|
1 |
|
2 theory PDerivs |
|
3 imports Spec |
|
4 begin |
|
5 |
|
6 (* |
|
7 ZERO |
|
8 | ONE |
|
9 | CHAR char |
|
10 | SEQ rexp rexp |
|
11 | ALT rexp rexp |
|
12 | STAR rexp |
|
13 *) |
|
14 |
|
15 abbreviation |
|
16 "SEQs rs r \<equiv> (\<Union>r' \<in> rs. {SEQ r' r})" |
|
17 |
|
18 lemma Timess_eq_image: |
|
19 "SEQs rs r = (\<lambda>r'. SEQ r' r) ` rs" |
|
20 by auto |
|
21 |
|
22 primrec |
|
23 pder :: "char \<Rightarrow> rexp \<Rightarrow> rexp set" |
|
24 where |
|
25 "pder c ZERO = {}" |
|
26 | "pder c ONE = {}" |
|
27 | "pder c (CHAR d) = (if c = d then {ONE} else {})" |
|
28 | "pder c (ALT r1 r2) = (pder c r1) \<union> (pder c r2)" |
|
29 | "pder c (SEQ r1 r2) = |
|
30 (if nullable r1 then SEQs (pder c r1) r2 \<union> pder c r2 else SEQs (pder c r1) r2)" |
|
31 | "pder c (STAR r) = SEQs (pder c r) (STAR r)" |
|
32 |
|
33 primrec |
|
34 pders :: "char list \<Rightarrow> rexp \<Rightarrow> rexp set" |
|
35 where |
|
36 "pders [] r = {r}" |
|
37 | "pders (c # s) r = \<Union> (pders s ` pder c r)" |
|
38 |
|
39 abbreviation |
|
40 pder_set :: "char \<Rightarrow> rexp set \<Rightarrow> rexp set" |
|
41 where |
|
42 "pder_set c rs \<equiv> \<Union> (pder c ` rs)" |
|
43 |
|
44 abbreviation |
|
45 pders_set :: "char list \<Rightarrow> rexp set \<Rightarrow> rexp set" |
|
46 where |
|
47 "pders_set s rs \<equiv> \<Union> (pders s ` rs)" |
|
48 |
|
49 lemma pders_append: |
|
50 "pders (s1 @ s2) r = \<Union> (pders s2 ` pders s1 r)" |
|
51 by (induct s1 arbitrary: r) (simp_all) |
|
52 |
|
53 lemma pders_snoc: |
|
54 shows "pders (s @ [c]) r = pder_set c (pders s r)" |
|
55 by (simp add: pders_append) |
|
56 |
|
57 lemma pders_simps [simp]: |
|
58 shows "pders s ZERO = (if s = [] then {ZERO} else {})" |
|
59 and "pders s ONE = (if s = [] then {ONE} else {})" |
|
60 and "pders s (ALT r1 r2) = (if s = [] then {ALT r1 r2} else (pders s r1) \<union> (pders s r2))" |
|
61 by (induct s) (simp_all) |
|
62 |
|
63 lemma pders_CHAR: |
|
64 shows "pders s (CHAR c) \<subseteq> {CHAR c, ONE}" |
|
65 by (induct s) (simp_all) |
|
66 |
|
67 subsection \<open>Relating left-quotients and partial derivatives\<close> |
|
68 |
|
69 lemma Sequ_UNION_distrib: |
|
70 shows "A ;; \<Union>(M ` I) = \<Union>((%i. A ;; M i) ` I)" |
|
71 and "\<Union>(M ` I) ;; A = \<Union>((%i. M i ;; A) ` I)" |
|
72 by (auto simp add: Sequ_def) |
|
73 |
|
74 |
|
75 lemma Der_pder: |
|
76 shows "Der c (L r) = \<Union> (L ` pder c r)" |
|
77 by (induct r) (simp_all add: nullable_correctness Sequ_UNION_distrib) |
|
78 |
|
79 lemma Ders_pders: |
|
80 shows "Ders s (L r) = \<Union> (L ` pders s r)" |
|
81 proof (induct s arbitrary: r) |
|
82 case (Cons c s) |
|
83 have ih: "\<And>r. Ders s (L r) = \<Union> (L ` pders s r)" by fact |
|
84 have "Ders (c # s) (L r) = Ders s (Der c (L r))" by (simp add: Ders_def Der_def) |
|
85 also have "\<dots> = Ders s (\<Union> (L ` pder c r))" by (simp add: Der_pder) |
|
86 also have "\<dots> = (\<Union>A\<in>(L ` (pder c r)). (Ders s A))" |
|
87 by (auto simp add: Ders_def) |
|
88 also have "\<dots> = \<Union> (L ` (pders_set s (pder c r)))" |
|
89 using ih by auto |
|
90 also have "\<dots> = \<Union> (L ` (pders (c # s) r))" by simp |
|
91 finally show "Ders (c # s) (L r) = \<Union> (L ` pders (c # s) r)" . |
|
92 qed (simp add: Ders_def) |
|
93 |
|
94 subsection \<open>Relating derivatives and partial derivatives\<close> |
|
95 |
|
96 lemma der_pder: |
|
97 shows "\<Union> (L ` (pder c r)) = L (der c r)" |
|
98 unfolding der_correctness Der_pder by simp |
|
99 |
|
100 lemma ders_pders: |
|
101 shows "\<Union> (L ` (pders s r)) = L (ders s r)" |
|
102 unfolding der_correctness ders_correctness Ders_pders by simp |
|
103 |
|
104 |
|
105 subsection \<open>Finiteness property of partial derivatives\<close> |
|
106 |
|
107 definition |
|
108 pders_Set :: "string set \<Rightarrow> rexp \<Rightarrow> rexp set" |
|
109 where |
|
110 "pders_Set A r \<equiv> \<Union>x \<in> A. pders x r" |
|
111 |
|
112 lemma pders_Set_subsetI: |
|
113 assumes "\<And>s. s \<in> A \<Longrightarrow> pders s r \<subseteq> C" |
|
114 shows "pders_Set A r \<subseteq> C" |
|
115 using assms unfolding pders_Set_def by (rule UN_least) |
|
116 |
|
117 lemma pders_Set_union: |
|
118 shows "pders_Set (A \<union> B) r = (pders_Set A r \<union> pders_Set B r)" |
|
119 by (simp add: pders_Set_def) |
|
120 |
|
121 lemma pders_Set_subset: |
|
122 shows "A \<subseteq> B \<Longrightarrow> pders_Set A r \<subseteq> pders_Set B r" |
|
123 by (auto simp add: pders_Set_def) |
|
124 |
|
125 definition |
|
126 "UNIV1 \<equiv> UNIV - {[]}" |
|
127 |
|
128 lemma pders_Set_ZERO [simp]: |
|
129 shows "pders_Set UNIV1 ZERO = {}" |
|
130 unfolding UNIV1_def pders_Set_def by auto |
|
131 |
|
132 lemma pders_Set_ONE [simp]: |
|
133 shows "pders_Set UNIV1 ONE = {}" |
|
134 unfolding UNIV1_def pders_Set_def by (auto split: if_splits) |
|
135 |
|
136 lemma pders_Set_CHAR [simp]: |
|
137 shows "pders_Set UNIV1 (CHAR c) = {ONE}" |
|
138 unfolding UNIV1_def pders_Set_def |
|
139 apply(auto) |
|
140 apply(frule rev_subsetD) |
|
141 apply(rule pders_CHAR) |
|
142 apply(simp) |
|
143 apply(case_tac xa) |
|
144 apply(auto split: if_splits) |
|
145 done |
|
146 |
|
147 lemma pders_Set_ALT [simp]: |
|
148 shows "pders_Set UNIV1 (ALT r1 r2) = pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2" |
|
149 unfolding UNIV1_def pders_Set_def by auto |
|
150 |
|
151 |
|
152 text \<open>Non-empty suffixes of a string (needed for the cases of @{const SEQ} and @{const STAR} below)\<close> |
|
153 |
|
154 definition |
|
155 "PSuf s \<equiv> {v. v \<noteq> [] \<and> (\<exists>u. u @ v = s)}" |
|
156 |
|
157 lemma PSuf_snoc: |
|
158 shows "PSuf (s @ [c]) = (PSuf s) ;; {[c]} \<union> {[c]}" |
|
159 unfolding PSuf_def Sequ_def |
|
160 by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv) |
|
161 |
|
162 lemma PSuf_Union: |
|
163 shows "(\<Union>v \<in> PSuf s ;; {[c]}. f v) = (\<Union>v \<in> PSuf s. f (v @ [c]))" |
|
164 by (auto simp add: Sequ_def) |
|
165 |
|
166 lemma pders_Set_snoc: |
|
167 shows "pders_Set (PSuf s ;; {[c]}) r = (pder_set c (pders_Set (PSuf s) r))" |
|
168 unfolding pders_Set_def |
|
169 by (simp add: PSuf_Union pders_snoc) |
|
170 |
|
171 lemma pderivs_Times: |
|
172 shows "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)" |
|
173 proof (induct s rule: rev_induct) |
|
174 case (snoc c s) |
|
175 have ih: "pders s (SEQ r1 r2) \<subseteq> SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2)" |
|
176 by fact |
|
177 have "pders (s @ [c]) (SEQ r1 r2) = pder_set c (pders s (SEQ r1 r2))" |
|
178 by (simp add: pders_snoc) |
|
179 also have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2 \<union> (pders_Set (PSuf s) r2))" |
|
180 using ih by fastforce |
|
181 also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pder_set c (pders_Set (PSuf s) r2)" |
|
182 by (simp) |
|
183 also have "\<dots> = pder_set c (SEQs (pders s r1) r2) \<union> pders_Set (PSuf s ;; {[c]}) r2" |
|
184 by (simp add: pders_Set_snoc) |
|
185 also |
|
186 have "\<dots> \<subseteq> pder_set c (SEQs (pders s r1) r2) \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2" |
|
187 by auto |
|
188 also |
|
189 have "\<dots> \<subseteq> SEQs (pder_set c (pders s r1)) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2" |
|
190 by (auto simp add: if_splits) |
|
191 also have "\<dots> = SEQs (pders (s @ [c]) r1) r2 \<union> pder c r2 \<union> pders_Set (PSuf s ;; {[c]}) r2" |
|
192 by (simp add: pders_snoc) |
|
193 also have "\<dots> \<subseteq> SEQs (pders (s @ [c]) r1) r2 \<union> pders_Set (PSuf (s @ [c])) r2" |
|
194 unfolding pders_Set_def by (auto simp add: PSuf_snoc) |
|
195 finally show ?case . |
|
196 qed (simp) |
|
197 |
|
198 lemma pders_Set_SEQ_aux1: |
|
199 assumes a: "s \<in> UNIV1" |
|
200 shows "pders_Set (PSuf s) r \<subseteq> pders_Set UNIV1 r" |
|
201 using a unfolding UNIV1_def PSuf_def pders_Set_def by auto |
|
202 |
|
203 lemma pders_Set_SEQ_aux2: |
|
204 assumes a: "s \<in> UNIV1" |
|
205 shows "SEQs (pders s r1) r2 \<subseteq> SEQs (pders_Set UNIV1 r1) r2" |
|
206 using a unfolding pders_Set_def by auto |
|
207 |
|
208 lemma pders_Set_SEQ: |
|
209 shows "pders_Set UNIV1 (SEQ r1 r2) \<subseteq> SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2" |
|
210 apply(rule pders_Set_subsetI) |
|
211 apply(rule subset_trans) |
|
212 apply(rule pderivs_Times) |
|
213 using pders_Set_SEQ_aux1 pders_Set_SEQ_aux2 |
|
214 apply auto |
|
215 apply blast |
|
216 done |
|
217 |
|
218 lemma pders_STAR: |
|
219 assumes a: "s \<noteq> []" |
|
220 shows "pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)" |
|
221 using a |
|
222 proof (induct s rule: rev_induct) |
|
223 case (snoc c s) |
|
224 have ih: "s \<noteq> [] \<Longrightarrow> pders s (STAR r) \<subseteq> SEQs (pders_Set (PSuf s) r) (STAR r)" by fact |
|
225 { assume asm: "s \<noteq> []" |
|
226 have "pders (s @ [c]) (STAR r) = pder_set c (pders s (STAR r))" by (simp add: pders_snoc) |
|
227 also have "\<dots> \<subseteq> pder_set c (SEQs (pders_Set (PSuf s) r) (STAR r))" |
|
228 using ih[OF asm] by fast |
|
229 also have "\<dots> \<subseteq> SEQs (pder_set c (pders_Set (PSuf s) r)) (STAR r) \<union> pder c (STAR r)" |
|
230 by (auto split: if_splits) |
|
231 also have "\<dots> \<subseteq> SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r) \<union> (SEQs (pder c r) (STAR r))" |
|
232 by (simp only: PSuf_snoc pders_Set_snoc pders_Set_union) |
|
233 (auto simp add: pders_Set_def) |
|
234 also have "\<dots> = SEQs (pders_Set (PSuf (s @ [c])) r) (STAR r)" |
|
235 by (auto simp add: PSuf_snoc PSuf_Union pders_snoc pders_Set_def) |
|
236 finally have ?case . |
|
237 } |
|
238 moreover |
|
239 { assume asm: "s = []" |
|
240 then have ?case by (auto simp add: pders_Set_def pders_snoc PSuf_def) |
|
241 } |
|
242 ultimately show ?case by blast |
|
243 qed (simp) |
|
244 |
|
245 lemma pders_Set_STAR: |
|
246 shows "pders_Set UNIV1 (STAR r) \<subseteq> SEQs (pders_Set UNIV1 r) (STAR r)" |
|
247 apply(rule pders_Set_subsetI) |
|
248 apply(rule subset_trans) |
|
249 apply(rule pders_STAR) |
|
250 apply(simp add: UNIV1_def) |
|
251 apply(simp add: UNIV1_def PSuf_def) |
|
252 apply(auto simp add: pders_Set_def) |
|
253 done |
|
254 |
|
255 lemma finite_SEQs [simp]: |
|
256 assumes a: "finite A" |
|
257 shows "finite (SEQs A r)" |
|
258 using a by auto |
|
259 |
|
260 lemma finite_pders_Set_UNIV1: |
|
261 shows "finite (pders_Set UNIV1 r)" |
|
262 apply(induct r) |
|
263 apply(simp_all add: |
|
264 finite_subset[OF pders_Set_SEQ] |
|
265 finite_subset[OF pders_Set_STAR]) |
|
266 done |
|
267 |
|
268 lemma pders_Set_UNIV: |
|
269 shows "pders_Set UNIV r = pders [] r \<union> pders_Set UNIV1 r" |
|
270 unfolding UNIV1_def pders_Set_def |
|
271 by blast |
|
272 |
|
273 lemma finite_pders_Set_UNIV: |
|
274 shows "finite (pders_Set UNIV r)" |
|
275 unfolding pders_Set_UNIV |
|
276 by (simp add: finite_pders_Set_UNIV1) |
|
277 |
|
278 lemma finite_pders_set: |
|
279 shows "finite (pders_Set A r)" |
|
280 by (metis finite_pders_Set_UNIV pders_Set_subset rev_finite_subset subset_UNIV) |
|
281 |
|
282 |
|
283 text\<open>The following relationship between the alphabetic width of regular expressions |
|
284 (called \<open>awidth\<close> below) and the number of partial derivatives was proved |
|
285 by Antimirov~\cite{Antimirov95} and formalized by Max Haslbeck.\<close> |
|
286 |
|
287 fun awidth :: "rexp \<Rightarrow> nat" where |
|
288 "awidth ZERO = 0" | |
|
289 "awidth ONE = 0" | |
|
290 "awidth (CHAR a) = 1" | |
|
291 "awidth (ALT r1 r2) = awidth r1 + awidth r2" | |
|
292 "awidth (SEQ r1 r2) = awidth r1 + awidth r2" | |
|
293 "awidth (STAR r1) = awidth r1" |
|
294 |
|
295 lemma card_SEQs_pders_Set_le: |
|
296 "card (SEQs (pders_Set A r) s) \<le> card (pders_Set A r)" |
|
297 using finite_pders_set unfolding Timess_eq_image by (rule card_image_le) |
|
298 |
|
299 lemma card_pders_set_UNIV1_le_awidth: "card (pders_Set UNIV1 r) \<le> awidth r" |
|
300 proof (induction r) |
|
301 case (ALT r1 r2) |
|
302 have "card (pders_Set UNIV1 (ALT r1 r2)) = card (pders_Set UNIV1 r1 \<union> pders_Set UNIV1 r2)" by simp |
|
303 also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)" |
|
304 by(simp add: card_Un_le) |
|
305 also have "\<dots> \<le> awidth (ALT r1 r2)" using ALT.IH by simp |
|
306 finally show ?case . |
|
307 next |
|
308 case (SEQ r1 r2) |
|
309 have "card (pders_Set UNIV1 (SEQ r1 r2)) \<le> card (SEQs (pders_Set UNIV1 r1) r2 \<union> pders_Set UNIV1 r2)" |
|
310 by (simp add: card_mono finite_pders_set pders_Set_SEQ) |
|
311 also have "\<dots> \<le> card (SEQs (pders_Set UNIV1 r1) r2) + card (pders_Set UNIV1 r2)" |
|
312 by (simp add: card_Un_le) |
|
313 also have "\<dots> \<le> card (pders_Set UNIV1 r1) + card (pders_Set UNIV1 r2)" |
|
314 by (simp add: card_SEQs_pders_Set_le) |
|
315 also have "\<dots> \<le> awidth (SEQ r1 r2)" using SEQ.IH by simp |
|
316 finally show ?case . |
|
317 next |
|
318 case (STAR r) |
|
319 have "card (pders_Set UNIV1 (STAR r)) \<le> card (SEQs (pders_Set UNIV1 r) (STAR r))" |
|
320 by (simp add: card_mono finite_pders_set pders_Set_STAR) |
|
321 also have "\<dots> \<le> card (pders_Set UNIV1 r)" by (rule card_SEQs_pders_Set_le) |
|
322 also have "\<dots> \<le> awidth (STAR r)" by (simp add: STAR.IH) |
|
323 finally show ?case . |
|
324 qed (auto) |
|
325 |
|
326 text\<open>Antimirov's Theorem 3.4:\<close> |
|
327 theorem card_pders_set_UNIV_le_awidth: "card (pders_Set UNIV r) \<le> awidth r + 1" |
|
328 proof - |
|
329 have "card (insert r (pders_Set UNIV1 r)) \<le> Suc (card (pders_Set UNIV1 r))" |
|
330 by(auto simp: card_insert_if[OF finite_pders_Set_UNIV1]) |
|
331 also have "\<dots> \<le> Suc (awidth r)" by(simp add: card_pders_set_UNIV1_le_awidth) |
|
332 finally show ?thesis by(simp add: pders_Set_UNIV) |
|
333 qed |
|
334 |
|
335 text\<open>Antimirov's Corollary 3.5:\<close> |
|
336 corollary card_pders_set_le_awidth: "card (pders_Set A r) \<le> awidth r + 1" |
|
337 by(rule order_trans[OF |
|
338 card_mono[OF finite_pders_Set_UNIV pders_Set_subset[OF subset_UNIV]] |
|
339 card_pders_set_UNIV_le_awidth]) |
|
340 |
|
341 |
|
342 end |