ChengsongTanPhdThesis/Chapters/Bitcoded1.tex
changeset 585 4969ef817d92
parent 582 3e19073e91f4
child 622 4b1149fb5aec
equal deleted inserted replaced
584:1734bd5975a3 585:4969ef817d92
   566   & &$\textit{then}\;bs\,@\,\textit{bmkeps}\,a$\\
   566   & &$\textit{then}\;bs\,@\,\textit{bmkeps}\,a$\\
   567   & &$\textit{else}\;bs\,@\,\textit{bmkeps}\,(_{[]}\sum \textit{as})$\\
   567   & &$\textit{else}\;bs\,@\,\textit{bmkeps}\,(_{[]}\sum \textit{as})$\\
   568   $\textit{bmkeps}\,(_{bs} a_1 \cdot a_2)$ & $\dn$ &
   568   $\textit{bmkeps}\,(_{bs} a_1 \cdot a_2)$ & $\dn$ &
   569      $bs \,@\,\textit{bmkeps}\,a_1\,@\, \textit{bmkeps}\,a_2$\\
   569      $bs \,@\,\textit{bmkeps}\,a_1\,@\, \textit{bmkeps}\,a_2$\\
   570   $\textit{bmkeps}\,(_{bs}a^*)$ & $\dn$ &
   570   $\textit{bmkeps}\,(_{bs}a^*)$ & $\dn$ &
   571      $bs \,@\, [Z]$
   571      $bs \,@\, [S]$
   572 \end{tabular}    
   572 \end{tabular}    
   573 \end{center}    
   573 \end{center}    
   574 \noindent
   574 \noindent
   575 $\bmkeps$, just like $\mkeps$, 
   575 $\bmkeps$, just like $\mkeps$, 
   576 visits a regular expression tree respecting
   576 visits a regular expression tree respecting
   604        (\Right\,v, bs_1)$\\                           
   604        (\Right\,v, bs_1)$\\                           
   605   $\textit{decode}'\,bs\;(r_1\cdot r_2)$ & $\dn$ &
   605   $\textit{decode}'\,bs\;(r_1\cdot r_2)$ & $\dn$ &
   606         $\textit{let}\,(v_1, bs_1) = \textit{decode}'\,bs\,r_1\;\textit{in}$\\
   606         $\textit{let}\,(v_1, bs_1) = \textit{decode}'\,bs\,r_1\;\textit{in}$\\
   607   & &   $\textit{let}\,(v_2, bs_2) = \textit{decode}'\,bs_1\,r_2$\\
   607   & &   $\textit{let}\,(v_2, bs_2) = \textit{decode}'\,bs_1\,r_2$\\
   608   & &   \hspace{35mm}$\textit{in}\;(\Seq\,v_1\,v_2, bs_2)$\\
   608   & &   \hspace{35mm}$\textit{in}\;(\Seq\,v_1\,v_2, bs_2)$\\
   609   $\textit{decode}'\,(Z\!::\!bs)\,(r^*)$ & $\dn$ & $(\Stars\,[], bs)$\\
   609   $\textit{decode}'\,(S\!::\!bs)\,(r^*)$ & $\dn$ & $(\Stars\,[], bs)$\\
   610   $\textit{decode}'\,(S\!::\!bs)\,(r^*)$ & $\dn$ & 
   610   $\textit{decode}'\,(Z\!::\!bs)\,(r^*)$ & $\dn$ & 
   611          $\textit{let}\,(v, bs_1) = \textit{decode}'\,bs\,r\;\textit{in}$\\
   611          $\textit{let}\,(v, bs_1) = \textit{decode}'\,bs\,r\;\textit{in}$\\
   612   & &   $\textit{let}\,(\Stars\,vs, bs_2) = \textit{decode}'\,bs_1\,r^*$\\
   612   & &   $\textit{let}\,(\Stars\,vs, bs_2) = \textit{decode}'\,bs_1\,r^*$\\
   613   & &   \hspace{35mm}$\textit{in}\;(\Stars\,v\!::\!vs, bs_2)$\bigskip\\
   613   & &   \hspace{35mm}$\textit{in}\;(\Stars\,v\!::\!vs, bs_2)$\bigskip\\
   614   
   614   
   615   $\textit{decode}\,bs\,r$ & $\dn$ &
   615   $\textit{decode}\,bs\,r$ & $\dn$ &
  1146 
  1146 
  1147 	$\retrieve \; \, _{bs} \Sigma (a :: \textit{as})$ & $   (\Right \; v) $ & 
  1147 	$\retrieve \; \, _{bs} \Sigma (a :: \textit{as})$ & $   (\Right \; v) $ & 
  1148 	$\dn$ & $\textit{bs}\; @\; (\retrieve \; (_{[]}\Sigma \textit{as}) \; v)$\\
  1148 	$\dn$ & $\textit{bs}\; @\; (\retrieve \; (_{[]}\Sigma \textit{as}) \; v)$\\
  1149 
  1149 
  1150 	$\retrieve \; \, _{bs} a^* $ & $   (\Stars \; (v :: vs)) $ & $\dn$ & 
  1150 	$\retrieve \; \, _{bs} a^* $ & $   (\Stars \; (v :: vs)) $ & $\dn$ & 
  1151 	$\textit{bs}\; @\; (\retrieve \; a \; v)\; @ \; 
  1151 	$\textit{bs}\; @\; [Z] \; @ \; (\retrieve \; a \; v)\; @ \; 
  1152 	(\retrieve \; (_{[]} a^*) \; (\Stars \; vs) )$\\
  1152 	(\retrieve \; (_{[]} a^*) \; (\Stars \; vs) )$\\
  1153 
  1153 
  1154 	$\retrieve \; \, _{bs} a^* $ & $  (\Stars \; []) $ & $\dn$ & $\textit{bs} \; @ \; [Z]$
  1154 	$\retrieve \; \, _{bs} a^* $ & $  (\Stars \; []) $ & $\dn$ & $\textit{bs} \; @ \; [S]$
  1155 \end{tabular}
  1155 \end{tabular}
  1156 \end{center}
  1156 \end{center}
  1157 \noindent
  1157 \noindent
  1158 As promised, $\retrieve$ collects the right bit-codes from the 
  1158 As promised, $\retrieve$ collects the right bit-codes from the 
  1159 final derivative $a_n$, guided by $v_n$:
  1159 final derivative $a_n$, guided by $v_n$: