thys4/posix/LexerSimp.thy
changeset 587 3198605ac648
equal deleted inserted replaced
586:826af400b068 587:3198605ac648
       
     1 theory LexerSimp
       
     2   imports "Lexer" 
       
     3 begin
       
     4 
       
     5 section {* Lexer including some simplifications *}
       
     6 
       
     7 
       
     8 fun F_RIGHT where
       
     9   "F_RIGHT f v = Right (f v)"
       
    10 
       
    11 fun F_LEFT where
       
    12   "F_LEFT f v = Left (f v)"
       
    13 
       
    14 fun F_ALT where
       
    15   "F_ALT f\<^sub>1 f\<^sub>2 (Right v) = Right (f\<^sub>2 v)"
       
    16 | "F_ALT f\<^sub>1 f\<^sub>2 (Left v) = Left (f\<^sub>1 v)"  
       
    17 | "F_ALT f1 f2 v = v"
       
    18 
       
    19 
       
    20 fun F_SEQ1 where
       
    21   "F_SEQ1 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 Void) (f\<^sub>2 v)"
       
    22 
       
    23 fun F_SEQ2 where 
       
    24   "F_SEQ2 f\<^sub>1 f\<^sub>2 v = Seq (f\<^sub>1 v) (f\<^sub>2 Void)"
       
    25 
       
    26 fun F_SEQ where 
       
    27   "F_SEQ f\<^sub>1 f\<^sub>2 (Seq v\<^sub>1 v\<^sub>2) = Seq (f\<^sub>1 v\<^sub>1) (f\<^sub>2 v\<^sub>2)"
       
    28 | "F_SEQ f1 f2 v = v"
       
    29 
       
    30 fun simp_ALT where
       
    31   "simp_ALT (ZERO, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_RIGHT f\<^sub>2)"
       
    32 | "simp_ALT (r\<^sub>1, f\<^sub>1) (ZERO, f\<^sub>2) = (r\<^sub>1, F_LEFT f\<^sub>1)"
       
    33 | "simp_ALT (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (ALT r\<^sub>1 r\<^sub>2, F_ALT f\<^sub>1 f\<^sub>2)"
       
    34 
       
    35 
       
    36 fun simp_SEQ where
       
    37   "simp_SEQ (ONE, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (r\<^sub>2, F_SEQ1 f\<^sub>1 f\<^sub>2)"
       
    38 | "simp_SEQ (r\<^sub>1, f\<^sub>1) (ONE, f\<^sub>2) = (r\<^sub>1, F_SEQ2 f\<^sub>1 f\<^sub>2)"
       
    39 | "simp_SEQ (ZERO, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (ZERO, undefined)"
       
    40 | "simp_SEQ (r\<^sub>1, f\<^sub>1) (ZERO, f\<^sub>2) = (ZERO, undefined)"
       
    41 | "simp_SEQ (r\<^sub>1, f\<^sub>1) (r\<^sub>2, f\<^sub>2) = (SEQ r\<^sub>1 r\<^sub>2, F_SEQ f\<^sub>1 f\<^sub>2)"  
       
    42  
       
    43 lemma simp_SEQ_simps[simp]:
       
    44   "simp_SEQ p1 p2 = (if (fst p1 = ONE) then (fst p2, F_SEQ1 (snd p1) (snd p2))
       
    45                     else (if (fst p2 = ONE) then (fst p1, F_SEQ2 (snd p1) (snd p2))
       
    46                     else (if (fst p1 = ZERO) then (ZERO, undefined)         
       
    47                     else (if (fst p2 = ZERO) then (ZERO, undefined)  
       
    48                     else (SEQ (fst p1) (fst p2), F_SEQ (snd p1) (snd p2))))))"
       
    49 by (induct p1 p2 rule: simp_SEQ.induct) (auto)
       
    50 
       
    51 lemma simp_ALT_simps[simp]:
       
    52   "simp_ALT p1 p2 = (if (fst p1 = ZERO) then (fst p2, F_RIGHT (snd p2))
       
    53                     else (if (fst p2 = ZERO) then (fst p1, F_LEFT (snd p1))
       
    54                     else (ALT (fst p1) (fst p2), F_ALT (snd p1) (snd p2))))"
       
    55 by (induct p1 p2 rule: simp_ALT.induct) (auto)
       
    56 
       
    57 fun 
       
    58   simp :: "rexp \<Rightarrow> rexp * (val \<Rightarrow> val)"
       
    59 where
       
    60   "simp (ALT r1 r2) = simp_ALT (simp r1) (simp r2)" 
       
    61 | "simp (SEQ r1 r2) = simp_SEQ (simp r1) (simp r2)" 
       
    62 | "simp r = (r, id)"
       
    63 
       
    64 fun 
       
    65   slexer :: "rexp \<Rightarrow> string \<Rightarrow> val option"
       
    66 where
       
    67   "slexer r [] = (if nullable r then Some(mkeps r) else None)"
       
    68 | "slexer r (c#s) = (let (rs, fr) = simp (der c r) in
       
    69                          (case (slexer rs s) of  
       
    70                             None \<Rightarrow> None
       
    71                           | Some(v) \<Rightarrow> Some(injval r c (fr v))))"
       
    72 
       
    73 
       
    74 lemma slexer_better_simp:
       
    75   "slexer r (c#s) = (case (slexer (fst (simp (der c r))) s) of  
       
    76                             None \<Rightarrow> None
       
    77                           | Some(v) \<Rightarrow> Some(injval r c ((snd (simp (der c r))) v)))"
       
    78 by (auto split: prod.split option.split)
       
    79 
       
    80 
       
    81 lemma L_fst_simp:
       
    82   shows "L(r) = L(fst (simp r))"
       
    83 by (induct r) (auto)
       
    84 
       
    85 lemma Posix_simp:
       
    86   assumes "s \<in> (fst (simp r)) \<rightarrow> v" 
       
    87   shows "s \<in> r \<rightarrow> ((snd (simp r)) v)"
       
    88 using assms
       
    89 proof(induct r arbitrary: s v rule: rexp.induct)
       
    90   case (ALT r1 r2 s v)
       
    91   have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
       
    92   have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
       
    93   have as: "s \<in> fst (simp (ALT r1 r2)) \<rightarrow> v" by fact
       
    94   consider (ZERO_ZERO) "fst (simp r1) = ZERO" "fst (simp r2) = ZERO"
       
    95          | (ZERO_NZERO) "fst (simp r1) = ZERO" "fst (simp r2) \<noteq> ZERO"
       
    96          | (NZERO_ZERO) "fst (simp r1) \<noteq> ZERO" "fst (simp r2) = ZERO"
       
    97          | (NZERO_NZERO) "fst (simp r1) \<noteq> ZERO" "fst (simp r2) \<noteq> ZERO" by auto
       
    98   then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" 
       
    99     proof(cases)
       
   100       case (ZERO_ZERO)
       
   101       with as have "s \<in> ZERO \<rightarrow> v" by simp 
       
   102       then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" by (rule Posix_elims(1))
       
   103     next
       
   104       case (ZERO_NZERO)
       
   105       with as have "s \<in> fst (simp r2) \<rightarrow> v" by simp
       
   106       with IH2 have "s \<in> r2 \<rightarrow> snd (simp r2) v" by simp
       
   107       moreover
       
   108       from ZERO_NZERO have "fst (simp r1) = ZERO" by simp
       
   109       then have "L (fst (simp r1)) = {}" by simp
       
   110       then have "L r1 = {}" using L_fst_simp by simp
       
   111       then have "s \<notin> L r1" by simp 
       
   112       ultimately have "s \<in> ALT r1 r2 \<rightarrow> Right (snd (simp r2) v)" by (rule Posix_ALT2)
       
   113       then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v"
       
   114       using ZERO_NZERO by simp
       
   115     next
       
   116       case (NZERO_ZERO)
       
   117       with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
       
   118       with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
       
   119       then have "s \<in> ALT r1 r2 \<rightarrow> Left (snd (simp r1) v)" by (rule Posix_ALT1) 
       
   120       then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" using NZERO_ZERO by simp
       
   121     next
       
   122       case (NZERO_NZERO)
       
   123       with as have "s \<in> ALT (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
       
   124       then consider (Left) v1 where "v = Left v1" "s \<in> (fst (simp r1)) \<rightarrow> v1"
       
   125                   | (Right) v2 where "v = Right v2" "s \<in> (fst (simp r2)) \<rightarrow> v2" "s \<notin> L (fst (simp r1))"
       
   126                   by (erule_tac Posix_elims(4)) 
       
   127       then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v"
       
   128       proof(cases)
       
   129         case (Left)
       
   130         then have "v = Left v1" "s \<in> r1 \<rightarrow> (snd (simp r1) v1)" using IH1 by simp_all
       
   131         then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" using NZERO_NZERO
       
   132           by (simp_all add: Posix_ALT1)
       
   133       next 
       
   134         case (Right)
       
   135         then have "v = Right v2" "s \<in> r2 \<rightarrow> (snd (simp r2) v2)" "s \<notin> L r1" using IH2 L_fst_simp by simp_all
       
   136         then show "s \<in> ALT r1 r2 \<rightarrow> snd (simp (ALT r1 r2)) v" using NZERO_NZERO
       
   137           by (simp_all add: Posix_ALT2)
       
   138       qed
       
   139     qed
       
   140 next
       
   141   case (SEQ r1 r2 s v)
       
   142   have IH1: "\<And>s v. s \<in> fst (simp r1) \<rightarrow> v \<Longrightarrow> s \<in> r1 \<rightarrow> snd (simp r1) v" by fact
       
   143   have IH2: "\<And>s v. s \<in> fst (simp r2) \<rightarrow> v \<Longrightarrow> s \<in> r2 \<rightarrow> snd (simp r2) v" by fact
       
   144   have as: "s \<in> fst (simp (SEQ r1 r2)) \<rightarrow> v" by fact
       
   145   consider (ONE_ONE) "fst (simp r1) = ONE" "fst (simp r2) = ONE"
       
   146          | (ONE_NONE) "fst (simp r1) = ONE" "fst (simp r2) \<noteq> ONE"
       
   147          | (NONE_ONE) "fst (simp r1) \<noteq> ONE" "fst (simp r2) = ONE"
       
   148          | (NONE_NONE) "fst (simp r1) \<noteq> ONE" "fst (simp r2) \<noteq> ONE" 
       
   149          by auto
       
   150   then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" 
       
   151   proof(cases)
       
   152       case (ONE_ONE)
       
   153       with as have b: "s \<in> ONE \<rightarrow> v" by simp 
       
   154       from b have "s \<in> r1 \<rightarrow> snd (simp r1) v" using IH1 ONE_ONE by simp
       
   155       moreover
       
   156       from b have c: "s = []" "v = Void" using Posix_elims(2) by auto
       
   157       moreover
       
   158       have "[] \<in> ONE \<rightarrow> Void" by (simp add: Posix_ONE)
       
   159       then have "[] \<in> fst (simp r2) \<rightarrow> Void" using ONE_ONE by simp
       
   160       then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
       
   161       ultimately have "([] @ []) \<in> SEQ r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) Void)"
       
   162         using Posix_SEQ by blast 
       
   163       then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using c ONE_ONE by simp
       
   164     next
       
   165       case (ONE_NONE)
       
   166       with as have b: "s \<in> fst (simp r2) \<rightarrow> v" by simp 
       
   167       from b have "s \<in> r2 \<rightarrow> snd (simp r2) v" using IH2 ONE_NONE by simp
       
   168       moreover
       
   169       have "[] \<in> ONE \<rightarrow> Void" by (simp add: Posix_ONE)
       
   170       then have "[] \<in> fst (simp r1) \<rightarrow> Void" using ONE_NONE by simp
       
   171       then have "[] \<in> r1 \<rightarrow> snd (simp r1) Void" using IH1 by simp
       
   172       moreover
       
   173       from ONE_NONE(1) have "L (fst (simp r1)) = {[]}" by simp
       
   174       then have "L r1 = {[]}" by (simp add: L_fst_simp[symmetric])
       
   175       ultimately have "([] @ s) \<in> SEQ r1 r2 \<rightarrow> Seq (snd (simp r1) Void) (snd (simp r2) v)"
       
   176         by(rule_tac Posix_SEQ) auto
       
   177       then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using ONE_NONE by simp
       
   178     next
       
   179       case (NONE_ONE)
       
   180         with as have "s \<in> fst (simp r1) \<rightarrow> v" by simp
       
   181         with IH1 have "s \<in> r1 \<rightarrow> snd (simp r1) v" by simp
       
   182       moreover
       
   183         have "[] \<in> ONE \<rightarrow> Void" by (simp add: Posix_ONE)
       
   184         then have "[] \<in> fst (simp r2) \<rightarrow> Void" using NONE_ONE by simp
       
   185         then have "[] \<in> r2 \<rightarrow> snd (simp r2) Void" using IH2 by simp
       
   186       ultimately have "(s @ []) \<in> SEQ r1 r2 \<rightarrow> Seq (snd (simp r1) v) (snd (simp r2) Void)"
       
   187         by(rule_tac Posix_SEQ) auto
       
   188       then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using NONE_ONE by simp
       
   189     next
       
   190       case (NONE_NONE)
       
   191       from as have 00: "fst (simp r1) \<noteq> ZERO" "fst (simp r2) \<noteq> ZERO" 
       
   192         apply(auto)
       
   193         apply(smt Posix_elims(1) fst_conv)
       
   194         by (smt NONE_NONE(2) Posix_elims(1) fstI)
       
   195       with NONE_NONE as have "s \<in> SEQ (fst (simp r1)) (fst (simp r2)) \<rightarrow> v" by simp
       
   196       then obtain s1 s2 v1 v2 where eqs: "s = s1 @ s2" "v = Seq v1 v2"
       
   197                      "s1 \<in> (fst (simp r1)) \<rightarrow> v1" "s2 \<in> (fst (simp r2)) \<rightarrow> v2"
       
   198                      "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)"
       
   199                      by (erule_tac Posix_elims(5)) (auto simp add: L_fst_simp[symmetric]) 
       
   200       then have "s1 \<in> r1 \<rightarrow> (snd (simp r1) v1)" "s2 \<in> r2 \<rightarrow> (snd (simp r2) v2)"
       
   201         using IH1 IH2 by auto             
       
   202       then show "s \<in> SEQ r1 r2 \<rightarrow> snd (simp (SEQ r1 r2)) v" using eqs NONE_NONE 00
       
   203         by(auto intro: Posix_SEQ)
       
   204     qed
       
   205 qed (simp_all)
       
   206 
       
   207 
       
   208 lemma slexer_correctness:
       
   209   shows "slexer r s = lexer r s"
       
   210 proof(induct s arbitrary: r)
       
   211   case Nil
       
   212   show "slexer r [] = lexer r []" by simp
       
   213 next 
       
   214   case (Cons c s r)
       
   215   have IH: "\<And>r. slexer r s = lexer r s" by fact
       
   216   show "slexer r (c # s) = lexer r (c # s)" 
       
   217    proof (cases "s \<in> L (der c r)")
       
   218      case True
       
   219        assume a1: "s \<in> L (der c r)"
       
   220        then obtain v1 where a2: "lexer (der c r) s = Some v1" "s \<in> der c r \<rightarrow> v1"
       
   221          using lexer_correct_Some by auto
       
   222        from a1 have "s \<in> L (fst (simp (der c r)))" using L_fst_simp[symmetric] by simp
       
   223        then obtain v2 where a3: "lexer (fst (simp (der c r))) s = Some v2" "s \<in> (fst (simp (der c r))) \<rightarrow> v2"
       
   224           using lexer_correct_Some by auto
       
   225        then have a4: "slexer (fst (simp (der c r))) s = Some v2" using IH by simp
       
   226        from a3(2) have "s \<in> der c r \<rightarrow> (snd (simp (der c r))) v2" using Posix_simp by simp
       
   227        with a2(2) have "v1 = (snd (simp (der c r))) v2" using Posix_determ by simp
       
   228        with a2(1) a4 show "slexer r (c # s) = lexer r (c # s)" by (auto split: prod.split)
       
   229      next 
       
   230      case False
       
   231        assume b1: "s \<notin> L (der c r)"
       
   232        then have "lexer (der c r) s = None" using lexer_correct_None by simp
       
   233        moreover
       
   234        from b1 have "s \<notin> L (fst (simp (der c r)))" using L_fst_simp[symmetric] by simp
       
   235        then have "lexer (fst (simp (der c r))) s = None" using lexer_correct_None by simp
       
   236        then have "slexer (fst (simp (der c r))) s = None" using IH by simp
       
   237        ultimately show "slexer r (c # s) = lexer r (c # s)" 
       
   238          by (simp del: slexer.simps add: slexer_better_simp)
       
   239    qed
       
   240  qed  
       
   241 
       
   242 
       
   243 unused_thms
       
   244 
       
   245 
       
   246 end