thys4/posix/FBound.thy
changeset 587 3198605ac648
child 588 80e1114d6421
equal deleted inserted replaced
586:826af400b068 587:3198605ac648
       
     1 
       
     2 theory FBound
       
     3   imports "BlexerSimp" "ClosedFormsBounds"
       
     4 begin
       
     5 
       
     6 fun distinctBy :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a list"
       
     7   where
       
     8   "distinctBy [] f acc = []"
       
     9 | "distinctBy (x#xs) f acc = 
       
    10      (if (f x) \<in> acc then distinctBy xs f acc 
       
    11       else x # (distinctBy xs f ({f x} \<union> acc)))"
       
    12 
       
    13 fun rerase :: "arexp \<Rightarrow> rrexp"
       
    14 where
       
    15   "rerase AZERO = RZERO"
       
    16 | "rerase (AONE _) = RONE"
       
    17 | "rerase (ACHAR _ c) = RCHAR c"
       
    18 | "rerase (AALTs bs rs) = RALTS (map rerase rs)"
       
    19 | "rerase (ASEQ _ r1 r2) = RSEQ (rerase r1) (rerase r2)"
       
    20 | "rerase (ASTAR _ r) = RSTAR (rerase r)"
       
    21 | "rerase (ANTIMES _ r n) = RNTIMES (rerase r) n"
       
    22 
       
    23 lemma eq1_rerase:
       
    24   shows "x ~1 y \<longleftrightarrow> (rerase x) = (rerase y)"
       
    25   apply(induct x y rule: eq1.induct)
       
    26   apply(auto)
       
    27   done
       
    28 
       
    29 
       
    30 lemma distinctBy_distinctWith:
       
    31   shows "distinctBy xs f (f ` acc) = distinctWith xs (\<lambda>x y. f x = f y) acc"
       
    32   apply(induct xs arbitrary: acc)
       
    33   apply(auto)
       
    34   by (metis image_insert)
       
    35 
       
    36 lemma distinctBy_distinctWith2:
       
    37   shows "distinctBy xs rerase {} = distinctWith xs eq1 {}"
       
    38   apply(subst distinctBy_distinctWith[of _ _ "{}", simplified])
       
    39   using eq1_rerase by presburger
       
    40   
       
    41 lemma asize_rsize:
       
    42   shows "rsize (rerase r) = asize r"
       
    43   apply(induct r rule: rerase.induct)
       
    44   apply(auto)
       
    45   apply (metis (mono_tags, lifting) comp_apply map_eq_conv)
       
    46   done
       
    47 
       
    48 lemma rerase_fuse:
       
    49   shows "rerase (fuse bs r) = rerase r"
       
    50   apply(induct r)
       
    51        apply simp+
       
    52   done
       
    53 
       
    54 lemma rerase_bsimp_ASEQ:
       
    55   shows "rerase (bsimp_ASEQ x1 a1 a2) = rsimp_SEQ (rerase a1) (rerase a2)"
       
    56   apply(induct x1 a1 a2 rule: bsimp_ASEQ.induct)
       
    57   apply(auto)
       
    58   done
       
    59 
       
    60 lemma rerase_bsimp_AALTs:
       
    61   shows "rerase (bsimp_AALTs bs rs) = rsimp_ALTs (map rerase rs)"
       
    62   apply(induct bs rs rule: bsimp_AALTs.induct)
       
    63   apply(auto simp add: rerase_fuse)
       
    64   done
       
    65 
       
    66 fun anonalt :: "arexp \<Rightarrow> bool"
       
    67   where
       
    68   "anonalt (AALTs bs2 rs) = False"
       
    69 | "anonalt r = True"
       
    70 
       
    71 
       
    72 fun agood :: "arexp \<Rightarrow> bool" where
       
    73   "agood AZERO = False"
       
    74 | "agood (AONE cs) = True" 
       
    75 | "agood (ACHAR cs c) = True"
       
    76 | "agood (AALTs cs []) = False"
       
    77 | "agood (AALTs cs [r]) = False"
       
    78 | "agood (AALTs cs (r1#r2#rs)) = (distinct (map rerase (r1 # r2 # rs)) \<and>(\<forall>r' \<in> set (r1#r2#rs). agood r' \<and> anonalt r'))"
       
    79 | "agood (ASEQ _ AZERO _) = False"
       
    80 | "agood (ASEQ _ (AONE _) _) = False"
       
    81 | "agood (ASEQ _ _ AZERO) = False"
       
    82 | "agood (ASEQ cs r1 r2) = (agood r1 \<and> agood r2)"
       
    83 | "agood (ASTAR cs r) = True"
       
    84 
       
    85 
       
    86 fun anonnested :: "arexp \<Rightarrow> bool"
       
    87   where
       
    88   "anonnested (AALTs bs2 []) = True"
       
    89 | "anonnested (AALTs bs2 ((AALTs bs1 rs1) # rs2)) = False"
       
    90 | "anonnested (AALTs bs2 (r # rs2)) = anonnested (AALTs bs2 rs2)"
       
    91 | "anonnested r = True"
       
    92 
       
    93 
       
    94 lemma asize0:
       
    95   shows "0 < asize r"
       
    96   apply(induct  r)
       
    97   apply(auto)
       
    98   done
       
    99 
       
   100 lemma rnullable:
       
   101   shows "rnullable (rerase r) = bnullable r"
       
   102   apply(induct r rule: rerase.induct)
       
   103   apply(auto)
       
   104   done
       
   105 
       
   106 lemma rder_bder_rerase:
       
   107   shows "rder c (rerase r ) = rerase (bder c r)"
       
   108   apply (induct r)
       
   109   apply (auto)
       
   110   using rerase_fuse apply presburger
       
   111   using rnullable apply blast
       
   112   using rnullable by blast
       
   113 
       
   114 lemma rerase_map_bsimp:
       
   115   assumes "\<And> r. r \<in> set rs \<Longrightarrow> rerase (bsimp r) = (rsimp \<circ> rerase) r"
       
   116   shows "map rerase (map bsimp rs) =  map (rsimp \<circ> rerase) rs"
       
   117   using assms
       
   118   apply(induct rs)
       
   119   by simp_all
       
   120 
       
   121 
       
   122 lemma rerase_flts:
       
   123   shows "map rerase (flts rs) = rflts (map rerase rs)"
       
   124   apply(induct rs rule: flts.induct)
       
   125   apply(auto simp add: rerase_fuse)
       
   126   done
       
   127 
       
   128 lemma rerase_dB:
       
   129   shows "map rerase (distinctBy rs rerase acc) = rdistinct (map rerase rs) acc"
       
   130   apply(induct rs arbitrary: acc)
       
   131   apply simp+
       
   132   done
       
   133   
       
   134 lemma rerase_earlier_later_same:
       
   135   assumes " \<And>r. r \<in> set rs \<Longrightarrow> rerase (bsimp r) = rsimp (rerase r)"
       
   136   shows " (map rerase (distinctBy (flts (map bsimp rs)) rerase {})) =
       
   137           (rdistinct (rflts (map (rsimp \<circ> rerase) rs)) {})"
       
   138   apply(subst rerase_dB)
       
   139   apply(subst rerase_flts)
       
   140   apply(subst rerase_map_bsimp)
       
   141   apply auto
       
   142   using assms
       
   143   apply simp
       
   144   done
       
   145 
       
   146 lemma bsimp_rerase:
       
   147   shows "rerase (bsimp a) = rsimp (rerase a)"
       
   148   apply(induct a rule: bsimp.induct)
       
   149   apply(auto)
       
   150   using rerase_bsimp_ASEQ apply presburger
       
   151   using distinctBy_distinctWith2 rerase_bsimp_AALTs rerase_earlier_later_same by fastforce
       
   152 
       
   153 lemma rders_simp_size:
       
   154   shows "rders_simp (rerase r) s  = rerase (bders_simp r s)"
       
   155   apply(induct s rule: rev_induct)
       
   156   apply simp
       
   157   by (simp add: bders_simp_append rder_bder_rerase rders_simp_append bsimp_rerase)
       
   158 
       
   159 
       
   160 corollary aders_simp_finiteness:
       
   161   assumes "\<exists>N. \<forall>s. rsize (rders_simp (rerase r) s) \<le> N"
       
   162   shows " \<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
       
   163 proof - 
       
   164   from assms obtain N where "\<forall>s. rsize (rders_simp (rerase r) s) \<le> N"
       
   165     by blast
       
   166   then have "\<forall>s. rsize (rerase (bders_simp r s)) \<le> N"
       
   167     by (simp add: rders_simp_size) 
       
   168   then have "\<forall>s. asize (bders_simp r s) \<le> N"
       
   169     by (simp add: asize_rsize) 
       
   170   then show "\<exists>N. \<forall>s. asize (bders_simp r s) \<le> N" by blast
       
   171 qed
       
   172   
       
   173 theorem annotated_size_bound:
       
   174   shows "\<exists>N. \<forall>s. asize (bders_simp r s) \<le> N"
       
   175   apply(insert aders_simp_finiteness)
       
   176   by (simp add: rders_simp_bounded)
       
   177 
       
   178 definition bitcode_agnostic :: "(arexp \<Rightarrow> arexp ) \<Rightarrow> bool"
       
   179   where " bitcode_agnostic f = (\<forall>a1 a2. rerase a1 = rerase a2 \<longrightarrow> rerase (f a1) = rerase (f a2))  "
       
   180 
       
   181 lemma bitcode_agnostic_bsimp:
       
   182   shows  "bitcode_agnostic bsimp"
       
   183   by (simp add: bitcode_agnostic_def bsimp_rerase)
       
   184 
       
   185 thm bsimp_rerase
       
   186 
       
   187 lemma cant1:
       
   188   shows "\<lbrakk> bsimp a = b; rerase a = rerase b; a = ASEQ bs r1 r2 \<rbrakk> \<Longrightarrow>
       
   189         \<exists>bs' r1' r2'. b = ASEQ bs' r1' r2' \<and> rerase r1' = rerase r1 \<and> rerase r2' = rerase r2"
       
   190   sorry
       
   191 
       
   192 
       
   193 
       
   194 (*"part is less than whole" thm for rrexp, since rrexp is always finite*)
       
   195 lemma rrexp_finite1:
       
   196   shows "\<lbrakk> bsimp_ASEQ bs1 (bsimp ra1) (bsimp ra2) = ASEQ bs2 rb1 rb2; ra1 ~1 rb1; ra2 ~1 rb2 \<rbrakk> \<Longrightarrow> rerase ra1 = rerase (bsimp ra1) "
       
   197   apply(case_tac ra1 )
       
   198         apply simp+
       
   199      apply(case_tac rb1)
       
   200            apply simp+
       
   201 
       
   202   sorry
       
   203 
       
   204 lemma unsure_unchanging:
       
   205   assumes "bsimp a = bsimp b"
       
   206 and "a ~1 b"
       
   207 shows "a = b"
       
   208   using assms
       
   209   apply(induct rule: eq1.induct)
       
   210                       apply simp+
       
   211   oops
       
   212 
       
   213 lemma eq1rerase:
       
   214   shows "rerase r1 = rerase r2 \<longleftrightarrow> r1 ~1 r2"
       
   215   using eq1_rerase by presburger
       
   216 
       
   217 thm contrapos_pp
       
   218 
       
   219 lemma r_part_neq_whole:
       
   220   shows "RSEQ r1 r2 \<noteq> r2"
       
   221   apply simp
       
   222   done
       
   223 
       
   224 lemma r_part_neq_whole2:
       
   225   shows "RSEQ r1 r2 \<noteq> rsimp r2"
       
   226   by (metis good.simps(7) good.simps(8) good1 good_SEQ r_part_neq_whole rrexp.distinct(5) rsimp.simps(3) test)
       
   227 
       
   228 
       
   229 
       
   230 lemma arexpfiniteaux1:
       
   231   shows "rerase (bsimp_ASEQ x41 (bsimp x42) (bsimp x43)) = RSEQ (rerase x42) (rerase x43) \<Longrightarrow> \<forall>bs. bsimp x42 \<noteq> AONE bs"
       
   232   apply(erule contrapos_pp)
       
   233   apply simp
       
   234   apply(erule exE)
       
   235   apply simp
       
   236   by (metis bsimp_rerase r_part_neq_whole2 rerase_fuse)
       
   237 
       
   238 lemma arexpfiniteaux2:
       
   239   shows "rerase (bsimp_ASEQ x41 (bsimp x42) (bsimp x43)) = RSEQ (rerase x42) (rerase x43) \<Longrightarrow> bsimp x42 \<noteq> AZERO "
       
   240   apply(erule contrapos_pp)
       
   241   apply simp
       
   242   done
       
   243 
       
   244 lemma arexpfiniteaux3:
       
   245   shows "rerase (bsimp_ASEQ x41 (bsimp x42) (bsimp x43)) = RSEQ (rerase x42) (rerase x43) \<Longrightarrow> bsimp x43 \<noteq> AZERO "
       
   246   apply(erule contrapos_pp)
       
   247   apply simp
       
   248   done
       
   249 
       
   250 
       
   251 lemma arexp_finite1:
       
   252   shows "rerase (bsimp b) = rerase b \<Longrightarrow> bsimp b = b"
       
   253   apply(induct b)
       
   254         apply simp+
       
   255          apply(case_tac "bsimp b2 = AZERO")
       
   256           apply simp
       
   257      apply (case_tac "bsimp b1 = AZERO")
       
   258       apply simp
       
   259   apply(case_tac "\<exists>bs. bsimp b1 = AONE bs")
       
   260   using arexpfiniteaux1 apply blast
       
   261      apply simp
       
   262      apply(subgoal_tac "bsimp_ASEQ x1 (bsimp b1) (bsimp b2) = ASEQ x1 (bsimp b1) (bsimp b2)")
       
   263   apply simp
       
   264   using bsimp_ASEQ1 apply presburger
       
   265   apply simp
       
   266 
       
   267   sorry
       
   268 
       
   269 lemma bitcodes_unchanging2:
       
   270   assumes "bsimp a = b"
       
   271 and "a ~1 b"
       
   272 shows "a = b"
       
   273   using assms
       
   274   apply(induct rule: eq1.induct)
       
   275                       apply simp
       
   276                       apply simp
       
   277                       apply simp
       
   278 
       
   279                       apply auto
       
   280   
       
   281   sorry
       
   282 
       
   283 
       
   284 
       
   285 lemma bitcodes_unchanging:
       
   286   shows "\<lbrakk>bsimp a = b; rerase a = rerase b \<rbrakk> \<Longrightarrow> a = b"
       
   287   apply(induction a arbitrary: b)
       
   288         apply simp+
       
   289      apply(case_tac "\<exists>bs. bsimp a1 = AONE bs")
       
   290       apply(erule exE)
       
   291       apply simp
       
   292       prefer 2
       
   293       apply(case_tac "bsimp a1 = AZERO")
       
   294        apply simp
       
   295       apply simp
       
   296       apply (metis BlexerSimp.bsimp_ASEQ0 bsimp_ASEQ1 rerase.simps(1) rerase.simps(5) rrexp.distinct(5) rrexp.inject(2))
       
   297   
       
   298   sorry
       
   299 
       
   300 
       
   301 lemma bagnostic_shows_bsimp_idem:
       
   302   assumes "bitcode_agnostic bsimp"
       
   303 and "rerase (bsimp a) = rsimp (rerase a)"
       
   304 and "rsimp r = rsimp (rsimp r)"
       
   305 shows "bsimp a = bsimp (bsimp a)"
       
   306   
       
   307   oops
       
   308 
       
   309 theorem bsimp_idem:
       
   310   shows "bsimp (bsimp a) = bsimp a"
       
   311   using bitcodes_unchanging bsimp_rerase rsimp_idem by auto
       
   312 
       
   313 unused_thms
       
   314 
       
   315 end