}
       
  1548 \noindent
       
  1549 
       
  1550 The alternative case is slightly less involved.
       
  1551 The inductive hypothesis 
       
  1552 is equivalent to $\exists N. \forall r \in (\map \; (\_ \backslash_r s) \; rs). \rsize{r} \leq N$.
       
  1553 In the case when $s = c::cs$, we have 
       
  1554 \begin{center}
       
  1555 \begin{tabular}{lcll}
       
  1556 & & $ \llbracket   \rderssimp{\sum rs }{c::cs} \rrbracket_r $\\
       
  1557 & $ = $ & $\llbracket \rsimp{(\sum (\map \; (\_ \backslash_{rsimp} s)  \; rs) )} \rrbracket_r $ & (9) \\			
       
  1558 & $\leq$ & $\llbracket (\sum (\map \; (\_ \backslash_{rsimp} s)  \; rs) ) \rrbracket_r $  & (10) \\
       
  1559 & $\leq$ & $1 + N * (length \; rs) $ & (11)\\
       
  1560 \end{tabular}
       
  1561 \end{center}
       
  1562 \noindent
       
  1563 (9) is by \ref{altsClosedForm}, (10) by \ref{rsimpSize} and (11) by inductive hypothesis.
       
  1564 
       
  1565 Combining with the case when $s = []$, one gets
       
  1566 \begin{center}
       
  1567 \begin{tabular}{lcll}
       
  1568 	$\rsize{\sum rs \backslash_r s}$ & $\leq$ & $max \; \rsize{\sum rs} \; 1+N*(length \; rs)$ 
       
  1569 	 & (12)\\
       
  1570 \end{tabular}
       
  1571 \end{center}
       
  1572 (4), (8), and (12) are all the inductive cases proven.
  1505 \end{proof}
  1573 \end{proof}
  1506 
  1574 
  1507 \noindent
  1575 \noindent
  1508 
  1576 
  1509 %-----------------------------------
  1577 %-----------------------------------