1 theory MyFirst |
|
2 imports Main |
|
3 begin |
|
4 |
|
5 datatype 'a list = Nil | Cons 'a "'a list" |
|
6 |
|
7 fun app :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
8 "app Nil ys = ys" | |
|
9 "app (Cons x xs) ys = Cons x (app xs ys)" |
|
10 |
|
11 fun rev :: "'a list \<Rightarrow> 'a list" where |
|
12 "rev Nil = Nil" | |
|
13 "rev (Cons x xs) = app (rev xs) (Cons x Nil)" |
|
14 |
|
15 value "rev(Cons True (Cons False fun app :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" where |
|
16 "app Nil ys = ys" | |
|
17 "app (Cons x xs) ys = Cons x (app xs ys)" |
|
18 |
|
19 fun rev :: "'a list \<Rightarrow> 'a list" where |
|
20 "rev Nil = Nil" | |
|
21 "rev (Cons x xs) = app (rev xs) (Cons x Nil)"Nil))" |
|
22 |
|
23 value "1 + (2::nat)" |
|
24 value "1 + (2::int)" |
|
25 value "1 - (2::nat)" |
|
26 value "1 - (2::int)" |
|
27 |
|
28 lemma app_Nil2 [simp]: "app xs Nil = xs" |
|
29 apply(induction xs) |
|
30 apply(auto) |
|
31 done |
|
32 |
|
33 lemma app_assoc [simp]: "app (app xs ys) zs = app xs (app ys zs)" |
|
34 apply(induction xs) |
|
35 apply(auto) |
|
36 done |
|
37 |
|
38 lemma rev_app [simp]: "rev(app xs ys) = app (rev ys) (rev xs)" |
|
39 apply (induction xs) |
|
40 apply (auto) |
|
41 done |
|
42 |
|
43 theorem rev_rev [simp]: "rev(rev xs) = xs" |
|
44 apply (induction xs) |
|
45 apply (auto) |
|
46 done |
|
47 |
|
48 fun add :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
49 "add 0 n = n" | |
|
50 "add (Suc m) n = Suc(add m n)" |
|
51 |
|
52 lemma add_02: "add m 0 = m" |
|
53 apply(induction m) |
|
54 apply(auto) |
|
55 done |
|
56 |
|
57 value "add 2 3" |
|
58 |
|
59 |
|
60 (**commutative-associative**) |
|
61 lemma add_04: "add m (add n k) = add (add m n) k" |
|
62 apply(induct m) |
|
63 apply(simp_all) |
|
64 done |
|
65 |
|
66 lemma add_zero: "add n 0 = n" |
|
67 apply(induct n) |
|
68 apply(auto) |
|
69 done |
|
70 lemma add_zero: "add n 0 = n" |
|
71 apply(induct n) |
|
72 apply(auto) |
|
73 done |
|
74 lemma add_Suc: "add m (Suc n) = Suc (add m n)" |
|
75 apply(induct m) |
|
76 apply(metis add.simps(1)) |
|
77 apply(auto) |
|
78 done |
|
79 |
|
80 lemma add_comm: "add m n = add n m" |
|
81 apply(induct m) |
|
82 apply(simp add: add_zero) |
|
83 apply(simp add: add_Suc) |
|
84 done |
|
85 |
|
86 lemma add_odd: "add m (add n k) = add k (add m n)" |
|
87 apply(subst add_04) |
|
88 apply(subst (2) add_comm) |
|
89 apply(simp) |
|
90 done |
|
91 |
|
92 |
|
93 fun dub :: "nat \<Rightarrow> nat" where |
|
94 "dub 0 = 0" | |
|
95 "dub m = add m m" |
|
96 |
|
97 lemma dub_01: "dub 0 = 0" |
|
98 apply(induct) |
|
99 apply(auto) |
|
100 done |
|
101 |
|
102 lemma dub_02: "dub m = add m m" |
|
103 apply(induction m) |
|
104 apply(auto) |
|
105 done |
|
106 |
|
107 value "dub 2" |
|
108 |
|
109 fun trip :: "nat \<Rightarrow> nat" where |
|
110 "trip 0 = 0" | |
|
111 "trip m = add m (add m m)" |
|
112 |
|
113 lemma trip_01: "trip 0 = 0" |
|
114 apply(induct) |
|
115 apply(auto) |
|
116 done |
|
117 |
|
118 lemma trip_02: "trip m = add m (add m m)" |
|
119 apply(induction m) |
|
120 apply(auto) |
|
121 done |
|
122 |
|
123 value "trip 1" |
|
124 value "trip 2" |
|
125 |
|
126 fun sum :: "nat \<Rightarrow> nat" where |
|
127 "sum 0 = 0" |
|
128 | "sum (Suc n) = (Suc n) + sum n" |
|
129 |
|
130 function sum1 :: "nat \<Rightarrow> nat" where |
|
131 "sum1 0 = 0" |
|
132 | "n \<noteq> 0 \<Longrightarrow> sum1 n = n + sum1 (n - 1)" |
|
133 apply(auto) |
|
134 done |
|
135 |
|
136 termination sum1 |
|
137 by (smt2 "termination" diff_less less_than_iff not_gr0 wf_less_than zero_neq_one) |
|
138 |
|
139 lemma "sum n = sum1 n" |
|
140 apply(induct n) |
|
141 apply(auto) |
|
142 done |
|
143 |
|
144 lemma "sum n = (\<Sum>i \<le> n. i)" |
|
145 apply(induct n) |
|
146 apply(simp_all) |
|
147 done |
|
148 |
|
149 fun mull :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
150 "mull 0 0 = 0" | |
|
151 "mull m 0 = 0" | |
|
152 "mull m 1 = m" | |
|
153 (**"mull m (1::nat) = m" | **) |
|
154 (**"mull m (suc(0)) = m" | **) |
|
155 "mull m n = mull m (n-(1::nat))" |
|
156 apply(pat_completeness) |
|
157 apply(auto) |
|
158 |
|
159 done |
|
160 |
|
161 "mull 0 n = 0" |
|
162 | "mull (Suc m) n = add n (mull m n)" |
|
163 |
|
164 lemma test: "mull m n = m * n" |
|
165 sorry |
|
166 |
|
167 fun poww :: "nat \<Rightarrow> nat \<Rightarrow> nat" where |
|
168 "poww 0 n = 1" |
|
169 | "poww (Suc m) n = mull n (poww m n)" |
|
170 |
|
171 |
|
172 "mull 0 0 = 0" | |
|
173 "mull m 0 = 0" | |
|
174 (**"mull m 1 = m" | **) |
|
175 (**"mull m (1::nat) = m" | **) |
|
176 (**"mull m (suc(0)) = m" | **) |
|
177 "mull m n = mull m (n-(1::nat))" |
|
178 |
|
179 (**Define a function that counts the |
|
180 number of occurrences of an element in a list **) |
|
181 (** |
|
182 fun count :: "'a\<Rightarrow>'a list\<Rightarrow>nat" where |
|
183 "count " |
|
184 **) |
|
185 |
|
186 |
|
187 (* prove n = n * (n + 1) div 2 *) |
|
188 |
|
189 |
|
190 |
|
191 |
|
192 |
|
193 |
|
194 |
|
195 |
|
196 |
|
197 |
|
198 |
|