|
1 theory RegLangs |
|
2 imports Main "HOL-Library.Sublist" |
|
3 begin |
|
4 |
|
5 section \<open>Sequential Composition of Languages\<close> |
|
6 |
|
7 definition |
|
8 Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100) |
|
9 where |
|
10 "A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}" |
|
11 |
|
12 text \<open>Two Simple Properties about Sequential Composition\<close> |
|
13 |
|
14 lemma Sequ_empty_string [simp]: |
|
15 shows "A ;; {[]} = A" |
|
16 and "{[]} ;; A = A" |
|
17 by (simp_all add: Sequ_def) |
|
18 |
|
19 lemma Sequ_empty [simp]: |
|
20 shows "A ;; {} = {}" |
|
21 and "{} ;; A = {}" |
|
22 by (simp_all add: Sequ_def) |
|
23 |
|
24 lemma concI[simp,intro]: "u : A \<Longrightarrow> v : B \<Longrightarrow> u@v : A ;; B" |
|
25 by (auto simp add: Sequ_def) |
|
26 |
|
27 lemma concE[elim]: |
|
28 assumes "w \<in> A ;; B" |
|
29 obtains u v where "u \<in> A" "v \<in> B" "w = u@v" |
|
30 using assms by (auto simp: Sequ_def) |
|
31 |
|
32 lemma concI_if_Nil2: "[] \<in> B \<Longrightarrow> xs : A \<Longrightarrow> xs \<in> A ;; B" |
|
33 by (metis append_Nil2 concI) |
|
34 |
|
35 lemma conc_assoc: "(A ;; B) ;; C = A ;; (B ;; C)" |
|
36 by (auto elim!: concE) (simp only: append_assoc[symmetric] concI) |
|
37 |
|
38 |
|
39 text \<open>Language power operations\<close> |
|
40 |
|
41 overloading lang_pow == "compow :: nat \<Rightarrow> string set \<Rightarrow> string set" |
|
42 begin |
|
43 primrec lang_pow :: "nat \<Rightarrow> string set \<Rightarrow> string set" where |
|
44 "lang_pow 0 A = {[]}" | |
|
45 "lang_pow (Suc n) A = A ;; (lang_pow n A)" |
|
46 end |
|
47 |
|
48 |
|
49 lemma conc_pow_comm: |
|
50 shows "A ;; (A ^^ n) = (A ^^ n) ;; A" |
|
51 by (induct n) (simp_all add: conc_assoc[symmetric]) |
|
52 |
|
53 lemma lang_pow_add: "A ^^ (n + m) = (A ^^ n) ;; (A ^^ m)" |
|
54 by (induct n) (auto simp: conc_assoc) |
|
55 |
|
56 lemma lang_empty: |
|
57 fixes A::"string set" |
|
58 shows "A ^^ 0 = {[]}" |
|
59 by simp |
|
60 |
|
61 section \<open>Semantic Derivative (Left Quotient) of Languages\<close> |
|
62 |
|
63 definition |
|
64 Der :: "char \<Rightarrow> string set \<Rightarrow> string set" |
|
65 where |
|
66 "Der c A \<equiv> {s. c # s \<in> A}" |
|
67 |
|
68 definition |
|
69 Ders :: "string \<Rightarrow> string set \<Rightarrow> string set" |
|
70 where |
|
71 "Ders s A \<equiv> {s'. s @ s' \<in> A}" |
|
72 |
|
73 lemma Der_null [simp]: |
|
74 shows "Der c {} = {}" |
|
75 unfolding Der_def |
|
76 by auto |
|
77 |
|
78 lemma Der_empty [simp]: |
|
79 shows "Der c {[]} = {}" |
|
80 unfolding Der_def |
|
81 by auto |
|
82 |
|
83 lemma Der_char [simp]: |
|
84 shows "Der c {[d]} = (if c = d then {[]} else {})" |
|
85 unfolding Der_def |
|
86 by auto |
|
87 |
|
88 lemma Der_union [simp]: |
|
89 shows "Der c (A \<union> B) = Der c A \<union> Der c B" |
|
90 unfolding Der_def |
|
91 by auto |
|
92 |
|
93 lemma Der_Sequ [simp]: |
|
94 shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})" |
|
95 unfolding Der_def Sequ_def |
|
96 by (auto simp add: Cons_eq_append_conv) |
|
97 |
|
98 |
|
99 section \<open>Kleene Star for Languages\<close> |
|
100 |
|
101 inductive_set |
|
102 Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102) |
|
103 for A :: "string set" |
|
104 where |
|
105 start[intro]: "[] \<in> A\<star>" |
|
106 | step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>" |
|
107 |
|
108 (* Arden's lemma *) |
|
109 |
|
110 lemma Star_cases: |
|
111 shows "A\<star> = {[]} \<union> A ;; A\<star>" |
|
112 unfolding Sequ_def |
|
113 by (auto) (metis Star.simps) |
|
114 |
|
115 lemma Star_decomp: |
|
116 assumes "c # x \<in> A\<star>" |
|
117 shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>" |
|
118 using assms |
|
119 by (induct x\<equiv>"c # x" rule: Star.induct) |
|
120 (auto simp add: append_eq_Cons_conv) |
|
121 |
|
122 lemma Star_Der_Sequ: |
|
123 shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>" |
|
124 unfolding Der_def Sequ_def |
|
125 by(auto simp add: Star_decomp) |
|
126 |
|
127 lemma Der_inter[simp]: "Der a (A \<inter> B) = Der a A \<inter> Der a B" |
|
128 and Der_compl[simp]: "Der a (-A) = - Der a A" |
|
129 and Der_Union[simp]: "Der a (Union M) = Union(Der a ` M)" |
|
130 and Der_UN[simp]: "Der a (UN x:I. S x) = (UN x:I. Der a (S x))" |
|
131 by (auto simp: Der_def) |
|
132 |
|
133 lemma Der_star[simp]: |
|
134 shows "Der c (A\<star>) = (Der c A) ;; A\<star>" |
|
135 proof - |
|
136 have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)" |
|
137 by (simp only: Star_cases[symmetric]) |
|
138 also have "... = Der c (A ;; A\<star>)" |
|
139 by (simp only: Der_union Der_empty) (simp) |
|
140 also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})" |
|
141 by simp |
|
142 also have "... = (Der c A) ;; A\<star>" |
|
143 using Star_Der_Sequ by auto |
|
144 finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" . |
|
145 qed |
|
146 |
|
147 lemma Der_pow[simp]: |
|
148 shows "Der c (A ^^ n) = (if n = 0 then {} else (Der c A) ;; (A ^^ (n - 1)))" |
|
149 apply(induct n arbitrary: A) |
|
150 apply(auto simp add: Cons_eq_append_conv) |
|
151 by (metis Suc_pred concI_if_Nil2 conc_assoc conc_pow_comm lang_pow.simps(2)) |
|
152 |
|
153 |
|
154 lemma Star_concat: |
|
155 assumes "\<forall>s \<in> set ss. s \<in> A" |
|
156 shows "concat ss \<in> A\<star>" |
|
157 using assms by (induct ss) (auto) |
|
158 |
|
159 lemma Star_split: |
|
160 assumes "s \<in> A\<star>" |
|
161 shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])" |
|
162 using assms |
|
163 apply(induct rule: Star.induct) |
|
164 using concat.simps(1) apply fastforce |
|
165 apply(clarify) |
|
166 by (metis append_Nil concat.simps(2) set_ConsD) |
|
167 |
|
168 |
|
169 |
|
170 |
|
171 section \<open>Regular Expressions\<close> |
|
172 |
|
173 datatype rexp = |
|
174 ZERO |
|
175 | ONE |
|
176 | CH char |
|
177 | SEQ rexp rexp |
|
178 | ALT rexp rexp |
|
179 | STAR rexp |
|
180 | NTIMES rexp nat |
|
181 |
|
182 section \<open>Semantics of Regular Expressions\<close> |
|
183 |
|
184 fun |
|
185 L :: "rexp \<Rightarrow> string set" |
|
186 where |
|
187 "L (ZERO) = {}" |
|
188 | "L (ONE) = {[]}" |
|
189 | "L (CH c) = {[c]}" |
|
190 | "L (SEQ r1 r2) = (L r1) ;; (L r2)" |
|
191 | "L (ALT r1 r2) = (L r1) \<union> (L r2)" |
|
192 | "L (STAR r) = (L r)\<star>" |
|
193 | "L (NTIMES r n) = (L r) ^^ n" |
|
194 |
|
195 section \<open>Nullable, Derivatives\<close> |
|
196 |
|
197 fun |
|
198 nullable :: "rexp \<Rightarrow> bool" |
|
199 where |
|
200 "nullable (ZERO) = False" |
|
201 | "nullable (ONE) = True" |
|
202 | "nullable (CH c) = False" |
|
203 | "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)" |
|
204 | "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)" |
|
205 | "nullable (STAR r) = True" |
|
206 | "nullable (NTIMES r n) = (if n = 0 then True else nullable r)" |
|
207 |
|
208 fun |
|
209 der :: "char \<Rightarrow> rexp \<Rightarrow> rexp" |
|
210 where |
|
211 "der c (ZERO) = ZERO" |
|
212 | "der c (ONE) = ZERO" |
|
213 | "der c (CH d) = (if c = d then ONE else ZERO)" |
|
214 | "der c (ALT r1 r2) = ALT (der c r1) (der c r2)" |
|
215 | "der c (SEQ r1 r2) = |
|
216 (if nullable r1 |
|
217 then ALT (SEQ (der c r1) r2) (der c r2) |
|
218 else SEQ (der c r1) r2)" |
|
219 | "der c (STAR r) = SEQ (der c r) (STAR r)" |
|
220 | "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))" |
|
221 |
|
222 |
|
223 fun |
|
224 ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp" |
|
225 where |
|
226 "ders [] r = r" |
|
227 | "ders (c # s) r = ders s (der c r)" |
|
228 |
|
229 |
|
230 lemma pow_empty_iff: |
|
231 shows "[] \<in> (L r) ^^ n \<longleftrightarrow> (if n = 0 then True else [] \<in> (L r))" |
|
232 by (induct n) (auto simp add: Sequ_def) |
|
233 |
|
234 lemma nullable_correctness: |
|
235 shows "nullable r \<longleftrightarrow> [] \<in> (L r)" |
|
236 by (induct r) (auto simp add: Sequ_def pow_empty_iff) |
|
237 |
|
238 lemma der_correctness: |
|
239 shows "L (der c r) = Der c (L r)" |
|
240 apply (induct r) |
|
241 apply(auto simp add: nullable_correctness Sequ_def) |
|
242 using Der_def apply force |
|
243 using Der_def apply auto[1] |
|
244 apply (smt (verit, ccfv_SIG) Der_def append_eq_Cons_conv mem_Collect_eq) |
|
245 using Der_def apply force |
|
246 using Der_Sequ Sequ_def by auto |
|
247 |
|
248 lemma ders_correctness: |
|
249 shows "L (ders s r) = Ders s (L r)" |
|
250 by (induct s arbitrary: r) |
|
251 (simp_all add: Ders_def der_correctness Der_def) |
|
252 |
|
253 lemma ders_append: |
|
254 shows "ders (s1 @ s2) r = ders s2 (ders s1 r)" |
|
255 by (induct s1 arbitrary: s2 r) (auto) |
|
256 |
|
257 lemma ders_snoc: |
|
258 shows "ders (s @ [c]) r = der c (ders s r)" |
|
259 by (simp add: ders_append) |
|
260 |
|
261 |
|
262 end |