ChengsongTanPhdThesis/Chapters/Bitcoded1.tex
changeset 576 3e1b699696b6
parent 575 3178f0e948ac
child 579 35df9cdd36ca
equal deleted inserted replaced
575:3178f0e948ac 576:3e1b699696b6
   758 \end{theorem}
   758 \end{theorem}
   759 \begin{proof}
   759 \begin{proof}
   760 	Straightforward corollary of \ref{flex_blexer}.
   760 	Straightforward corollary of \ref{flex_blexer}.
   761 \end{proof}
   761 \end{proof}
   762 \noindent
   762 \noindent
       
   763 To piece things together and spell out the exact correctness
       
   764 of the bitcoded lexer
       
   765 in terms of producing POSIX values,
       
   766 we use the fact from the previous chapter that
       
   767 \[
       
   768 	If \; (r, s) \rightarrow v \; then \; \lexer \; r \; s = v
       
   769 \]
       
   770 to obtain this corollary:
       
   771 \begin{corollary}\label{blexerPOSIX}
       
   772 	$If \; (r, s) \rightarrow v \; then \blexer \; r \; s = v$
       
   773 \end{corollary}
   763 Our main reason for wanting a bit-coded algorithm over 
   774 Our main reason for wanting a bit-coded algorithm over 
   764 the injection-based one is for its capabilities of allowing
   775 the injection-based one is for its capabilities of allowing
   765 more aggressive simplifications.
   776 more aggressive simplifications.
   766 We will elaborate on this in the next chapter.
   777 We will elaborate on this in the next chapter.
   767 
   778