|
1 theory ClosedForms |
|
2 imports "BasicIdentities" |
|
3 begin |
|
4 |
|
5 lemma flts_middle0: |
|
6 shows "rflts (rsa @ RZERO # rsb) = rflts (rsa @ rsb)" |
|
7 apply(induct rsa) |
|
8 apply simp |
|
9 by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot) |
|
10 |
|
11 |
|
12 |
|
13 lemma simp_flatten_aux0: |
|
14 shows "rsimp (RALTS rs) = rsimp (RALTS (map rsimp rs))" |
|
15 by (metis append_Nil head_one_more_simp identity_wwo0 list.simps(8) rdistinct.simps(1) rflts.simps(1) rsimp.simps(2) rsimp_ALTs.simps(1) rsimp_ALTs.simps(3) simp_flatten spawn_simp_rsimpalts) |
|
16 |
|
17 |
|
18 inductive |
|
19 hrewrite:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ h\<leadsto> _" [99, 99] 99) |
|
20 where |
|
21 "RSEQ RZERO r2 h\<leadsto> RZERO" |
|
22 | "RSEQ r1 RZERO h\<leadsto> RZERO" |
|
23 | "RSEQ RONE r h\<leadsto> r" |
|
24 | "r1 h\<leadsto> r2 \<Longrightarrow> RSEQ r1 r3 h\<leadsto> RSEQ r2 r3" |
|
25 | "r3 h\<leadsto> r4 \<Longrightarrow> RSEQ r1 r3 h\<leadsto> RSEQ r1 r4" |
|
26 | "r h\<leadsto> r' \<Longrightarrow> (RALTS (rs1 @ [r] @ rs2)) h\<leadsto> (RALTS (rs1 @ [r'] @ rs2))" |
|
27 (*context rule for eliminating 0, alts--corresponds to the recursive call flts r::rs = r::(flts rs)*) |
|
28 | "RALTS (rsa @ [RZERO] @ rsb) h\<leadsto> RALTS (rsa @ rsb)" |
|
29 | "RALTS (rsa @ [RALTS rs1] @ rsb) h\<leadsto> RALTS (rsa @ rs1 @ rsb)" |
|
30 | "RALTS [] h\<leadsto> RZERO" |
|
31 | "RALTS [r] h\<leadsto> r" |
|
32 | "a1 = a2 \<Longrightarrow> RALTS (rsa@[a1]@rsb@[a2]@rsc) h\<leadsto> RALTS (rsa @ [a1] @ rsb @ rsc)" |
|
33 |
|
34 inductive |
|
35 hrewrites:: "rrexp \<Rightarrow> rrexp \<Rightarrow> bool" ("_ h\<leadsto>* _" [100, 100] 100) |
|
36 where |
|
37 rs1[intro, simp]:"r h\<leadsto>* r" |
|
38 | rs2[intro]: "\<lbrakk>r1 h\<leadsto>* r2; r2 h\<leadsto> r3\<rbrakk> \<Longrightarrow> r1 h\<leadsto>* r3" |
|
39 |
|
40 |
|
41 lemma hr_in_rstar : "r1 h\<leadsto> r2 \<Longrightarrow> r1 h\<leadsto>* r2" |
|
42 using hrewrites.intros(1) hrewrites.intros(2) by blast |
|
43 |
|
44 lemma hreal_trans[trans]: |
|
45 assumes a1: "r1 h\<leadsto>* r2" and a2: "r2 h\<leadsto>* r3" |
|
46 shows "r1 h\<leadsto>* r3" |
|
47 using a2 a1 |
|
48 apply(induct r2 r3 arbitrary: r1 rule: hrewrites.induct) |
|
49 apply(auto) |
|
50 done |
|
51 |
|
52 lemma hrewrites_seq_context: |
|
53 shows "r1 h\<leadsto>* r2 \<Longrightarrow> RSEQ r1 r3 h\<leadsto>* RSEQ r2 r3" |
|
54 apply(induct r1 r2 rule: hrewrites.induct) |
|
55 apply simp |
|
56 using hrewrite.intros(4) by blast |
|
57 |
|
58 lemma hrewrites_seq_context2: |
|
59 shows "r1 h\<leadsto>* r2 \<Longrightarrow> RSEQ r0 r1 h\<leadsto>* RSEQ r0 r2" |
|
60 apply(induct r1 r2 rule: hrewrites.induct) |
|
61 apply simp |
|
62 using hrewrite.intros(5) by blast |
|
63 |
|
64 |
|
65 lemma hrewrites_seq_contexts: |
|
66 shows "\<lbrakk>r1 h\<leadsto>* r2; r3 h\<leadsto>* r4\<rbrakk> \<Longrightarrow> RSEQ r1 r3 h\<leadsto>* RSEQ r2 r4" |
|
67 by (meson hreal_trans hrewrites_seq_context hrewrites_seq_context2) |
|
68 |
|
69 |
|
70 lemma simp_removes_duplicate1: |
|
71 shows " a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a])) = rsimp (RALTS (rsa))" |
|
72 and " rsimp (RALTS (a1 # rsa @ [a1])) = rsimp (RALTS (a1 # rsa))" |
|
73 apply(induct rsa arbitrary: a1) |
|
74 apply simp |
|
75 apply simp |
|
76 prefer 2 |
|
77 apply(case_tac "a = aa") |
|
78 apply simp |
|
79 apply simp |
|
80 apply (metis Cons_eq_appendI Cons_eq_map_conv distinct_removes_duplicate_flts list.set_intros(2)) |
|
81 apply (metis append_Cons append_Nil distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9)) |
|
82 by (metis (mono_tags, lifting) append_Cons distinct_removes_duplicate_flts list.set_intros(1) list.simps(8) list.simps(9) map_append rsimp.simps(2)) |
|
83 |
|
84 lemma simp_removes_duplicate2: |
|
85 shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ [a] @ rsb)) = rsimp (RALTS (rsa @ rsb))" |
|
86 apply(induct rsb arbitrary: rsa) |
|
87 apply simp |
|
88 using distinct_removes_duplicate_flts apply auto[1] |
|
89 by (metis append.assoc head_one_more_simp rsimp.simps(2) simp_flatten simp_removes_duplicate1(1)) |
|
90 |
|
91 lemma simp_removes_duplicate3: |
|
92 shows "a \<in> set rsa \<Longrightarrow> rsimp (RALTS (rsa @ a # rsb)) = rsimp (RALTS (rsa @ rsb))" |
|
93 using simp_removes_duplicate2 by auto |
|
94 |
|
95 (* |
|
96 lemma distinct_removes_middle4: |
|
97 shows "a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ [a] @ rsb) rset = rdistinct (rsa @ rsb) rset" |
|
98 using distinct_removes_middle(1) by fastforce |
|
99 *) |
|
100 |
|
101 (* |
|
102 lemma distinct_removes_middle_list: |
|
103 shows "\<forall>a \<in> set x. a \<in> set rsa \<Longrightarrow> rdistinct (rsa @ x @ rsb) rset = rdistinct (rsa @ rsb) rset" |
|
104 apply(induct x) |
|
105 apply simp |
|
106 by (simp add: distinct_removes_middle3) |
|
107 *) |
|
108 |
|
109 inductive frewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f _" [10, 10] 10) |
|
110 where |
|
111 "(RZERO # rs) \<leadsto>f rs" |
|
112 | "((RALTS rs) # rsa) \<leadsto>f (rs @ rsa)" |
|
113 | "rs1 \<leadsto>f rs2 \<Longrightarrow> (r # rs1) \<leadsto>f (r # rs2)" |
|
114 |
|
115 |
|
116 inductive |
|
117 frewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>f* _" [10, 10] 10) |
|
118 where |
|
119 [intro, simp]:"rs \<leadsto>f* rs" |
|
120 | [intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>f* rs3" |
|
121 |
|
122 inductive grewrite:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g _" [10, 10] 10) |
|
123 where |
|
124 "(RZERO # rs) \<leadsto>g rs" |
|
125 | "((RALTS rs) # rsa) \<leadsto>g (rs @ rsa)" |
|
126 | "rs1 \<leadsto>g rs2 \<Longrightarrow> (r # rs1) \<leadsto>g (r # rs2)" |
|
127 | "rsa @ [a] @ rsb @ [a] @ rsc \<leadsto>g rsa @ [a] @ rsb @ rsc" |
|
128 |
|
129 lemma grewrite_variant1: |
|
130 shows "a \<in> set rs1 \<Longrightarrow> rs1 @ a # rs \<leadsto>g rs1 @ rs" |
|
131 apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first) |
|
132 done |
|
133 |
|
134 |
|
135 inductive |
|
136 grewrites:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ \<leadsto>g* _" [10, 10] 10) |
|
137 where |
|
138 [intro, simp]:"rs \<leadsto>g* rs" |
|
139 | [intro]: "\<lbrakk>rs1 \<leadsto>g* rs2; rs2 \<leadsto>g rs3\<rbrakk> \<Longrightarrow> rs1 \<leadsto>g* rs3" |
|
140 |
|
141 |
|
142 |
|
143 (* |
|
144 inductive |
|
145 frewrites2:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" ("_ <\<leadsto>f* _" [10, 10] 10) |
|
146 where |
|
147 [intro]: "\<lbrakk>rs1 \<leadsto>f* rs2; rs2 \<leadsto>f* rs1\<rbrakk> \<Longrightarrow> rs1 <\<leadsto>f* rs2" |
|
148 *) |
|
149 |
|
150 lemma fr_in_rstar : "r1 \<leadsto>f r2 \<Longrightarrow> r1 \<leadsto>f* r2" |
|
151 using frewrites.intros(1) frewrites.intros(2) by blast |
|
152 |
|
153 lemma freal_trans[trans]: |
|
154 assumes a1: "r1 \<leadsto>f* r2" and a2: "r2 \<leadsto>f* r3" |
|
155 shows "r1 \<leadsto>f* r3" |
|
156 using a2 a1 |
|
157 apply(induct r2 r3 arbitrary: r1 rule: frewrites.induct) |
|
158 apply(auto) |
|
159 done |
|
160 |
|
161 |
|
162 lemma many_steps_later: "\<lbrakk>r1 \<leadsto>f r2; r2 \<leadsto>f* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>f* r3" |
|
163 by (meson fr_in_rstar freal_trans) |
|
164 |
|
165 |
|
166 lemma gr_in_rstar : "r1 \<leadsto>g r2 \<Longrightarrow> r1 \<leadsto>g* r2" |
|
167 using grewrites.intros(1) grewrites.intros(2) by blast |
|
168 |
|
169 lemma greal_trans[trans]: |
|
170 assumes a1: "r1 \<leadsto>g* r2" and a2: "r2 \<leadsto>g* r3" |
|
171 shows "r1 \<leadsto>g* r3" |
|
172 using a2 a1 |
|
173 apply(induct r2 r3 arbitrary: r1 rule: grewrites.induct) |
|
174 apply(auto) |
|
175 done |
|
176 |
|
177 |
|
178 lemma gmany_steps_later: "\<lbrakk>r1 \<leadsto>g r2; r2 \<leadsto>g* r3 \<rbrakk> \<Longrightarrow> r1 \<leadsto>g* r3" |
|
179 by (meson gr_in_rstar greal_trans) |
|
180 |
|
181 lemma gstar_rdistinct_general: |
|
182 shows "rs1 @ rs \<leadsto>g* rs1 @ (rdistinct rs (set rs1))" |
|
183 apply(induct rs arbitrary: rs1) |
|
184 apply simp |
|
185 apply(case_tac " a \<in> set rs1") |
|
186 apply simp |
|
187 apply(subgoal_tac "rs1 @ a # rs \<leadsto>g rs1 @ rs") |
|
188 using gmany_steps_later apply auto[1] |
|
189 apply (metis append.assoc append_Cons append_Nil grewrite.intros(4) split_list_first) |
|
190 apply simp |
|
191 apply(drule_tac x = "rs1 @ [a]" in meta_spec) |
|
192 by simp |
|
193 |
|
194 |
|
195 lemma gstar_rdistinct: |
|
196 shows "rs \<leadsto>g* rdistinct rs {}" |
|
197 apply(induct rs) |
|
198 apply simp |
|
199 by (metis append.left_neutral empty_set gstar_rdistinct_general) |
|
200 |
|
201 |
|
202 lemma grewrite_append: |
|
203 shows "\<lbrakk> rsa \<leadsto>g rsb \<rbrakk> \<Longrightarrow> rs @ rsa \<leadsto>g rs @ rsb" |
|
204 apply(induct rs) |
|
205 apply simp+ |
|
206 using grewrite.intros(3) by blast |
|
207 |
|
208 |
|
209 |
|
210 lemma frewrites_cons: |
|
211 shows "\<lbrakk> rsa \<leadsto>f* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>f* r # rsb" |
|
212 apply(induct rsa rsb rule: frewrites.induct) |
|
213 apply simp |
|
214 using frewrite.intros(3) by blast |
|
215 |
|
216 |
|
217 lemma grewrites_cons: |
|
218 shows "\<lbrakk> rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> r # rsa \<leadsto>g* r # rsb" |
|
219 apply(induct rsa rsb rule: grewrites.induct) |
|
220 apply simp |
|
221 using grewrite.intros(3) by blast |
|
222 |
|
223 |
|
224 lemma frewrites_append: |
|
225 shows " \<lbrakk>rsa \<leadsto>f* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>f* (rs @ rsb)" |
|
226 apply(induct rs) |
|
227 apply simp |
|
228 by (simp add: frewrites_cons) |
|
229 |
|
230 lemma grewrites_append: |
|
231 shows " \<lbrakk>rsa \<leadsto>g* rsb\<rbrakk> \<Longrightarrow> (rs @ rsa) \<leadsto>g* (rs @ rsb)" |
|
232 apply(induct rs) |
|
233 apply simp |
|
234 by (simp add: grewrites_cons) |
|
235 |
|
236 |
|
237 lemma grewrites_concat: |
|
238 shows "\<lbrakk>rs1 \<leadsto>g rs2; rsa \<leadsto>g* rsb \<rbrakk> \<Longrightarrow> (rs1 @ rsa) \<leadsto>g* (rs2 @ rsb)" |
|
239 apply(induct rs1 rs2 rule: grewrite.induct) |
|
240 apply(simp) |
|
241 apply(subgoal_tac "(RZERO # rs @ rsa) \<leadsto>g (rs @ rsa)") |
|
242 prefer 2 |
|
243 using grewrite.intros(1) apply blast |
|
244 apply(subgoal_tac "(rs @ rsa) \<leadsto>g* (rs @ rsb)") |
|
245 using gmany_steps_later apply blast |
|
246 apply (simp add: grewrites_append) |
|
247 apply (metis append.assoc append_Cons grewrite.intros(2) grewrites_append gmany_steps_later) |
|
248 using grewrites_cons apply auto |
|
249 apply(subgoal_tac "rsaa @ a # rsba @ a # rsc @ rsa \<leadsto>g* rsaa @ a # rsba @ a # rsc @ rsb") |
|
250 using grewrite.intros(4) grewrites.intros(2) apply force |
|
251 using grewrites_append by auto |
|
252 |
|
253 |
|
254 lemma grewritess_concat: |
|
255 shows "\<lbrakk>rsa \<leadsto>g* rsb; rsc \<leadsto>g* rsd \<rbrakk> \<Longrightarrow> (rsa @ rsc) \<leadsto>g* (rsb @ rsd)" |
|
256 apply(induct rsa rsb rule: grewrites.induct) |
|
257 apply(case_tac rs) |
|
258 apply simp |
|
259 using grewrites_append apply blast |
|
260 by (meson greal_trans grewrites.simps grewrites_concat) |
|
261 |
|
262 fun alt_set:: "rrexp \<Rightarrow> rrexp set" |
|
263 where |
|
264 "alt_set (RALTS rs) = set rs \<union> \<Union> (alt_set ` (set rs))" |
|
265 | "alt_set r = {r}" |
|
266 |
|
267 |
|
268 lemma grewrite_cases_middle: |
|
269 shows "rs1 \<leadsto>g rs2 \<Longrightarrow> |
|
270 (\<exists>rsa rsb rsc. rs1 = (rsa @ [RALTS rsb] @ rsc) \<and> rs2 = (rsa @ rsb @ rsc)) \<or> |
|
271 (\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc) \<or> |
|
272 (\<exists>rsa rsb rsc a. rs1 = rsa @ [a] @ rsb @ [a] @ rsc \<and> rs2 = rsa @ [a] @ rsb @ rsc)" |
|
273 apply( induct rs1 rs2 rule: grewrite.induct) |
|
274 apply simp |
|
275 apply blast |
|
276 apply (metis append_Cons append_Nil) |
|
277 apply (metis append_Cons) |
|
278 by blast |
|
279 |
|
280 |
|
281 lemma good_singleton: |
|
282 shows "good a \<and> nonalt a \<Longrightarrow> rflts [a] = [a]" |
|
283 using good.simps(1) k0b by blast |
|
284 |
|
285 |
|
286 |
|
287 |
|
288 |
|
289 |
|
290 |
|
291 lemma all_that_same_elem: |
|
292 shows "\<lbrakk> a \<in> rset; rdistinct rs {a} = []\<rbrakk> |
|
293 \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct rsb rset" |
|
294 apply(induct rs) |
|
295 apply simp |
|
296 apply(subgoal_tac "aa = a") |
|
297 apply simp |
|
298 by (metis empty_iff insert_iff list.discI rdistinct.simps(2)) |
|
299 |
|
300 lemma distinct_early_app1: |
|
301 shows "rset1 \<subseteq> rset \<Longrightarrow> rdistinct rs rset = rdistinct (rdistinct rs rset1) rset" |
|
302 apply(induct rs arbitrary: rset rset1) |
|
303 apply simp |
|
304 apply simp |
|
305 apply(case_tac "a \<in> rset1") |
|
306 apply simp |
|
307 apply(case_tac "a \<in> rset") |
|
308 apply simp+ |
|
309 |
|
310 apply blast |
|
311 apply(case_tac "a \<in> rset1") |
|
312 apply simp+ |
|
313 apply(case_tac "a \<in> rset") |
|
314 apply simp |
|
315 apply (metis insert_subsetI) |
|
316 apply simp |
|
317 by (meson insert_mono) |
|
318 |
|
319 |
|
320 lemma distinct_early_app: |
|
321 shows " rdistinct (rs @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset" |
|
322 apply(induct rsb) |
|
323 apply simp |
|
324 using distinct_early_app1 apply blast |
|
325 by (metis distinct_early_app1 distinct_once_enough empty_subsetI) |
|
326 |
|
327 |
|
328 lemma distinct_eq_interesting1: |
|
329 shows "a \<in> rset \<Longrightarrow> rdistinct (rs @ rsb) rset = rdistinct (rdistinct (a # rs) {} @ rsb) rset" |
|
330 apply(subgoal_tac "rdistinct (rdistinct (a # rs) {} @ rsb) rset = rdistinct (rdistinct rs {} @ rsb) rset") |
|
331 apply(simp only:) |
|
332 using distinct_early_app apply blast |
|
333 by (metis append_Cons distinct_early_app rdistinct.simps(2)) |
|
334 |
|
335 |
|
336 |
|
337 lemma good_flatten_aux_aux1: |
|
338 shows "\<lbrakk> size rs \<ge>2; |
|
339 \<forall>r \<in> set rs. good r \<and> r \<noteq> RZERO \<and> nonalt r; \<forall>r \<in> set rsb. good r \<and> r \<noteq> RZERO \<and> nonalt r \<rbrakk> |
|
340 \<Longrightarrow> rdistinct (rs @ rsb) rset = |
|
341 rdistinct (rflts [rsimp_ALTs (rdistinct rs {})] @ rsb) rset" |
|
342 apply(induct rs arbitrary: rset) |
|
343 apply simp |
|
344 apply(case_tac "a \<in> rset") |
|
345 apply simp |
|
346 apply(case_tac "rdistinct rs {a}") |
|
347 apply simp |
|
348 apply(subst good_singleton) |
|
349 apply force |
|
350 apply simp |
|
351 apply (meson all_that_same_elem) |
|
352 apply(subgoal_tac "rflts [rsimp_ALTs (a # rdistinct rs {a})] = a # rdistinct rs {a} ") |
|
353 prefer 2 |
|
354 using k0a rsimp_ALTs.simps(3) apply presburger |
|
355 apply(simp only:) |
|
356 apply(subgoal_tac "rdistinct (rs @ rsb) rset = rdistinct ((rdistinct (a # rs) {}) @ rsb) rset ") |
|
357 apply (metis insert_absorb insert_is_Un insert_not_empty rdistinct.simps(2)) |
|
358 apply (meson distinct_eq_interesting1) |
|
359 apply simp |
|
360 apply(case_tac "rdistinct rs {a}") |
|
361 prefer 2 |
|
362 apply(subgoal_tac "rsimp_ALTs (a # rdistinct rs {a}) = RALTS (a # rdistinct rs {a})") |
|
363 apply(simp only:) |
|
364 apply(subgoal_tac "a # rdistinct (rs @ rsb) (insert a rset) = |
|
365 rdistinct (rflts [RALTS (a # rdistinct rs {a})] @ rsb) rset") |
|
366 apply simp |
|
367 apply (metis append_Cons distinct_early_app empty_iff insert_is_Un k0a rdistinct.simps(2)) |
|
368 using rsimp_ALTs.simps(3) apply presburger |
|
369 by (metis Un_insert_left append_Cons distinct_early_app empty_iff good_singleton rdistinct.simps(2) rsimp_ALTs.simps(2) sup_bot_left) |
|
370 |
|
371 |
|
372 |
|
373 |
|
374 |
|
375 lemma good_flatten_aux_aux: |
|
376 shows "\<lbrakk>\<exists>a aa lista list. rs = a # list \<and> list = aa # lista; |
|
377 \<forall>r \<in> set rs. good r \<and> r \<noteq> RZERO \<and> nonalt r; \<forall>r \<in> set rsb. good r \<and> r \<noteq> RZERO \<and> nonalt r \<rbrakk> |
|
378 \<Longrightarrow> rdistinct (rs @ rsb) rset = |
|
379 rdistinct (rflts [rsimp_ALTs (rdistinct rs {})] @ rsb) rset" |
|
380 apply(erule exE)+ |
|
381 apply(subgoal_tac "size rs \<ge> 2") |
|
382 apply (metis good_flatten_aux_aux1) |
|
383 by (simp add: Suc_leI length_Cons less_add_Suc1) |
|
384 |
|
385 |
|
386 |
|
387 lemma good_flatten_aux: |
|
388 shows " \<lbrakk>\<forall>r\<in>set rs. good r \<or> r = RZERO; \<forall>r\<in>set rsa . good r \<or> r = RZERO; |
|
389 \<forall>r\<in>set rsb. good r \<or> r = RZERO; |
|
390 rsimp (RALTS (rsa @ rs @ rsb)) = rsimp_ALTs (rdistinct (rflts (rsa @ rs @ rsb)) {}); |
|
391 rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = |
|
392 rsimp_ALTs (rdistinct (rflts (rsa @ [rsimp (RALTS rs)] @ rsb)) {}); |
|
393 map rsimp rsa = rsa; map rsimp rsb = rsb; map rsimp rs = rs; |
|
394 rdistinct (rflts rsa @ rflts rs @ rflts rsb) {} = |
|
395 rdistinct (rflts rsa) {} @ rdistinct (rflts rs @ rflts rsb) (set (rflts rsa)); |
|
396 rdistinct (rflts rsa @ rflts [rsimp (RALTS rs)] @ rflts rsb) {} = |
|
397 rdistinct (rflts rsa) {} @ rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))\<rbrakk> |
|
398 \<Longrightarrow> rdistinct (rflts rs @ rflts rsb) rset = |
|
399 rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) rset" |
|
400 apply simp |
|
401 apply(case_tac "rflts rs ") |
|
402 apply simp |
|
403 apply(case_tac "list") |
|
404 apply simp |
|
405 apply(case_tac "a \<in> rset") |
|
406 apply simp |
|
407 apply (metis append.left_neutral append_Cons equals0D k0b list.set_intros(1) nonalt_flts_rd qqq1 rdistinct.simps(2)) |
|
408 apply simp |
|
409 apply (metis Un_insert_left append_Cons append_Nil ex_in_conv flts_single1 insertI1 list.simps(15) nonalt_flts_rd nonazero.elims(3) qqq1 rdistinct.simps(2) sup_bot_left) |
|
410 apply(subgoal_tac "\<forall>r \<in> set (rflts rs). good r \<and> r \<noteq> RZERO \<and> nonalt r") |
|
411 prefer 2 |
|
412 apply (metis Diff_empty flts3 nonalt_flts_rd qqq1 rdistinct_set_equality1) |
|
413 apply(subgoal_tac "\<forall>r \<in> set (rflts rsb). good r \<and> r \<noteq> RZERO \<and> nonalt r") |
|
414 prefer 2 |
|
415 apply (metis Diff_empty flts3 good.simps(1) nonalt_flts_rd rdistinct_set_equality1) |
|
416 by (smt (verit, ccfv_threshold) good_flatten_aux_aux) |
|
417 |
|
418 |
|
419 |
|
420 |
|
421 lemma good_flatten_middle: |
|
422 shows "\<lbrakk>\<forall>r \<in> set rs. good r \<or> r = RZERO; \<forall>r \<in> set rsa. good r \<or> r = RZERO; \<forall>r \<in> set rsb. good r \<or> r = RZERO\<rbrakk> \<Longrightarrow> |
|
423 rsimp (RALTS (rsa @ rs @ rsb)) = rsimp (RALTS (rsa @ [RALTS rs] @ rsb))" |
|
424 apply(subgoal_tac "rsimp (RALTS (rsa @ rs @ rsb)) = rsimp_ALTs (rdistinct (rflts (map rsimp rsa @ |
|
425 map rsimp rs @ map rsimp rsb)) {})") |
|
426 prefer 2 |
|
427 apply simp |
|
428 apply(simp only:) |
|
429 apply(subgoal_tac "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = rsimp_ALTs (rdistinct (rflts (map rsimp rsa @ |
|
430 [rsimp (RALTS rs)] @ map rsimp rsb)) {})") |
|
431 prefer 2 |
|
432 apply simp |
|
433 apply(simp only:) |
|
434 apply(subgoal_tac "map rsimp rsa = rsa") |
|
435 prefer 2 |
|
436 apply (metis map_idI rsimp.simps(3) test) |
|
437 apply(simp only:) |
|
438 apply(subgoal_tac "map rsimp rsb = rsb") |
|
439 prefer 2 |
|
440 apply (metis map_idI rsimp.simps(3) test) |
|
441 apply(simp only:) |
|
442 apply(subst k00)+ |
|
443 apply(subgoal_tac "map rsimp rs = rs") |
|
444 apply(simp only:) |
|
445 prefer 2 |
|
446 apply (metis map_idI rsimp.simps(3) test) |
|
447 apply(subgoal_tac "rdistinct (rflts rsa @ rflts rs @ rflts rsb) {} = |
|
448 rdistinct (rflts rsa) {} @ rdistinct (rflts rs @ rflts rsb) (set (rflts rsa))") |
|
449 apply(simp only:) |
|
450 prefer 2 |
|
451 using rdistinct_concat_general apply blast |
|
452 apply(subgoal_tac "rdistinct (rflts rsa @ rflts [rsimp (RALTS rs)] @ rflts rsb) {} = |
|
453 rdistinct (rflts rsa) {} @ rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))") |
|
454 apply(simp only:) |
|
455 prefer 2 |
|
456 using rdistinct_concat_general apply blast |
|
457 apply(subgoal_tac "rdistinct (rflts rs @ rflts rsb) (set (rflts rsa)) = |
|
458 rdistinct (rflts [rsimp (RALTS rs)] @ rflts rsb) (set (rflts rsa))") |
|
459 apply presburger |
|
460 using good_flatten_aux by blast |
|
461 |
|
462 |
|
463 lemma simp_flatten3: |
|
464 shows "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = rsimp (RALTS (rsa @ rs @ rsb))" |
|
465 apply(subgoal_tac "rsimp (RALTS (rsa @ [RALTS rs] @ rsb)) = |
|
466 rsimp (RALTS (map rsimp rsa @ [rsimp (RALTS rs)] @ map rsimp rsb)) ") |
|
467 prefer 2 |
|
468 apply (metis append.left_neutral append_Cons list.simps(9) map_append simp_flatten_aux0) |
|
469 apply (simp only:) |
|
470 apply(subgoal_tac "rsimp (RALTS (rsa @ rs @ rsb)) = |
|
471 rsimp (RALTS (map rsimp rsa @ map rsimp rs @ map rsimp rsb))") |
|
472 prefer 2 |
|
473 apply (metis map_append simp_flatten_aux0) |
|
474 apply(simp only:) |
|
475 apply(subgoal_tac "rsimp (RALTS (map rsimp rsa @ map rsimp rs @ map rsimp rsb)) = |
|
476 rsimp (RALTS (map rsimp rsa @ [RALTS (map rsimp rs)] @ map rsimp rsb))") |
|
477 |
|
478 apply (metis (no_types, lifting) head_one_more_simp map_append simp_flatten_aux0) |
|
479 apply(subgoal_tac "\<forall>r \<in> set (map rsimp rsa). good r \<or> r = RZERO") |
|
480 apply(subgoal_tac "\<forall>r \<in> set (map rsimp rs). good r \<or> r = RZERO") |
|
481 apply(subgoal_tac "\<forall>r \<in> set (map rsimp rsb). good r \<or> r = RZERO") |
|
482 |
|
483 using good_flatten_middle apply presburger |
|
484 |
|
485 apply (simp add: good1) |
|
486 apply (simp add: good1) |
|
487 apply (simp add: good1) |
|
488 |
|
489 done |
|
490 |
|
491 |
|
492 |
|
493 |
|
494 |
|
495 lemma grewrite_equal_rsimp: |
|
496 shows "rs1 \<leadsto>g rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)" |
|
497 apply(frule grewrite_cases_middle) |
|
498 apply(case_tac "(\<exists>rsa rsb rsc. rs1 = rsa @ [RALTS rsb] @ rsc \<and> rs2 = rsa @ rsb @ rsc)") |
|
499 using simp_flatten3 apply auto[1] |
|
500 apply(case_tac "(\<exists>rsa rsc. rs1 = rsa @ [RZERO] @ rsc \<and> rs2 = rsa @ rsc)") |
|
501 apply (metis (mono_tags, opaque_lifting) append_Cons append_Nil list.set_intros(1) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) simp_removes_duplicate3) |
|
502 by (smt (verit) append.assoc append_Cons append_Nil in_set_conv_decomp simp_removes_duplicate3) |
|
503 |
|
504 |
|
505 lemma grewrites_equal_rsimp: |
|
506 shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rsimp (RALTS rs1) = rsimp (RALTS rs2)" |
|
507 apply (induct rs1 rs2 rule: grewrites.induct) |
|
508 apply simp |
|
509 using grewrite_equal_rsimp by presburger |
|
510 |
|
511 |
|
512 |
|
513 lemma grewrites_last: |
|
514 shows "r # [RALTS rs] \<leadsto>g* r # rs" |
|
515 by (metis gr_in_rstar grewrite.intros(2) grewrite.intros(3) self_append_conv) |
|
516 |
|
517 lemma simp_flatten2: |
|
518 shows "rsimp (RALTS (r # [RALTS rs])) = rsimp (RALTS (r # rs))" |
|
519 using grewrites_equal_rsimp grewrites_last by blast |
|
520 |
|
521 |
|
522 lemma frewrites_alt: |
|
523 shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> (RALT r1 r2) # rs1 \<leadsto>f* r1 # r2 # rs2" |
|
524 by (metis Cons_eq_appendI append_self_conv2 frewrite.intros(2) frewrites_cons many_steps_later) |
|
525 |
|
526 lemma early_late_der_frewrites: |
|
527 shows "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)" |
|
528 apply(induct rs) |
|
529 apply simp |
|
530 apply(case_tac a) |
|
531 apply simp+ |
|
532 using frewrite.intros(1) many_steps_later apply blast |
|
533 apply(case_tac "x = x3") |
|
534 apply simp |
|
535 using frewrites_cons apply presburger |
|
536 using frewrite.intros(1) many_steps_later apply fastforce |
|
537 apply(case_tac "rnullable x41") |
|
538 apply simp+ |
|
539 apply (simp add: frewrites_alt) |
|
540 apply (simp add: frewrites_cons) |
|
541 apply (simp add: frewrites_append) |
|
542 apply (simp add: frewrites_cons) |
|
543 apply (auto simp add: frewrites_cons) |
|
544 using frewrite.intros(1) many_steps_later by blast |
|
545 |
|
546 |
|
547 lemma gstar0: |
|
548 shows "rsa @ (rdistinct rs (set rsa)) \<leadsto>g* rsa @ (rdistinct rs (insert RZERO (set rsa)))" |
|
549 apply(induct rs arbitrary: rsa) |
|
550 apply simp |
|
551 apply(case_tac "a = RZERO") |
|
552 apply simp |
|
553 |
|
554 using gr_in_rstar grewrite.intros(1) grewrites_append apply presburger |
|
555 apply(case_tac "a \<in> set rsa") |
|
556 apply simp+ |
|
557 apply(drule_tac x = "rsa @ [a]" in meta_spec) |
|
558 by simp |
|
559 |
|
560 lemma grewrite_rdistinct_aux: |
|
561 shows "rs @ rdistinct rsa rset \<leadsto>g* rs @ rdistinct rsa (rset \<union> set rs)" |
|
562 apply(induct rsa arbitrary: rs rset) |
|
563 apply simp |
|
564 apply(case_tac " a \<in> rset") |
|
565 apply simp |
|
566 apply(case_tac "a \<in> set rs") |
|
567 apply simp |
|
568 apply (metis Un_insert_left Un_insert_right gmany_steps_later grewrite_variant1 insert_absorb) |
|
569 apply simp |
|
570 apply(drule_tac x = "rs @ [a]" in meta_spec) |
|
571 by (metis Un_insert_left Un_insert_right append.assoc append.right_neutral append_Cons append_Nil insert_absorb2 list.simps(15) set_append) |
|
572 |
|
573 |
|
574 lemma flts_gstar: |
|
575 shows "rs \<leadsto>g* rflts rs" |
|
576 apply(induct rs) |
|
577 apply simp |
|
578 apply(case_tac "a = RZERO") |
|
579 apply simp |
|
580 using gmany_steps_later grewrite.intros(1) apply blast |
|
581 apply(case_tac "\<exists>rsa. a = RALTS rsa") |
|
582 apply(erule exE) |
|
583 apply simp |
|
584 apply (meson grewrite.intros(2) grewrites.simps grewrites_cons) |
|
585 by (simp add: grewrites_cons rflts_def_idiot) |
|
586 |
|
587 lemma more_distinct1: |
|
588 shows " \<lbrakk>\<And>rsb rset rset2. |
|
589 rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2); |
|
590 rset2 \<subseteq> set rsb; a \<notin> rset; a \<in> rset2\<rbrakk> |
|
591 \<Longrightarrow> rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)" |
|
592 apply(subgoal_tac "rsb @ a # rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (insert a rset)") |
|
593 apply(subgoal_tac "rsb @ rdistinct rs (insert a rset) \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)") |
|
594 apply (meson greal_trans) |
|
595 apply (metis Un_iff Un_insert_left insert_absorb) |
|
596 by (simp add: gr_in_rstar grewrite_variant1 in_mono) |
|
597 |
|
598 |
|
599 |
|
600 |
|
601 |
|
602 lemma frewrite_rd_grewrites_aux: |
|
603 shows " RALTS rs \<notin> set rsb \<Longrightarrow> |
|
604 rsb @ |
|
605 RALTS rs # |
|
606 rdistinct rsa |
|
607 (insert (RALTS rs) |
|
608 (set rsb)) \<leadsto>g* rflts rsb @ |
|
609 rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})" |
|
610 |
|
611 apply simp |
|
612 apply(subgoal_tac "rsb @ |
|
613 RALTS rs # |
|
614 rdistinct rsa |
|
615 (insert (RALTS rs) |
|
616 (set rsb)) \<leadsto>g* rsb @ |
|
617 rs @ |
|
618 rdistinct rsa |
|
619 (insert (RALTS rs) |
|
620 (set rsb)) ") |
|
621 apply(subgoal_tac " rsb @ |
|
622 rs @ |
|
623 rdistinct rsa |
|
624 (insert (RALTS rs) |
|
625 (set rsb)) \<leadsto>g* |
|
626 rsb @ |
|
627 rdistinct rs (set rsb) @ |
|
628 rdistinct rsa |
|
629 (insert (RALTS rs) |
|
630 (set rsb)) ") |
|
631 apply (smt (verit, ccfv_SIG) Un_insert_left flts_gstar greal_trans grewrite_rdistinct_aux grewritess_concat inf_sup_aci(5) rdistinct_concat_general rdistinct_set_equality set_append) |
|
632 apply (metis append_assoc grewrites.intros(1) grewritess_concat gstar_rdistinct_general) |
|
633 by (simp add: gr_in_rstar grewrite.intros(2) grewrites_append) |
|
634 |
|
635 |
|
636 |
|
637 |
|
638 lemma list_dlist_union: |
|
639 shows "set rs \<subseteq> set rsb \<union> set (rdistinct rs (set rsb))" |
|
640 by (metis rdistinct_concat_general rdistinct_set_equality set_append sup_ge2) |
|
641 |
|
642 lemma r_finite1: |
|
643 shows "r = RALTS (r # rs) = False" |
|
644 apply(induct r) |
|
645 apply simp+ |
|
646 apply (metis list.set_intros(1)) |
|
647 apply blast |
|
648 by simp |
|
649 |
|
650 |
|
651 |
|
652 lemma grewrite_singleton: |
|
653 shows "[r] \<leadsto>g r # rs \<Longrightarrow> rs = []" |
|
654 apply (induct "[r]" "r # rs" rule: grewrite.induct) |
|
655 apply simp |
|
656 apply (metis r_finite1) |
|
657 using grewrite.simps apply blast |
|
658 by simp |
|
659 |
|
660 |
|
661 |
|
662 lemma concat_rdistinct_equality1: |
|
663 shows "rdistinct (rs @ rsa) rset = rdistinct rs rset @ rdistinct rsa (rset \<union> (set rs))" |
|
664 apply(induct rs arbitrary: rsa rset) |
|
665 apply simp |
|
666 apply(case_tac "a \<in> rset") |
|
667 apply simp |
|
668 apply (simp add: insert_absorb) |
|
669 by auto |
|
670 |
|
671 |
|
672 lemma grewrites_rev_append: |
|
673 shows "rs1 \<leadsto>g* rs2 \<Longrightarrow> rs1 @ [x] \<leadsto>g* rs2 @ [x]" |
|
674 using grewritess_concat by auto |
|
675 |
|
676 lemma grewrites_inclusion: |
|
677 shows "set rs \<subseteq> set rs1 \<Longrightarrow> rs1 @ rs \<leadsto>g* rs1" |
|
678 apply(induct rs arbitrary: rs1) |
|
679 apply simp |
|
680 by (meson gmany_steps_later grewrite_variant1 list.set_intros(1) set_subset_Cons subset_code(1)) |
|
681 |
|
682 lemma distinct_keeps_last: |
|
683 shows "\<lbrakk>x \<notin> rset; x \<notin> set xs \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]" |
|
684 by (simp add: concat_rdistinct_equality1) |
|
685 |
|
686 lemma grewrites_shape2_aux: |
|
687 shows " RALTS rs \<notin> set rsb \<Longrightarrow> |
|
688 rsb @ |
|
689 rdistinct (rs @ rsa) |
|
690 (set rsb) \<leadsto>g* rsb @ |
|
691 rdistinct rs (set rsb) @ |
|
692 rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})" |
|
693 apply(subgoal_tac " rdistinct (rs @ rsa) (set rsb) = rdistinct rs (set rsb) @ rdistinct rsa (set rs \<union> set rsb)") |
|
694 apply (simp only:) |
|
695 prefer 2 |
|
696 apply (simp add: Un_commute concat_rdistinct_equality1) |
|
697 apply(induct rsa arbitrary: rs rsb rule: rev_induct) |
|
698 apply simp |
|
699 apply(case_tac "x \<in> set rs") |
|
700 apply (simp add: distinct_removes_middle3) |
|
701 apply(case_tac "x = RALTS rs") |
|
702 apply simp |
|
703 apply(case_tac "x \<in> set rsb") |
|
704 apply simp |
|
705 apply (simp add: concat_rdistinct_equality1) |
|
706 apply (simp add: concat_rdistinct_equality1) |
|
707 apply simp |
|
708 apply(drule_tac x = "rs " in meta_spec) |
|
709 apply(drule_tac x = rsb in meta_spec) |
|
710 apply simp |
|
711 apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (insert (RALTS rs) (set rs \<union> set rsb))") |
|
712 prefer 2 |
|
713 apply (simp add: concat_rdistinct_equality1) |
|
714 apply(case_tac "x \<in> set xs") |
|
715 apply simp |
|
716 apply (simp add: distinct_removes_last) |
|
717 apply(case_tac "x \<in> set rsb") |
|
718 apply (smt (verit, ccfv_threshold) Un_iff append.right_neutral concat_rdistinct_equality1 insert_is_Un rdistinct.simps(2)) |
|
719 apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (set rs \<union> set rsb) = rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x]") |
|
720 apply(simp only:) |
|
721 apply(case_tac "x = RALTS rs") |
|
722 apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ [x] \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs") |
|
723 apply(subgoal_tac "rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) @ rs \<leadsto>g* rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb) ") |
|
724 apply (smt (verit, ccfv_SIG) Un_insert_left append.right_neutral concat_rdistinct_equality1 greal_trans insert_iff rdistinct.simps(2)) |
|
725 apply(subgoal_tac "set rs \<subseteq> set ( rsb @ rdistinct rs (set rsb) @ rdistinct xs (set rs \<union> set rsb))") |
|
726 apply (metis append.assoc grewrites_inclusion) |
|
727 apply (metis Un_upper1 append.assoc dual_order.trans list_dlist_union set_append) |
|
728 apply (metis append_Nil2 gr_in_rstar grewrite.intros(2) grewrite_append) |
|
729 apply(subgoal_tac " rsb @ rdistinct rs (set rsb) @ rdistinct (xs @ [x]) (insert (RALTS rs) (set rs \<union> set rsb)) = rsb @ rdistinct rs (set rsb) @ rdistinct (xs) (insert (RALTS rs) (set rs \<union> set rsb)) @ [x]") |
|
730 apply(simp only:) |
|
731 apply (metis append.assoc grewrites_rev_append) |
|
732 apply (simp add: insert_absorb) |
|
733 apply (simp add: distinct_keeps_last)+ |
|
734 done |
|
735 |
|
736 lemma grewrites_shape2: |
|
737 shows " RALTS rs \<notin> set rsb \<Longrightarrow> |
|
738 rsb @ |
|
739 rdistinct (rs @ rsa) |
|
740 (set rsb) \<leadsto>g* rflts rsb @ |
|
741 rdistinct rs (set rsb) @ |
|
742 rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})" |
|
743 apply (meson flts_gstar greal_trans grewrites.simps grewrites_shape2_aux grewritess_concat) |
|
744 done |
|
745 |
|
746 lemma rdistinct_add_acc: |
|
747 shows "rset2 \<subseteq> set rsb \<Longrightarrow> rsb @ rdistinct rs rset \<leadsto>g* rsb @ rdistinct rs (rset \<union> rset2)" |
|
748 apply(induct rs arbitrary: rsb rset rset2) |
|
749 apply simp |
|
750 apply (case_tac "a \<in> rset") |
|
751 apply simp |
|
752 apply(case_tac "a \<in> rset2") |
|
753 apply simp |
|
754 apply (simp add: more_distinct1) |
|
755 apply simp |
|
756 apply(drule_tac x = "rsb @ [a]" in meta_spec) |
|
757 by (metis Un_insert_left append.assoc append_Cons append_Nil set_append sup.coboundedI1) |
|
758 |
|
759 |
|
760 lemma frewrite_fun1: |
|
761 shows " RALTS rs \<in> set rsb \<Longrightarrow> |
|
762 rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)" |
|
763 apply(subgoal_tac "rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb)") |
|
764 apply(subgoal_tac " set rs \<subseteq> set (rflts rsb)") |
|
765 prefer 2 |
|
766 using spilled_alts_contained apply blast |
|
767 apply(subgoal_tac "rflts rsb @ rdistinct rsa (set rsb) \<leadsto>g* rflts rsb @ rdistinct rsa (set rsb \<union> set rs)") |
|
768 using greal_trans apply blast |
|
769 using rdistinct_add_acc apply presburger |
|
770 using flts_gstar grewritess_concat by auto |
|
771 |
|
772 lemma frewrite_rd_grewrites: |
|
773 shows "rs1 \<leadsto>f rs2 \<Longrightarrow> |
|
774 \<exists>rs3. (rs @ (rdistinct rs1 (set rs)) \<leadsto>g* rs3) \<and> (rs @ (rdistinct rs2 (set rs)) \<leadsto>g* rs3) " |
|
775 apply(induct rs1 rs2 arbitrary: rs rule: frewrite.induct) |
|
776 apply(rule_tac x = "rsa @ (rdistinct rs ({RZERO} \<union> set rsa))" in exI) |
|
777 apply(rule conjI) |
|
778 apply(case_tac "RZERO \<in> set rsa") |
|
779 apply simp+ |
|
780 using gstar0 apply fastforce |
|
781 apply (simp add: gr_in_rstar grewrite.intros(1) grewrites_append) |
|
782 apply (simp add: gstar0) |
|
783 prefer 2 |
|
784 apply(case_tac "r \<in> set rs") |
|
785 apply simp |
|
786 apply(drule_tac x = "rs @ [r]" in meta_spec) |
|
787 apply(erule exE) |
|
788 apply(rule_tac x = "rs3" in exI) |
|
789 apply simp |
|
790 apply(case_tac "RALTS rs \<in> set rsb") |
|
791 apply simp |
|
792 apply(rule_tac x = "rflts rsb @ rdistinct rsa (set rsb \<union> set rs)" in exI) |
|
793 apply(rule conjI) |
|
794 using frewrite_fun1 apply force |
|
795 apply (metis frewrite_fun1 rdistinct_concat sup_ge2) |
|
796 apply(simp) |
|
797 apply(rule_tac x = |
|
798 "rflts rsb @ |
|
799 rdistinct rs (set rsb) @ |
|
800 rdistinct rsa (set rs \<union> set rsb \<union> {RALTS rs})" in exI) |
|
801 apply(rule conjI) |
|
802 prefer 2 |
|
803 using grewrites_shape2 apply force |
|
804 using frewrite_rd_grewrites_aux by blast |
|
805 |
|
806 |
|
807 lemma frewrite_simpeq2: |
|
808 shows "rs1 \<leadsto>f rs2 \<Longrightarrow> rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS (rdistinct rs2 {}))" |
|
809 apply(subgoal_tac "\<exists> rs3. (rdistinct rs1 {} \<leadsto>g* rs3) \<and> (rdistinct rs2 {} \<leadsto>g* rs3)") |
|
810 using grewrites_equal_rsimp apply fastforce |
|
811 by (metis append_self_conv2 frewrite_rd_grewrites list.set(1)) |
|
812 |
|
813 |
|
814 |
|
815 |
|
816 (*a more refined notion of h\<leadsto>* is needed, |
|
817 this lemma fails when rs1 contains some RALTS rs where elements |
|
818 of rs appear in later parts of rs1, which will be picked up by rs2 |
|
819 and deduplicated*) |
|
820 lemma frewrites_simpeq: |
|
821 shows "rs1 \<leadsto>f* rs2 \<Longrightarrow> |
|
822 rsimp (RALTS (rdistinct rs1 {})) = rsimp (RALTS ( rdistinct rs2 {})) " |
|
823 apply(induct rs1 rs2 rule: frewrites.induct) |
|
824 apply simp |
|
825 using frewrite_simpeq2 by presburger |
|
826 |
|
827 |
|
828 lemma frewrite_single_step: |
|
829 shows " rs2 \<leadsto>f rs3 \<Longrightarrow> rsimp (RALTS rs2) = rsimp (RALTS rs3)" |
|
830 apply(induct rs2 rs3 rule: frewrite.induct) |
|
831 apply simp |
|
832 using simp_flatten apply blast |
|
833 by (metis (no_types, opaque_lifting) list.simps(9) rsimp.simps(2) simp_flatten2) |
|
834 |
|
835 lemma grewrite_simpalts: |
|
836 shows " rs2 \<leadsto>g rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)" |
|
837 apply(induct rs2 rs3 rule : grewrite.induct) |
|
838 using identity_wwo0 apply presburger |
|
839 apply (metis frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_flatten) |
|
840 apply (smt (verit, ccfv_SIG) gmany_steps_later grewrites.intros(1) grewrites_cons grewrites_equal_rsimp identity_wwo0 rsimp_ALTs.simps(3)) |
|
841 apply simp |
|
842 apply(subst rsimp_alts_equal) |
|
843 apply(case_tac "rsa = [] \<and> rsb = [] \<and> rsc = []") |
|
844 apply(subgoal_tac "rsa @ a # rsb @ rsc = [a]") |
|
845 apply (simp only:) |
|
846 apply (metis append_Nil frewrite.intros(1) frewrite_single_step identity_wwo0 rsimp_ALTs.simps(3) simp_removes_duplicate1(2)) |
|
847 apply simp |
|
848 by (smt (verit, best) append.assoc append_Cons frewrite.intros(1) frewrite_single_step identity_wwo0 in_set_conv_decomp rsimp_ALTs.simps(3) simp_removes_duplicate3) |
|
849 |
|
850 |
|
851 lemma grewrites_simpalts: |
|
852 shows " rs2 \<leadsto>g* rs3 \<Longrightarrow> rsimp (rsimp_ALTs rs2) = rsimp (rsimp_ALTs rs3)" |
|
853 apply(induct rs2 rs3 rule: grewrites.induct) |
|
854 apply simp |
|
855 using grewrite_simpalts by presburger |
|
856 |
|
857 |
|
858 lemma simp_der_flts: |
|
859 shows "rsimp (RALTS (rdistinct (map (rder x) (rflts rs)) {})) = |
|
860 rsimp (RALTS (rdistinct (rflts (map (rder x) rs)) {}))" |
|
861 apply(subgoal_tac "map (rder x) (rflts rs) \<leadsto>f* rflts (map (rder x) rs)") |
|
862 using frewrites_simpeq apply presburger |
|
863 using early_late_der_frewrites by auto |
|
864 |
|
865 |
|
866 lemma simp_der_pierce_flts_prelim: |
|
867 shows "rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts rs)) {})) |
|
868 = rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) rs)) {}))" |
|
869 by (metis append.right_neutral grewrite.intros(2) grewrite_simpalts rsimp_ALTs.simps(2) simp_der_flts) |
|
870 |
|
871 |
|
872 lemma basic_regex_property1: |
|
873 shows "rnullable r \<Longrightarrow> rsimp r \<noteq> RZERO" |
|
874 apply(induct r rule: rsimp.induct) |
|
875 apply(auto) |
|
876 apply (metis idiot idiot2 rrexp.distinct(5)) |
|
877 by (metis der_simp_nullability rnullable.simps(1) rnullable.simps(4) rsimp.simps(2)) |
|
878 |
|
879 |
|
880 lemma inside_simp_seq_nullable: |
|
881 shows |
|
882 "\<And>r1 r2. |
|
883 \<lbrakk>rsimp (rder x (rsimp r1)) = rsimp (rder x r1); rsimp (rder x (rsimp r2)) = rsimp (rder x r2); |
|
884 rnullable r1\<rbrakk> |
|
885 \<Longrightarrow> rsimp (rder x (rsimp_SEQ (rsimp r1) (rsimp r2))) = |
|
886 rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp (rder x r1)) (rsimp r2), rsimp (rder x r2)]) {})" |
|
887 apply(case_tac "rsimp r1 = RONE") |
|
888 apply(simp) |
|
889 apply(subst basic_rsimp_SEQ_property1) |
|
890 apply (simp add: idem_after_simp1) |
|
891 apply(case_tac "rsimp r1 = RZERO") |
|
892 |
|
893 using basic_regex_property1 apply blast |
|
894 apply(case_tac "rsimp r2 = RZERO") |
|
895 |
|
896 apply (simp add: basic_rsimp_SEQ_property3) |
|
897 apply(subst idiot2) |
|
898 apply simp+ |
|
899 apply(subgoal_tac "rnullable (rsimp r1)") |
|
900 apply simp |
|
901 using rsimp_idem apply presburger |
|
902 using der_simp_nullability by presburger |
|
903 |
|
904 |
|
905 |
|
906 lemma grewrite_ralts: |
|
907 shows "rs \<leadsto>g rs' \<Longrightarrow> RALTS rs h\<leadsto>* RALTS rs'" |
|
908 by (smt (verit) grewrite_cases_middle hr_in_rstar hrewrite.intros(11) hrewrite.intros(7) hrewrite.intros(8)) |
|
909 |
|
910 lemma grewrites_ralts: |
|
911 shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs h\<leadsto>* RALTS rs'" |
|
912 apply(induct rule: grewrites.induct) |
|
913 apply simp |
|
914 using grewrite_ralts hreal_trans by blast |
|
915 |
|
916 |
|
917 lemma distinct_grewrites_subgoal1: |
|
918 shows " |
|
919 \<lbrakk>rs1 \<leadsto>g* [a]; RALTS rs1 h\<leadsto>* a; [a] \<leadsto>g rs3\<rbrakk> \<Longrightarrow> RALTS rs1 h\<leadsto>* rsimp_ALTs rs3" |
|
920 apply(subgoal_tac "RALTS rs1 h\<leadsto>* RALTS rs3") |
|
921 apply (metis hrewrite.intros(10) hrewrite.intros(9) rs2 rsimp_ALTs.cases rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3)) |
|
922 apply(subgoal_tac "rs1 \<leadsto>g* rs3") |
|
923 using grewrites_ralts apply blast |
|
924 using grewrites.intros(2) by presburger |
|
925 |
|
926 lemma grewrites_ralts_rsimpalts: |
|
927 shows "rs \<leadsto>g* rs' \<Longrightarrow> RALTS rs h\<leadsto>* rsimp_ALTs rs' " |
|
928 apply(induct rs rs' rule: grewrites.induct) |
|
929 apply(case_tac rs) |
|
930 using hrewrite.intros(9) apply force |
|
931 apply(case_tac list) |
|
932 apply simp |
|
933 using hr_in_rstar hrewrite.intros(10) rsimp_ALTs.simps(2) apply presburger |
|
934 apply simp |
|
935 apply(case_tac rs2) |
|
936 apply simp |
|
937 apply (metis grewrite.intros(3) grewrite_singleton rsimp_ALTs.simps(1)) |
|
938 apply(case_tac list) |
|
939 apply(simp) |
|
940 using distinct_grewrites_subgoal1 apply blast |
|
941 apply simp |
|
942 apply(case_tac rs3) |
|
943 apply simp |
|
944 using grewrites_ralts hrewrite.intros(9) apply blast |
|
945 by (metis (no_types, opaque_lifting) grewrite_ralts hr_in_rstar hreal_trans hrewrite.intros(10) neq_Nil_conv rsimp_ALTs.simps(2) rsimp_ALTs.simps(3)) |
|
946 |
|
947 lemma hrewrites_alts: |
|
948 shows " r h\<leadsto>* r' \<Longrightarrow> (RALTS (rs1 @ [r] @ rs2)) h\<leadsto>* (RALTS (rs1 @ [r'] @ rs2))" |
|
949 apply(induct r r' rule: hrewrites.induct) |
|
950 apply simp |
|
951 using hrewrite.intros(6) by blast |
|
952 |
|
953 inductive |
|
954 srewritescf:: "rrexp list \<Rightarrow> rrexp list \<Rightarrow> bool" (" _ scf\<leadsto>* _" [100, 100] 100) |
|
955 where |
|
956 ss1: "[] scf\<leadsto>* []" |
|
957 | ss2: "\<lbrakk>r h\<leadsto>* r'; rs scf\<leadsto>* rs'\<rbrakk> \<Longrightarrow> (r#rs) scf\<leadsto>* (r'#rs')" |
|
958 |
|
959 |
|
960 lemma srewritescf_alt: "rs1 scf\<leadsto>* rs2 \<Longrightarrow> (RALTS (rs@rs1)) h\<leadsto>* (RALTS (rs@rs2))" |
|
961 |
|
962 apply(induct rs1 rs2 arbitrary: rs rule: srewritescf.induct) |
|
963 apply(rule rs1) |
|
964 apply(drule_tac x = "rsa@[r']" in meta_spec) |
|
965 apply simp |
|
966 apply(rule hreal_trans) |
|
967 prefer 2 |
|
968 apply(assumption) |
|
969 apply(drule hrewrites_alts) |
|
970 by auto |
|
971 |
|
972 |
|
973 corollary srewritescf_alt1: |
|
974 assumes "rs1 scf\<leadsto>* rs2" |
|
975 shows "RALTS rs1 h\<leadsto>* RALTS rs2" |
|
976 using assms |
|
977 by (metis append_Nil srewritescf_alt) |
|
978 |
|
979 |
|
980 |
|
981 |
|
982 lemma trivialrsimp_srewrites: |
|
983 "\<lbrakk>\<And>x. x \<in> set rs \<Longrightarrow> x h\<leadsto>* f x \<rbrakk> \<Longrightarrow> rs scf\<leadsto>* (map f rs)" |
|
984 |
|
985 apply(induction rs) |
|
986 apply simp |
|
987 apply(rule ss1) |
|
988 by (metis insert_iff list.simps(15) list.simps(9) srewritescf.simps) |
|
989 |
|
990 lemma hrewrites_list: |
|
991 shows |
|
992 " (\<And>xa. xa \<in> set x \<Longrightarrow> xa h\<leadsto>* rsimp xa) \<Longrightarrow> RALTS x h\<leadsto>* RALTS (map rsimp x)" |
|
993 apply(induct x) |
|
994 apply(simp)+ |
|
995 by (simp add: srewritescf_alt1 ss2 trivialrsimp_srewrites) |
|
996 (* apply(subgoal_tac "RALTS x h\<leadsto>* RALTS (map rsimp x)")*) |
|
997 |
|
998 |
|
999 lemma hrewrite_simpeq: |
|
1000 shows "r1 h\<leadsto> r2 \<Longrightarrow> rsimp r1 = rsimp r2" |
|
1001 apply(induct rule: hrewrite.induct) |
|
1002 apply simp+ |
|
1003 apply (simp add: basic_rsimp_SEQ_property3) |
|
1004 apply (simp add: basic_rsimp_SEQ_property1) |
|
1005 using rsimp.simps(1) apply presburger |
|
1006 apply simp+ |
|
1007 using flts_middle0 apply force |
|
1008 |
|
1009 |
|
1010 using simp_flatten3 apply presburger |
|
1011 |
|
1012 apply simp+ |
|
1013 apply (simp add: idem_after_simp1) |
|
1014 using grewrite.intros(4) grewrite_equal_rsimp by presburger |
|
1015 |
|
1016 lemma hrewrites_simpeq: |
|
1017 shows "r1 h\<leadsto>* r2 \<Longrightarrow> rsimp r1 = rsimp r2" |
|
1018 apply(induct rule: hrewrites.induct) |
|
1019 apply simp |
|
1020 apply(subgoal_tac "rsimp r2 = rsimp r3") |
|
1021 apply auto[1] |
|
1022 using hrewrite_simpeq by presburger |
|
1023 |
|
1024 |
|
1025 |
|
1026 lemma simp_hrewrites: |
|
1027 shows "r1 h\<leadsto>* rsimp r1" |
|
1028 apply(induct r1) |
|
1029 apply simp+ |
|
1030 apply(case_tac "rsimp r11 = RONE") |
|
1031 apply simp |
|
1032 apply(subst basic_rsimp_SEQ_property1) |
|
1033 apply(subgoal_tac "RSEQ r11 r12 h\<leadsto>* RSEQ RONE r12") |
|
1034 using hreal_trans hrewrite.intros(3) apply blast |
|
1035 using hrewrites_seq_context apply presburger |
|
1036 apply(case_tac "rsimp r11 = RZERO") |
|
1037 apply simp |
|
1038 using hrewrite.intros(1) hrewrites_seq_context apply blast |
|
1039 apply(case_tac "rsimp r12 = RZERO") |
|
1040 apply simp |
|
1041 apply(subst basic_rsimp_SEQ_property3) |
|
1042 apply (meson hrewrite.intros(2) hrewrites.simps hrewrites_seq_context2) |
|
1043 apply(subst idiot2) |
|
1044 apply simp+ |
|
1045 using hrewrites_seq_contexts apply presburger |
|
1046 apply simp |
|
1047 apply(subgoal_tac "RALTS x h\<leadsto>* RALTS (map rsimp x)") |
|
1048 apply(subgoal_tac "RALTS (map rsimp x) h\<leadsto>* rsimp_ALTs (rdistinct (rflts (map rsimp x)) {}) ") |
|
1049 using hreal_trans apply blast |
|
1050 apply (meson flts_gstar greal_trans grewrites_ralts_rsimpalts gstar_rdistinct) |
|
1051 |
|
1052 apply (simp add: grewrites_ralts hrewrites_list) |
|
1053 by simp_all |
|
1054 |
|
1055 lemma interleave_aux1: |
|
1056 shows " RALT (RSEQ RZERO r1) r h\<leadsto>* r" |
|
1057 apply(subgoal_tac "RSEQ RZERO r1 h\<leadsto>* RZERO") |
|
1058 apply(subgoal_tac "RALT (RSEQ RZERO r1) r h\<leadsto>* RALT RZERO r") |
|
1059 apply (meson grewrite.intros(1) grewrite_ralts hreal_trans hrewrite.intros(10) hrewrites.simps) |
|
1060 using rs1 srewritescf_alt1 ss1 ss2 apply presburger |
|
1061 by (simp add: hr_in_rstar hrewrite.intros(1)) |
|
1062 |
|
1063 |
|
1064 |
|
1065 lemma rnullable_hrewrite: |
|
1066 shows "r1 h\<leadsto> r2 \<Longrightarrow> rnullable r1 = rnullable r2" |
|
1067 apply(induct rule: hrewrite.induct) |
|
1068 apply simp+ |
|
1069 apply blast |
|
1070 apply simp+ |
|
1071 done |
|
1072 |
|
1073 |
|
1074 lemma interleave1: |
|
1075 shows "r h\<leadsto> r' \<Longrightarrow> rder c r h\<leadsto>* rder c r'" |
|
1076 apply(induct r r' rule: hrewrite.induct) |
|
1077 apply (simp add: hr_in_rstar hrewrite.intros(1)) |
|
1078 apply (metis (no_types, lifting) basic_rsimp_SEQ_property3 list.simps(8) list.simps(9) rder.simps(1) rder.simps(5) rdistinct.simps(1) rflts.simps(1) rflts.simps(2) rsimp.simps(1) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) simp_hrewrites) |
|
1079 apply simp |
|
1080 apply(subst interleave_aux1) |
|
1081 apply simp |
|
1082 apply(case_tac "rnullable r1") |
|
1083 apply simp |
|
1084 |
|
1085 apply (simp add: hrewrites_seq_context rnullable_hrewrite srewritescf_alt1 ss1 ss2) |
|
1086 |
|
1087 apply (simp add: hrewrites_seq_context rnullable_hrewrite) |
|
1088 apply(case_tac "rnullable r1") |
|
1089 apply simp |
|
1090 |
|
1091 using hr_in_rstar hrewrites_seq_context2 srewritescf_alt1 ss1 ss2 apply presburger |
|
1092 apply simp |
|
1093 using hr_in_rstar hrewrites_seq_context2 apply blast |
|
1094 apply simp |
|
1095 |
|
1096 using hrewrites_alts apply auto[1] |
|
1097 apply simp |
|
1098 using grewrite.intros(1) grewrite_append grewrite_ralts apply auto[1] |
|
1099 apply simp |
|
1100 apply (simp add: grewrite.intros(2) grewrite_append grewrite_ralts) |
|
1101 apply (simp add: hr_in_rstar hrewrite.intros(9)) |
|
1102 apply (simp add: hr_in_rstar hrewrite.intros(10)) |
|
1103 apply simp |
|
1104 using hrewrite.intros(11) by auto |
|
1105 |
|
1106 lemma interleave_star1: |
|
1107 shows "r h\<leadsto>* r' \<Longrightarrow> rder c r h\<leadsto>* rder c r'" |
|
1108 apply(induct rule : hrewrites.induct) |
|
1109 apply simp |
|
1110 by (meson hreal_trans interleave1) |
|
1111 |
|
1112 |
|
1113 |
|
1114 lemma inside_simp_removal: |
|
1115 shows " rsimp (rder x (rsimp r)) = rsimp (rder x r)" |
|
1116 apply(induct r) |
|
1117 apply simp+ |
|
1118 apply(case_tac "rnullable r1") |
|
1119 apply simp |
|
1120 |
|
1121 using inside_simp_seq_nullable apply blast |
|
1122 apply simp |
|
1123 apply (smt (verit, del_insts) idiot2 basic_rsimp_SEQ_property3 der_simp_nullability rder.simps(1) rder.simps(5) rnullable.simps(2) rsimp.simps(1) rsimp_SEQ.simps(1) rsimp_idem) |
|
1124 apply(subgoal_tac "rder x (RALTS xa) h\<leadsto>* rder x (rsimp (RALTS xa))") |
|
1125 using hrewrites_simpeq apply presburger |
|
1126 using interleave_star1 simp_hrewrites apply presburger |
|
1127 by simp_all |
|
1128 |
|
1129 |
|
1130 |
|
1131 |
|
1132 lemma rders_simp_same_simpders: |
|
1133 shows "s \<noteq> [] \<Longrightarrow> rders_simp r s = rsimp (rders r s)" |
|
1134 apply(induct s rule: rev_induct) |
|
1135 apply simp |
|
1136 apply(case_tac "xs = []") |
|
1137 apply simp |
|
1138 apply(simp add: rders_append rders_simp_append) |
|
1139 using inside_simp_removal by blast |
|
1140 |
|
1141 |
|
1142 |
|
1143 |
|
1144 lemma distinct_der: |
|
1145 shows "rsimp (rsimp_ALTs (map (rder x) (rdistinct rs {}))) = |
|
1146 rsimp (rsimp_ALTs (rdistinct (map (rder x) rs) {}))" |
|
1147 by (metis grewrites_simpalts gstar_rdistinct inside_simp_removal rder_rsimp_ALTs_commute) |
|
1148 |
|
1149 |
|
1150 |
|
1151 |
|
1152 |
|
1153 lemma rders_simp_lambda: |
|
1154 shows " rsimp \<circ> rder x \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r (xs @ [x]))" |
|
1155 using rders_simp_append by auto |
|
1156 |
|
1157 lemma rders_simp_nonempty_simped: |
|
1158 shows "xs \<noteq> [] \<Longrightarrow> rsimp \<circ> (\<lambda>r. rders_simp r xs) = (\<lambda>r. rders_simp r xs)" |
|
1159 using rders_simp_same_simpders rsimp_idem by auto |
|
1160 |
|
1161 lemma repeated_altssimp: |
|
1162 shows "\<forall>r \<in> set rs. rsimp r = r \<Longrightarrow> rsimp (rsimp_ALTs (rdistinct (rflts rs) {})) = |
|
1163 rsimp_ALTs (rdistinct (rflts rs) {})" |
|
1164 by (metis map_idI rsimp.simps(2) rsimp_idem) |
|
1165 |
|
1166 |
|
1167 |
|
1168 lemma alts_closed_form: |
|
1169 shows "rsimp (rders_simp (RALTS rs) s) = rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))" |
|
1170 apply(induct s rule: rev_induct) |
|
1171 apply simp |
|
1172 apply simp |
|
1173 apply(subst rders_simp_append) |
|
1174 apply(subgoal_tac " rsimp (rders_simp (rders_simp (RALTS rs) xs) [x]) = |
|
1175 rsimp(rders_simp (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})) [x])") |
|
1176 prefer 2 |
|
1177 apply (metis inside_simp_removal rders_simp_one_char) |
|
1178 apply(simp only: ) |
|
1179 apply(subst rders_simp_one_char) |
|
1180 apply(subst rsimp_idem) |
|
1181 apply(subgoal_tac "rsimp (rder x (rsimp_ALTs (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {}))) = |
|
1182 rsimp ((rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {})))) ") |
|
1183 prefer 2 |
|
1184 using rder_rsimp_ALTs_commute apply presburger |
|
1185 apply(simp only:) |
|
1186 apply(subgoal_tac "rsimp (rsimp_ALTs (map (rder x) (rdistinct (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)) {}))) |
|
1187 = rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))") |
|
1188 prefer 2 |
|
1189 |
|
1190 using distinct_der apply presburger |
|
1191 apply(simp only:) |
|
1192 apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (map (rder x) (rflts (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) = |
|
1193 rsimp (rsimp_ALTs (rdistinct ( (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs)))) {}))") |
|
1194 apply(simp only:) |
|
1195 apply(subgoal_tac " rsimp (rsimp_ALTs (rdistinct (rflts (map (rder x) (map (rsimp \<circ> (\<lambda>r. rders_simp r xs)) rs))) {})) = |
|
1196 rsimp (rsimp_ALTs (rdistinct (rflts ( (map (rsimp \<circ> (rder x) \<circ> (\<lambda>r. rders_simp r xs)) rs))) {}))") |
|
1197 apply(simp only:) |
|
1198 apply(subst rders_simp_lambda) |
|
1199 apply(subst rders_simp_nonempty_simped) |
|
1200 apply simp |
|
1201 apply(subgoal_tac "\<forall>r \<in> set (map (\<lambda>r. rders_simp r (xs @ [x])) rs). rsimp r = r") |
|
1202 prefer 2 |
|
1203 apply (simp add: rders_simp_same_simpders rsimp_idem) |
|
1204 apply(subst repeated_altssimp) |
|
1205 apply simp |
|
1206 apply fastforce |
|
1207 apply (metis inside_simp_removal list.map_comp rder.simps(4) rsimp.simps(2) rsimp_idem) |
|
1208 using simp_der_pierce_flts_prelim by blast |
|
1209 |
|
1210 |
|
1211 lemma alts_closed_form_variant: |
|
1212 shows "s \<noteq> [] \<Longrightarrow> rders_simp (RALTS rs) s = rsimp (RALTS (map (\<lambda>r. rders_simp r s) rs))" |
|
1213 by (metis alts_closed_form comp_apply rders_simp_nonempty_simped) |
|
1214 |
|
1215 |
|
1216 lemma rsimp_seq_equal1: |
|
1217 shows "rsimp_SEQ (rsimp r1) (rsimp r2) = rsimp_ALTs (rdistinct (rflts [rsimp_SEQ (rsimp r1) (rsimp r2)]) {})" |
|
1218 by (metis idem_after_simp1 rsimp.simps(1)) |
|
1219 |
|
1220 |
|
1221 fun sflat_aux :: "rrexp \<Rightarrow> rrexp list " where |
|
1222 "sflat_aux (RALTS (r # rs)) = sflat_aux r @ rs" |
|
1223 | "sflat_aux (RALTS []) = []" |
|
1224 | "sflat_aux r = [r]" |
|
1225 |
|
1226 |
|
1227 fun sflat :: "rrexp \<Rightarrow> rrexp" where |
|
1228 "sflat (RALTS (r # [])) = r" |
|
1229 | "sflat (RALTS (r # rs)) = RALTS (sflat_aux r @ rs)" |
|
1230 | "sflat r = r" |
|
1231 |
|
1232 inductive created_by_seq:: "rrexp \<Rightarrow> bool" where |
|
1233 "created_by_seq (RSEQ r1 r2) " |
|
1234 | "created_by_seq r1 \<Longrightarrow> created_by_seq (RALT r1 r2)" |
|
1235 |
|
1236 lemma seq_ders_shape1: |
|
1237 shows "\<forall>r1 r2. \<exists>r3 r4. (rders (RSEQ r1 r2) s) = RSEQ r3 r4 \<or> (rders (RSEQ r1 r2) s) = RALT r3 r4" |
|
1238 apply(induct s rule: rev_induct) |
|
1239 apply auto[1] |
|
1240 apply(rule allI)+ |
|
1241 apply(subst rders_append)+ |
|
1242 apply(subgoal_tac " \<exists>r3 r4. rders (RSEQ r1 r2) xs = RSEQ r3 r4 \<or> rders (RSEQ r1 r2) xs = RALT r3 r4 ") |
|
1243 apply(erule exE)+ |
|
1244 apply(erule disjE) |
|
1245 apply simp+ |
|
1246 done |
|
1247 |
|
1248 lemma created_by_seq_der: |
|
1249 shows "created_by_seq r \<Longrightarrow> created_by_seq (rder c r)" |
|
1250 apply(induct r) |
|
1251 apply simp+ |
|
1252 |
|
1253 using created_by_seq.cases apply blast |
|
1254 apply(auto) |
|
1255 apply (meson created_by_seq.cases rrexp.distinct(23) rrexp.distinct(25)) |
|
1256 using created_by_seq.simps apply blast |
|
1257 apply (meson created_by_seq.simps) |
|
1258 using created_by_seq.intros(1) apply blast |
|
1259 apply (metis (no_types, lifting) created_by_seq.simps k0a list.set_intros(1) list.simps(8) list.simps(9) rrexp.distinct(31)) |
|
1260 apply (simp add: created_by_seq.intros(1)) |
|
1261 using created_by_seq.simps apply blast |
|
1262 by (simp add: created_by_seq.intros(1)) |
|
1263 |
|
1264 lemma createdbyseq_left_creatable: |
|
1265 shows "created_by_seq (RALT r1 r2) \<Longrightarrow> created_by_seq r1" |
|
1266 using created_by_seq.cases by blast |
|
1267 |
|
1268 |
|
1269 |
|
1270 lemma recursively_derseq: |
|
1271 shows " created_by_seq (rders (RSEQ r1 r2) s)" |
|
1272 apply(induct s rule: rev_induct) |
|
1273 apply simp |
|
1274 using created_by_seq.intros(1) apply force |
|
1275 apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) (xs @ [x]))") |
|
1276 apply blast |
|
1277 apply(subst rders_append) |
|
1278 apply(subgoal_tac "\<exists>r3 r4. rders (RSEQ r1 r2) xs = RSEQ r3 r4 \<or> |
|
1279 rders (RSEQ r1 r2) xs = RALT r3 r4") |
|
1280 prefer 2 |
|
1281 using seq_ders_shape1 apply presburger |
|
1282 apply(erule exE)+ |
|
1283 apply(erule disjE) |
|
1284 apply(subgoal_tac "created_by_seq (rders (RSEQ r3 r4) [x])") |
|
1285 apply presburger |
|
1286 apply simp |
|
1287 using created_by_seq.intros(1) created_by_seq.intros(2) apply presburger |
|
1288 apply simp |
|
1289 apply(subgoal_tac "created_by_seq r3") |
|
1290 prefer 2 |
|
1291 using createdbyseq_left_creatable apply blast |
|
1292 using created_by_seq.intros(2) created_by_seq_der by blast |
|
1293 |
|
1294 |
|
1295 lemma recursively_derseq1: |
|
1296 shows "r = rders (RSEQ r1 r2) s \<Longrightarrow> created_by_seq r" |
|
1297 using recursively_derseq by blast |
|
1298 |
|
1299 |
|
1300 lemma sfau_head: |
|
1301 shows " created_by_seq r \<Longrightarrow> \<exists>ra rb rs. sflat_aux r = RSEQ ra rb # rs" |
|
1302 apply(induction r rule: created_by_seq.induct) |
|
1303 apply simp |
|
1304 by fastforce |
|
1305 |
|
1306 |
|
1307 lemma vsuf_prop1: |
|
1308 shows "vsuf (xs @ [x]) r = (if (rnullable (rders r xs)) |
|
1309 then [x] # (map (\<lambda>s. s @ [x]) (vsuf xs r) ) |
|
1310 else (map (\<lambda>s. s @ [x]) (vsuf xs r)) ) |
|
1311 " |
|
1312 apply(induct xs arbitrary: r) |
|
1313 apply simp |
|
1314 apply(case_tac "rnullable r") |
|
1315 apply simp |
|
1316 apply simp |
|
1317 done |
|
1318 |
|
1319 fun breakHead :: "rrexp list \<Rightarrow> rrexp list" where |
|
1320 "breakHead [] = [] " |
|
1321 | "breakHead (RALT r1 r2 # rs) = r1 # r2 # rs" |
|
1322 | "breakHead (r # rs) = r # rs" |
|
1323 |
|
1324 |
|
1325 lemma sfau_idem_der: |
|
1326 shows "created_by_seq r \<Longrightarrow> sflat_aux (rder c r) = breakHead (map (rder c) (sflat_aux r))" |
|
1327 apply(induct rule: created_by_seq.induct) |
|
1328 apply simp+ |
|
1329 using sfau_head by fastforce |
|
1330 |
|
1331 lemma vsuf_compose1: |
|
1332 shows " \<not> rnullable (rders r1 xs) |
|
1333 \<Longrightarrow> map (rder x \<circ> rders r2) (vsuf xs r1) = map (rders r2) (vsuf (xs @ [x]) r1)" |
|
1334 apply(subst vsuf_prop1) |
|
1335 apply simp |
|
1336 by (simp add: rders_append) |
|
1337 |
|
1338 |
|
1339 |
|
1340 |
|
1341 lemma seq_sfau0: |
|
1342 shows "sflat_aux (rders (RSEQ r1 r2) s) = (RSEQ (rders r1 s) r2) # |
|
1343 (map (rders r2) (vsuf s r1)) " |
|
1344 apply(induct s rule: rev_induct) |
|
1345 apply simp |
|
1346 apply(subst rders_append)+ |
|
1347 apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) xs)") |
|
1348 prefer 2 |
|
1349 using recursively_derseq1 apply blast |
|
1350 apply simp |
|
1351 apply(subst sfau_idem_der) |
|
1352 |
|
1353 apply blast |
|
1354 apply(case_tac "rnullable (rders r1 xs)") |
|
1355 apply simp |
|
1356 apply(subst vsuf_prop1) |
|
1357 apply simp |
|
1358 apply (simp add: rders_append) |
|
1359 apply simp |
|
1360 using vsuf_compose1 by blast |
|
1361 |
|
1362 |
|
1363 |
|
1364 |
|
1365 |
|
1366 |
|
1367 |
|
1368 |
|
1369 |
|
1370 thm sflat.elims |
|
1371 |
|
1372 |
|
1373 |
|
1374 |
|
1375 |
|
1376 lemma sflat_rsimpeq: |
|
1377 shows "created_by_seq r1 \<Longrightarrow> sflat_aux r1 = rs \<Longrightarrow> rsimp r1 = rsimp (RALTS rs)" |
|
1378 apply(induct r1 arbitrary: rs rule: created_by_seq.induct) |
|
1379 apply simp |
|
1380 using rsimp_seq_equal1 apply force |
|
1381 by (metis head_one_more_simp rsimp.simps(2) sflat_aux.simps(1) simp_flatten) |
|
1382 |
|
1383 |
|
1384 |
|
1385 lemma seq_closed_form_general: |
|
1386 shows "rsimp (rders (RSEQ r1 r2) s) = |
|
1387 rsimp ( (RALTS ( (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1))))))" |
|
1388 apply(case_tac "s \<noteq> []") |
|
1389 apply(subgoal_tac "created_by_seq (rders (RSEQ r1 r2) s)") |
|
1390 apply(subgoal_tac "sflat_aux (rders (RSEQ r1 r2) s) = RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1))") |
|
1391 using sflat_rsimpeq apply blast |
|
1392 apply (simp add: seq_sfau0) |
|
1393 using recursively_derseq1 apply blast |
|
1394 apply simp |
|
1395 by (metis idem_after_simp1 rsimp.simps(1)) |
|
1396 |
|
1397 lemma seq_closed_form_aux1a: |
|
1398 shows "rsimp (RALTS (RSEQ (rders r1 s) r2 # rs)) = |
|
1399 rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # rs))" |
|
1400 by (metis head_one_more_simp rders.simps(1) rders_simp.simps(1) rders_simp_same_simpders rsimp.simps(1) rsimp_idem simp_flatten_aux0) |
|
1401 |
|
1402 |
|
1403 lemma seq_closed_form_aux1: |
|
1404 shows "rsimp (RALTS (RSEQ (rders r1 s) r2 # (map (rders r2) (vsuf s r1)))) = |
|
1405 rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1))))" |
|
1406 by (smt (verit, best) list.simps(9) rders.simps(1) rders_simp.simps(1) rders_simp_same_simpders rsimp.simps(1) rsimp.simps(2) rsimp_idem) |
|
1407 |
|
1408 lemma add_simp_to_rest: |
|
1409 shows "rsimp (RALTS (r # rs)) = rsimp (RALTS (r # map rsimp rs))" |
|
1410 by (metis append_Nil2 grewrite.intros(2) grewrite_simpalts head_one_more_simp list.simps(9) rsimp_ALTs.simps(2) spawn_simp_rsimpalts) |
|
1411 |
|
1412 lemma rsimp_compose_der2: |
|
1413 shows "\<forall>s \<in> set ss. s \<noteq> [] \<Longrightarrow> map rsimp (map (rders r) ss) = map (\<lambda>s. (rders_simp r s)) ss" |
|
1414 by (simp add: rders_simp_same_simpders) |
|
1415 |
|
1416 lemma vsuf_nonempty: |
|
1417 shows "\<forall>s \<in> set ( vsuf s1 r). s \<noteq> []" |
|
1418 apply(induct s1 arbitrary: r) |
|
1419 apply simp |
|
1420 apply simp |
|
1421 done |
|
1422 |
|
1423 |
|
1424 |
|
1425 lemma seq_closed_form_aux2: |
|
1426 shows "s \<noteq> [] \<Longrightarrow> rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders r2) (vsuf s r1)))))) = |
|
1427 rsimp ( (RALTS ( (RSEQ (rders_simp r1 s) r2 # (map (rders_simp r2) (vsuf s r1))))))" |
|
1428 |
|
1429 by (metis add_simp_to_rest rsimp_compose_der2 vsuf_nonempty) |
|
1430 |
|
1431 |
|
1432 lemma seq_closed_form: |
|
1433 shows "rsimp (rders_simp (RSEQ r1 r2) s) = |
|
1434 rsimp (RALTS ((RSEQ (rders_simp r1 s) r2) # (map (rders_simp r2) (vsuf s r1))))" |
|
1435 proof (cases s) |
|
1436 case Nil |
|
1437 then show ?thesis |
|
1438 by (simp add: rsimp_seq_equal1[symmetric]) |
|
1439 next |
|
1440 case (Cons a list) |
|
1441 have "rsimp (rders_simp (RSEQ r1 r2) s) = rsimp (rsimp (rders (RSEQ r1 r2) s))" |
|
1442 using local.Cons by (subst rders_simp_same_simpders)(simp_all) |
|
1443 also have "... = rsimp (rders (RSEQ r1 r2) s)" |
|
1444 by (simp add: rsimp_idem) |
|
1445 also have "... = rsimp (RALTS (RSEQ (rders r1 s) r2 # map (rders r2) (vsuf s r1)))" |
|
1446 using seq_closed_form_general by blast |
|
1447 also have "... = rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # map (rders r2) (vsuf s r1)))" |
|
1448 by (simp only: seq_closed_form_aux1) |
|
1449 also have "... = rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # map (rders_simp r2) (vsuf s r1)))" |
|
1450 using local.Cons by (subst seq_closed_form_aux2)(simp_all) |
|
1451 finally show ?thesis . |
|
1452 qed |
|
1453 |
|
1454 lemma q: "s \<noteq> [] \<Longrightarrow> rders_simp (RSEQ r1 r2) s = rsimp (rders_simp (RSEQ r1 r2) s)" |
|
1455 using rders_simp_same_simpders rsimp_idem by presburger |
|
1456 |
|
1457 |
|
1458 lemma seq_closed_form_variant: |
|
1459 assumes "s \<noteq> []" |
|
1460 shows "rders_simp (RSEQ r1 r2) s = |
|
1461 rsimp (RALTS (RSEQ (rders_simp r1 s) r2 # (map (rders_simp r2) (vsuf s r1))))" |
|
1462 using assms q seq_closed_form by force |
|
1463 |
|
1464 |
|
1465 fun hflat_aux :: "rrexp \<Rightarrow> rrexp list" where |
|
1466 "hflat_aux (RALT r1 r2) = hflat_aux r1 @ hflat_aux r2" |
|
1467 | "hflat_aux r = [r]" |
|
1468 |
|
1469 |
|
1470 fun hflat :: "rrexp \<Rightarrow> rrexp" where |
|
1471 "hflat (RALT r1 r2) = RALTS ((hflat_aux r1) @ (hflat_aux r2))" |
|
1472 | "hflat r = r" |
|
1473 |
|
1474 inductive created_by_star :: "rrexp \<Rightarrow> bool" where |
|
1475 "created_by_star (RSEQ ra (RSTAR rb))" |
|
1476 | "\<lbrakk>created_by_star r1; created_by_star r2\<rbrakk> \<Longrightarrow> created_by_star (RALT r1 r2)" |
|
1477 |
|
1478 fun hElem :: "rrexp \<Rightarrow> rrexp list" where |
|
1479 "hElem (RALT r1 r2) = (hElem r1 ) @ (hElem r2)" |
|
1480 | "hElem r = [r]" |
|
1481 |
|
1482 |
|
1483 lemma cbs_ders_cbs: |
|
1484 shows "created_by_star r \<Longrightarrow> created_by_star (rder c r)" |
|
1485 apply(induct r rule: created_by_star.induct) |
|
1486 apply simp |
|
1487 using created_by_star.intros(1) created_by_star.intros(2) apply auto[1] |
|
1488 by (metis (mono_tags, lifting) created_by_star.simps list.simps(8) list.simps(9) rder.simps(4)) |
|
1489 |
|
1490 lemma star_ders_cbs: |
|
1491 shows "created_by_star (rders (RSEQ r1 (RSTAR r2)) s)" |
|
1492 apply(induct s rule: rev_induct) |
|
1493 apply simp |
|
1494 apply (simp add: created_by_star.intros(1)) |
|
1495 apply(subst rders_append) |
|
1496 apply simp |
|
1497 using cbs_ders_cbs by auto |
|
1498 |
|
1499 |
|
1500 |
|
1501 lemma hfau_pushin: |
|
1502 shows "created_by_star r \<Longrightarrow> hflat_aux (rder c r) = concat (map hElem (map (rder c) (hflat_aux r)))" |
|
1503 apply(induct r rule: created_by_star.induct) |
|
1504 apply simp |
|
1505 apply(subgoal_tac "created_by_star (rder c r1)") |
|
1506 prefer 2 |
|
1507 apply(subgoal_tac "created_by_star (rder c r2)") |
|
1508 using cbs_ders_cbs apply blast |
|
1509 using cbs_ders_cbs apply auto[1] |
|
1510 apply simp |
|
1511 done |
|
1512 |
|
1513 lemma stupdate_induct1: |
|
1514 shows " concat (map (hElem \<circ> (rder x \<circ> (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)))) Ss) = |
|
1515 map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_update x r0 Ss)" |
|
1516 apply(induct Ss) |
|
1517 apply simp+ |
|
1518 by (simp add: rders_append) |
|
1519 |
|
1520 |
|
1521 |
|
1522 lemma stupdates_join_general: |
|
1523 shows "concat (map hElem (map (rder x) (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 Ss)))) = |
|
1524 map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates (xs @ [x]) r0 Ss)" |
|
1525 apply(induct xs arbitrary: Ss) |
|
1526 apply (simp) |
|
1527 prefer 2 |
|
1528 apply auto[1] |
|
1529 using stupdate_induct1 by blast |
|
1530 |
|
1531 lemma star_hfau_induct: |
|
1532 shows "hflat_aux (rders (RSEQ (rder c r0) (RSTAR r0)) s) = |
|
1533 map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates s r0 [[c]])" |
|
1534 apply(induct s rule: rev_induct) |
|
1535 apply simp |
|
1536 apply(subst rders_append)+ |
|
1537 apply simp |
|
1538 apply(subst stupdates_append) |
|
1539 apply(subgoal_tac "created_by_star (rders (RSEQ (rder c r0) (RSTAR r0)) xs)") |
|
1540 prefer 2 |
|
1541 apply (simp add: star_ders_cbs) |
|
1542 apply(subst hfau_pushin) |
|
1543 apply simp |
|
1544 apply(subgoal_tac "concat (map hElem (map (rder x) (hflat_aux (rders (RSEQ (rder c r0) (RSTAR r0)) xs)))) = |
|
1545 concat (map hElem (map (rder x) ( map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0)) (star_updates xs r0 [[c]])))) ") |
|
1546 apply(simp only:) |
|
1547 prefer 2 |
|
1548 apply presburger |
|
1549 apply(subst stupdates_append[symmetric]) |
|
1550 using stupdates_join_general by blast |
|
1551 |
|
1552 |
|
1553 |
|
1554 lemma starders_hfau_also1: |
|
1555 shows "hflat_aux (rders (RSTAR r) (c # xs)) = map (\<lambda>s1. RSEQ (rders r s1) (RSTAR r)) (star_updates xs r [[c]])" |
|
1556 using star_hfau_induct by force |
|
1557 |
|
1558 lemma hflat_aux_grewrites: |
|
1559 shows "a # rs \<leadsto>g* hflat_aux a @ rs" |
|
1560 apply(induct a arbitrary: rs) |
|
1561 apply simp+ |
|
1562 apply(case_tac x) |
|
1563 apply simp |
|
1564 apply(case_tac list) |
|
1565 |
|
1566 apply (metis append.right_neutral append_Cons append_eq_append_conv2 grewrites.simps hflat_aux.simps(7) same_append_eq) |
|
1567 apply(case_tac lista) |
|
1568 apply simp |
|
1569 apply (metis (no_types, lifting) append_Cons append_eq_append_conv2 gmany_steps_later greal_trans grewrite.intros(2) grewrites_append self_append_conv) |
|
1570 apply simp |
|
1571 by simp_all |
|
1572 |
|
1573 |
|
1574 |
|
1575 |
|
1576 lemma cbs_hfau_rsimpeq1: |
|
1577 shows "rsimp (RALT a b) = rsimp (RALTS ((hflat_aux a) @ (hflat_aux b)))" |
|
1578 apply(subgoal_tac "[a, b] \<leadsto>g* hflat_aux a @ hflat_aux b") |
|
1579 using grewrites_equal_rsimp apply presburger |
|
1580 by (metis append.right_neutral greal_trans grewrites_cons hflat_aux_grewrites) |
|
1581 |
|
1582 |
|
1583 lemma hfau_rsimpeq2: |
|
1584 shows "created_by_star r \<Longrightarrow> rsimp r = rsimp ( (RALTS (hflat_aux r)))" |
|
1585 apply(induct r) |
|
1586 apply simp+ |
|
1587 |
|
1588 apply (metis rsimp_seq_equal1) |
|
1589 prefer 2 |
|
1590 apply simp |
|
1591 apply(case_tac x) |
|
1592 apply simp |
|
1593 apply(case_tac "list") |
|
1594 apply simp |
|
1595 |
|
1596 apply (metis idem_after_simp1) |
|
1597 apply(case_tac "lista") |
|
1598 prefer 2 |
|
1599 apply (metis hflat_aux.simps(8) idem_after_simp1 list.simps(8) list.simps(9) rsimp.simps(2)) |
|
1600 apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux (RALT a aa)))") |
|
1601 apply simp |
|
1602 apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux a @ hflat_aux aa))") |
|
1603 using hflat_aux.simps(1) apply presburger |
|
1604 apply simp |
|
1605 using cbs_hfau_rsimpeq1 apply(fastforce) |
|
1606 by simp |
|
1607 |
|
1608 |
|
1609 lemma star_closed_form1: |
|
1610 shows "rsimp (rders (RSTAR r0) (c#s)) = |
|
1611 rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))" |
|
1612 using hfau_rsimpeq2 rder.simps(6) rders.simps(2) star_ders_cbs starders_hfau_also1 by presburger |
|
1613 |
|
1614 lemma star_closed_form2: |
|
1615 shows "rsimp (rders_simp (RSTAR r0) (c#s)) = |
|
1616 rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))" |
|
1617 by (metis list.distinct(1) rders_simp_same_simpders rsimp_idem star_closed_form1) |
|
1618 |
|
1619 lemma star_closed_form3: |
|
1620 shows "rsimp (rders_simp (RSTAR r0) (c#s)) = (rders_simp (RSTAR r0) (c#s))" |
|
1621 by (metis list.distinct(1) rders_simp_same_simpders star_closed_form1 star_closed_form2) |
|
1622 |
|
1623 lemma star_closed_form4: |
|
1624 shows " (rders_simp (RSTAR r0) (c#s)) = |
|
1625 rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))" |
|
1626 using star_closed_form2 star_closed_form3 by presburger |
|
1627 |
|
1628 lemma star_closed_form5: |
|
1629 shows " rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rders r0 s1) (RSTAR r0) ) Ss )))) = |
|
1630 rsimp ( ( RALTS ( (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss ))))" |
|
1631 by (metis (mono_tags, lifting) list.map_comp map_eq_conv o_apply rsimp.simps(2) rsimp_idem) |
|
1632 |
|
1633 lemma star_closed_form6_hrewrites: |
|
1634 shows " |
|
1635 (map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss ) |
|
1636 scf\<leadsto>* |
|
1637 (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss )" |
|
1638 apply(induct Ss) |
|
1639 apply simp |
|
1640 apply (simp add: ss1) |
|
1641 by (metis (no_types, lifting) list.simps(9) rsimp.simps(1) rsimp_idem simp_hrewrites ss2) |
|
1642 |
|
1643 lemma star_closed_form6: |
|
1644 shows " rsimp ( ( RALTS ( (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss )))) = |
|
1645 rsimp ( ( RALTS ( (map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss ))))" |
|
1646 apply(subgoal_tac " map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RSTAR r0)) ) Ss scf\<leadsto>* |
|
1647 map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RSTAR r0)) ) Ss ") |
|
1648 using hrewrites_simpeq srewritescf_alt1 apply fastforce |
|
1649 using star_closed_form6_hrewrites by blast |
|
1650 |
|
1651 |
|
1652 |
|
1653 |
|
1654 lemma stupdate_nonempty: |
|
1655 shows "\<forall>s \<in> set Ss. s \<noteq> [] \<Longrightarrow> \<forall>s \<in> set (star_update c r Ss). s \<noteq> []" |
|
1656 apply(induct Ss) |
|
1657 apply simp |
|
1658 apply(case_tac "rnullable (rders r a)") |
|
1659 apply simp+ |
|
1660 done |
|
1661 |
|
1662 |
|
1663 lemma stupdates_nonempty: |
|
1664 shows "\<forall>s \<in> set Ss. s\<noteq> [] \<Longrightarrow> \<forall>s \<in> set (star_updates s r Ss). s \<noteq> []" |
|
1665 apply(induct s arbitrary: Ss) |
|
1666 apply simp |
|
1667 apply simp |
|
1668 using stupdate_nonempty by presburger |
|
1669 |
|
1670 |
|
1671 lemma star_closed_form8: |
|
1672 shows |
|
1673 "rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ (rsimp (rders r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))) = |
|
1674 rsimp ( ( RALTS ( (map (\<lambda>s1. RSEQ ( (rders_simp r0 s1)) (RSTAR r0) ) (star_updates s r0 [[c]]) ) )))" |
|
1675 by (smt (verit, ccfv_SIG) list.simps(8) map_eq_conv rders__onechar rders_simp_same_simpders set_ConsD stupdates_nonempty) |
|
1676 |
|
1677 |
|
1678 lemma star_closed_form: |
|
1679 shows "rders_simp (RSTAR r0) (c#s) = |
|
1680 rsimp ( RALTS ( (map (\<lambda>s1. RSEQ (rders_simp r0 s1) (RSTAR r0) ) (star_updates s r0 [[c]]) ) ))" |
|
1681 apply(case_tac s) |
|
1682 apply simp |
|
1683 apply (metis idem_after_simp1 rsimp.simps(1) rsimp.simps(6) rsimp_idem) |
|
1684 using star_closed_form4 star_closed_form5 star_closed_form6 star_closed_form8 by presburger |
|
1685 |
|
1686 |
|
1687 |
|
1688 |
|
1689 fun nupdate :: "char \<Rightarrow> rrexp \<Rightarrow> (string * nat) option list \<Rightarrow> (string * nat) option list" where |
|
1690 "nupdate c r [] = []" |
|
1691 | "nupdate c r (Some (s, Suc n) # Ss) = (if (rnullable (rders r s)) |
|
1692 then Some (s@[c], Suc n) # Some ([c], n) # (nupdate c r Ss) |
|
1693 else Some ((s@[c]), Suc n) # (nupdate c r Ss) |
|
1694 )" |
|
1695 | "nupdate c r (Some (s, 0) # Ss) = (if (rnullable (rders r s)) |
|
1696 then Some (s@[c], 0) # None # (nupdate c r Ss) |
|
1697 else Some ((s@[c]), 0) # (nupdate c r Ss) |
|
1698 ) " |
|
1699 | "nupdate c r (None # Ss) = (None # nupdate c r Ss)" |
|
1700 |
|
1701 |
|
1702 fun nupdates :: "char list \<Rightarrow> rrexp \<Rightarrow> (string * nat) option list \<Rightarrow> (string * nat) option list" |
|
1703 where |
|
1704 "nupdates [] r Ss = Ss" |
|
1705 | "nupdates (c # cs) r Ss = nupdates cs r (nupdate c r Ss)" |
|
1706 |
|
1707 fun ntset :: "rrexp \<Rightarrow> nat \<Rightarrow> string \<Rightarrow> (string * nat) option list" where |
|
1708 "ntset r (Suc n) (c # cs) = nupdates cs r [Some ([c], n)]" |
|
1709 | "ntset r 0 _ = [None]" |
|
1710 | "ntset r _ [] = []" |
|
1711 |
|
1712 inductive created_by_ntimes :: "rrexp \<Rightarrow> bool" where |
|
1713 "created_by_ntimes RZERO" |
|
1714 | "created_by_ntimes (RSEQ ra (RNTIMES rb n))" |
|
1715 | "\<lbrakk>created_by_ntimes r1; created_by_ntimes r2\<rbrakk> \<Longrightarrow> created_by_ntimes (RALT r1 r2)" |
|
1716 | "\<lbrakk>created_by_ntimes r \<rbrakk> \<Longrightarrow> created_by_ntimes (RALT r RZERO)" |
|
1717 |
|
1718 fun highest_power_aux :: "(string * nat) option list \<Rightarrow> nat \<Rightarrow> nat" where |
|
1719 "highest_power_aux [] n = n" |
|
1720 | "highest_power_aux (None # rs) n = highest_power_aux rs n" |
|
1721 | "highest_power_aux (Some (s, n) # rs) m = highest_power_aux rs (max n m)" |
|
1722 |
|
1723 fun hpower :: "(string * nat) option list \<Rightarrow> nat" where |
|
1724 "hpower rs = highest_power_aux rs 0" |
|
1725 |
|
1726 |
|
1727 lemma nupdate_mono: |
|
1728 shows " (highest_power_aux (nupdate c r optlist) m) \<le> (highest_power_aux optlist m)" |
|
1729 apply(induct optlist arbitrary: m) |
|
1730 apply simp |
|
1731 apply(case_tac a) |
|
1732 apply simp |
|
1733 apply(case_tac aa) |
|
1734 apply(case_tac b) |
|
1735 apply simp+ |
|
1736 done |
|
1737 |
|
1738 lemma nupdate_mono1: |
|
1739 shows "hpower (nupdate c r optlist) \<le> hpower optlist" |
|
1740 by (simp add: nupdate_mono) |
|
1741 |
|
1742 |
|
1743 |
|
1744 lemma cbn_ders_cbn: |
|
1745 shows "created_by_ntimes r \<Longrightarrow> created_by_ntimes (rder c r)" |
|
1746 apply(induct r rule: created_by_ntimes.induct) |
|
1747 apply simp |
|
1748 |
|
1749 using created_by_ntimes.intros(1) created_by_ntimes.intros(2) created_by_ntimes.intros(3) apply presburger |
|
1750 |
|
1751 apply (metis created_by_ntimes.simps rder.simps(5) rder.simps(7)) |
|
1752 using created_by_star.intros(1) created_by_star.intros(2) apply auto[1] |
|
1753 using created_by_ntimes.intros(1) created_by_ntimes.intros(3) apply auto[1] |
|
1754 by (metis (mono_tags, lifting) created_by_ntimes.simps list.simps(8) list.simps(9) rder.simps(1) rder.simps(4)) |
|
1755 |
|
1756 lemma ntimes_ders_cbn: |
|
1757 shows "created_by_ntimes (rders (RSEQ r' (RNTIMES r n)) s)" |
|
1758 apply(induct s rule: rev_induct) |
|
1759 apply simp |
|
1760 apply (simp add: created_by_ntimes.intros(2)) |
|
1761 apply(subst rders_append) |
|
1762 using cbn_ders_cbn by auto |
|
1763 |
|
1764 lemma always0: |
|
1765 shows "rders RZERO s = RZERO" |
|
1766 apply(induct s) |
|
1767 by simp+ |
|
1768 |
|
1769 lemma ntimes_ders_cbn1: |
|
1770 shows "created_by_ntimes (rders (RNTIMES r n) (c#s))" |
|
1771 apply(case_tac n) |
|
1772 apply simp |
|
1773 using always0 created_by_ntimes.intros(1) apply auto[1] |
|
1774 by (simp add: ntimes_ders_cbn) |
|
1775 |
|
1776 |
|
1777 lemma ntimes_hfau_pushin: |
|
1778 shows "created_by_ntimes r \<Longrightarrow> hflat_aux (rder c r) = concat (map hflat_aux (map (rder c) (hflat_aux r)))" |
|
1779 apply(induct r rule: created_by_ntimes.induct) |
|
1780 apply simp+ |
|
1781 done |
|
1782 |
|
1783 |
|
1784 abbreviation |
|
1785 "opterm r SN \<equiv> case SN of |
|
1786 Some (s, n) \<Rightarrow> RSEQ (rders r s) (RNTIMES r n) |
|
1787 | None \<Rightarrow> RZERO |
|
1788 |
|
1789 |
|
1790 " |
|
1791 |
|
1792 fun nonempty_string :: "(string * nat) option \<Rightarrow> bool" where |
|
1793 "nonempty_string None = True" |
|
1794 | "nonempty_string (Some ([], n)) = False" |
|
1795 | "nonempty_string (Some (c#s, n)) = True" |
|
1796 |
|
1797 |
|
1798 lemma nupdate_nonempty: |
|
1799 shows "\<lbrakk>\<forall>opt \<in> set Ss. nonempty_string opt \<rbrakk> \<Longrightarrow> \<forall>opt \<in> set (nupdate c r Ss). nonempty_string opt" |
|
1800 apply(induct c r Ss rule: nupdate.induct) |
|
1801 apply(auto) |
|
1802 apply (metis Nil_is_append_conv neq_Nil_conv nonempty_string.simps(3)) |
|
1803 by (metis Nil_is_append_conv neq_Nil_conv nonempty_string.simps(3)) |
|
1804 |
|
1805 |
|
1806 |
|
1807 lemma nupdates_nonempty: |
|
1808 shows "\<lbrakk>\<forall>opt \<in> set Ss. nonempty_string opt \<rbrakk> \<Longrightarrow> \<forall>opt \<in> set (nupdates s r Ss). nonempty_string opt" |
|
1809 apply(induct s arbitrary: Ss) |
|
1810 apply simp |
|
1811 apply simp |
|
1812 using nupdate_nonempty by presburger |
|
1813 |
|
1814 lemma nullability1: shows "rnullable (rders r s) = rnullable (rders_simp r s)" |
|
1815 by (metis der_simp_nullability rders.simps(1) rders_simp.simps(1) rders_simp_same_simpders) |
|
1816 |
|
1817 lemma nupdate_induct1: |
|
1818 shows |
|
1819 "concat (map (hflat_aux \<circ> (rder c \<circ> (opterm r))) sl ) = |
|
1820 map (opterm r) (nupdate c r sl)" |
|
1821 apply(induct sl) |
|
1822 apply simp |
|
1823 apply(simp add: rders_append) |
|
1824 apply(case_tac "a") |
|
1825 apply simp+ |
|
1826 apply(case_tac "aa") |
|
1827 apply(case_tac "b") |
|
1828 apply(case_tac "rnullable (rders r ab)") |
|
1829 apply(subgoal_tac "rnullable (rders_simp r ab)") |
|
1830 apply simp |
|
1831 using rders.simps(1) rders.simps(2) rders_append apply presburger |
|
1832 using nullability1 apply blast |
|
1833 apply simp |
|
1834 using rders.simps(1) rders.simps(2) rders_append apply presburger |
|
1835 apply simp |
|
1836 using rders.simps(1) rders.simps(2) rders_append by presburger |
|
1837 |
|
1838 |
|
1839 lemma nupdates_join_general: |
|
1840 shows "concat (map hflat_aux (map (rder x) (map (opterm r) (nupdates xs r Ss)) )) = |
|
1841 map (opterm r) (nupdates (xs @ [x]) r Ss)" |
|
1842 apply(induct xs arbitrary: Ss) |
|
1843 apply (simp) |
|
1844 prefer 2 |
|
1845 apply auto[1] |
|
1846 using nupdate_induct1 by blast |
|
1847 |
|
1848 |
|
1849 lemma nupdates_join_general1: |
|
1850 shows "concat (map (hflat_aux \<circ> (rder x) \<circ> (opterm r)) (nupdates xs r Ss)) = |
|
1851 map (opterm r) (nupdates (xs @ [x]) r Ss)" |
|
1852 by (metis list.map_comp nupdates_join_general) |
|
1853 |
|
1854 lemma nupdates_append: shows |
|
1855 "nupdates (s @ [c]) r Ss = nupdate c r (nupdates s r Ss)" |
|
1856 apply(induct s arbitrary: Ss) |
|
1857 apply simp |
|
1858 apply simp |
|
1859 done |
|
1860 |
|
1861 lemma nupdates_mono: |
|
1862 shows "highest_power_aux (nupdates s r optlist) m \<le> highest_power_aux optlist m" |
|
1863 apply(induct s rule: rev_induct) |
|
1864 apply simp |
|
1865 apply(subst nupdates_append) |
|
1866 by (meson le_trans nupdate_mono) |
|
1867 |
|
1868 lemma nupdates_mono1: |
|
1869 shows "hpower (nupdates s r optlist) \<le> hpower optlist" |
|
1870 by (simp add: nupdates_mono) |
|
1871 |
|
1872 |
|
1873 (*"\<forall>r \<in> set (nupdates s r [Some ([c], n)]). r = None \<or>( \<exists>s' m. r = Some (s', m) \<and> m \<le> n)"*) |
|
1874 lemma nupdates_mono2: |
|
1875 shows "hpower (nupdates s r [Some ([c], n)]) \<le> n" |
|
1876 by (metis highest_power_aux.simps(1) highest_power_aux.simps(3) hpower.simps max_nat.right_neutral nupdates_mono1) |
|
1877 |
|
1878 lemma hpow_arg_mono: |
|
1879 shows "m \<ge> n \<Longrightarrow> highest_power_aux rs m \<ge> highest_power_aux rs n" |
|
1880 apply(induct rs arbitrary: m n) |
|
1881 apply simp |
|
1882 apply(case_tac a) |
|
1883 apply simp |
|
1884 apply(case_tac aa) |
|
1885 apply simp |
|
1886 done |
|
1887 |
|
1888 |
|
1889 lemma hpow_increase: |
|
1890 shows "highest_power_aux (a # rs') m \<ge> highest_power_aux rs' m" |
|
1891 apply(case_tac a) |
|
1892 apply simp |
|
1893 apply simp |
|
1894 apply(case_tac aa) |
|
1895 apply(case_tac b) |
|
1896 apply simp+ |
|
1897 apply(case_tac "Suc nat > m") |
|
1898 using hpow_arg_mono max.cobounded2 apply blast |
|
1899 using hpow_arg_mono max.cobounded2 by blast |
|
1900 |
|
1901 lemma hpow_append: |
|
1902 shows "highest_power_aux (rsa @ rsb) m = highest_power_aux rsb (highest_power_aux rsa m)" |
|
1903 apply (induct rsa arbitrary: rsb m) |
|
1904 apply simp |
|
1905 apply simp |
|
1906 apply(case_tac a) |
|
1907 apply simp |
|
1908 apply(case_tac aa) |
|
1909 apply simp |
|
1910 done |
|
1911 |
|
1912 lemma hpow_aux_mono: |
|
1913 shows "highest_power_aux (rsa @ rsb) m \<ge> highest_power_aux rsb m" |
|
1914 apply(induct rsa arbitrary: rsb rule: rev_induct) |
|
1915 apply simp |
|
1916 apply simp |
|
1917 using hpow_increase order.trans by blast |
|
1918 |
|
1919 |
|
1920 |
|
1921 |
|
1922 lemma hpow_mono: |
|
1923 shows "hpower (rsa @ rsb) \<le> n \<Longrightarrow> hpower rsb \<le> n" |
|
1924 apply(induct rsb arbitrary: rsa) |
|
1925 apply simp |
|
1926 apply(subgoal_tac "hpower rsb \<le> n") |
|
1927 apply simp |
|
1928 apply (metis dual_order.trans hpow_aux_mono) |
|
1929 by (metis hpow_append hpow_increase hpower.simps nat_le_iff_add trans_le_add1) |
|
1930 |
|
1931 |
|
1932 lemma hpower_rs_elems_aux: |
|
1933 shows "highest_power_aux rs k \<le> n \<Longrightarrow> \<forall>r\<in>set rs. r = None \<or> (\<exists>s' m. r = Some (s', m) \<and> m \<le> n)" |
|
1934 apply(induct rs k arbitrary: n rule: highest_power_aux.induct) |
|
1935 apply(auto) |
|
1936 by (metis dual_order.trans highest_power_aux.simps(1) hpow_append hpow_aux_mono linorder_le_cases max.absorb1 max.absorb2) |
|
1937 |
|
1938 |
|
1939 lemma hpower_rs_elems: |
|
1940 shows "hpower rs \<le> n \<Longrightarrow> \<forall>r \<in> set rs. r = None \<or>( \<exists>s' m. r = Some (s', m) \<and> m \<le> n)" |
|
1941 by (simp add: hpower_rs_elems_aux) |
|
1942 |
|
1943 lemma nupdates_elems_leqn: |
|
1944 shows "\<forall>r \<in> set (nupdates s r [Some ([c], n)]). r = None \<or>( \<exists>s' m. r = Some (s', m) \<and> m \<le> n)" |
|
1945 by (meson hpower_rs_elems nupdates_mono2) |
|
1946 |
|
1947 lemma ntimes_hfau_induct: |
|
1948 shows "hflat_aux (rders (RSEQ (rder c r) (RNTIMES r n)) s) = |
|
1949 map (opterm r) (nupdates s r [Some ([c], n)])" |
|
1950 apply(induct s rule: rev_induct) |
|
1951 apply simp |
|
1952 apply(subst rders_append)+ |
|
1953 apply simp |
|
1954 apply(subst nupdates_append) |
|
1955 apply(subgoal_tac "created_by_ntimes (rders (RSEQ (rder c r) (RNTIMES r n)) xs)") |
|
1956 prefer 2 |
|
1957 apply (simp add: ntimes_ders_cbn) |
|
1958 apply(subst ntimes_hfau_pushin) |
|
1959 apply simp |
|
1960 apply(subgoal_tac "concat (map hflat_aux (map (rder x) (hflat_aux (rders (RSEQ (rder c r) (RNTIMES r n)) xs)))) = |
|
1961 concat (map hflat_aux (map (rder x) ( map (opterm r) (nupdates xs r [Some ([c], n)])))) ") |
|
1962 apply(simp only:) |
|
1963 prefer 2 |
|
1964 apply presburger |
|
1965 apply(subst nupdates_append[symmetric]) |
|
1966 using nupdates_join_general by blast |
|
1967 |
|
1968 |
|
1969 (*nupdates s r [Some ([c], n)]*) |
|
1970 lemma ntimes_ders_hfau_also1: |
|
1971 shows "hflat_aux (rders (RNTIMES r (Suc n)) (c # xs)) = map (opterm r) (nupdates xs r [Some ([c], n)])" |
|
1972 using ntimes_hfau_induct by force |
|
1973 |
|
1974 |
|
1975 |
|
1976 lemma hfau_rsimpeq2_ntimes: |
|
1977 shows "created_by_ntimes r \<Longrightarrow> rsimp r = rsimp ( (RALTS (hflat_aux r)))" |
|
1978 apply(induct r) |
|
1979 apply simp+ |
|
1980 |
|
1981 apply (metis rsimp_seq_equal1) |
|
1982 prefer 2 |
|
1983 apply simp |
|
1984 apply(case_tac x) |
|
1985 apply simp |
|
1986 apply(case_tac "list") |
|
1987 apply simp |
|
1988 |
|
1989 apply (metis idem_after_simp1) |
|
1990 apply(case_tac "lista") |
|
1991 prefer 2 |
|
1992 apply (metis hflat_aux.simps(8) idem_after_simp1 list.simps(8) list.simps(9) rsimp.simps(2)) |
|
1993 apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux (RALT a aa)))") |
|
1994 apply simp |
|
1995 apply(subgoal_tac "rsimp (RALT a aa) = rsimp (RALTS (hflat_aux a @ hflat_aux aa))") |
|
1996 using hflat_aux.simps(1) apply presburger |
|
1997 apply simp |
|
1998 using cbs_hfau_rsimpeq1 apply(fastforce) |
|
1999 by simp |
|
2000 |
|
2001 |
|
2002 lemma ntimes_closed_form1: |
|
2003 shows "rsimp (rders (RNTIMES r (Suc n)) (c#s)) = |
|
2004 rsimp ( ( RALTS ( map (opterm r) (nupdates s r [Some ([c], n)]) )))" |
|
2005 apply(subgoal_tac "created_by_ntimes (rders (RNTIMES r (Suc n)) (c#s))") |
|
2006 apply(subst hfau_rsimpeq2_ntimes) |
|
2007 apply linarith |
|
2008 using ntimes_ders_hfau_also1 apply auto[1] |
|
2009 using ntimes_ders_cbn1 by blast |
|
2010 |
|
2011 |
|
2012 lemma ntimes_closed_form2: |
|
2013 shows "rsimp (rders_simp (RNTIMES r (Suc n)) (c#s) ) = |
|
2014 rsimp ( ( RALTS ( (map (opterm r ) (nupdates s r [Some ([c], n)]) ) )))" |
|
2015 by (metis list.distinct(1) ntimes_closed_form1 rders_simp_same_simpders rsimp_idem) |
|
2016 |
|
2017 |
|
2018 lemma ntimes_closed_form3: |
|
2019 shows "rsimp (rders_simp (RNTIMES r n) (c#s)) = (rders_simp (RNTIMES r n) (c#s))" |
|
2020 by (metis list.distinct(1) rders_simp_same_simpders rsimp_idem) |
|
2021 |
|
2022 |
|
2023 lemma ntimes_closed_form4: |
|
2024 shows " (rders_simp (RNTIMES r (Suc n)) (c#s)) = |
|
2025 rsimp ( ( RALTS ( (map (opterm r ) (nupdates s r [Some ([c], n)]) ) )))" |
|
2026 using ntimes_closed_form2 ntimes_closed_form3 |
|
2027 by metis |
|
2028 |
|
2029 |
|
2030 |
|
2031 |
|
2032 lemma ntimes_closed_form5: |
|
2033 shows " rsimp ( RALTS (map (\<lambda>s1. RSEQ (rders r0 s1) (RNTIMES r n) ) Ss)) = |
|
2034 rsimp ( RALTS (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RNTIMES r n)) ) Ss))" |
|
2035 by (smt (verit, ccfv_SIG) list.map_comp map_eq_conv o_apply simp_flatten_aux0) |
|
2036 |
|
2037 |
|
2038 |
|
2039 lemma ntimes_closed_form6_hrewrites: |
|
2040 shows " |
|
2041 (map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RNTIMES r0 n)) ) Ss ) |
|
2042 scf\<leadsto>* |
|
2043 (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RNTIMES r0 n)) ) Ss )" |
|
2044 apply(induct Ss) |
|
2045 apply simp |
|
2046 apply (simp add: ss1) |
|
2047 by (metis (no_types, lifting) list.simps(9) rsimp.simps(1) rsimp_idem simp_hrewrites ss2) |
|
2048 |
|
2049 |
|
2050 |
|
2051 lemma ntimes_closed_form6: |
|
2052 shows " rsimp ( ( RALTS ( (map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RNTIMES r0 n)) ) Ss )))) = |
|
2053 rsimp ( ( RALTS ( (map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RNTIMES r0 n)) ) Ss ))))" |
|
2054 apply(subgoal_tac " map (\<lambda>s1. (RSEQ (rsimp (rders r0 s1)) (RNTIMES r0 n)) ) Ss scf\<leadsto>* |
|
2055 map (\<lambda>s1. rsimp (RSEQ (rders r0 s1) (RNTIMES r0 n)) ) Ss ") |
|
2056 using hrewrites_simpeq srewritescf_alt1 apply fastforce |
|
2057 using ntimes_closed_form6_hrewrites by blast |
|
2058 |
|
2059 abbreviation |
|
2060 "optermsimp r SN \<equiv> case SN of |
|
2061 Some (s, n) \<Rightarrow> RSEQ (rders_simp r s) (RNTIMES r n) |
|
2062 | None \<Rightarrow> RZERO |
|
2063 |
|
2064 |
|
2065 " |
|
2066 |
|
2067 abbreviation |
|
2068 "optermOsimp r SN \<equiv> case SN of |
|
2069 Some (s, n) \<Rightarrow> rsimp (RSEQ (rders r s) (RNTIMES r n)) |
|
2070 | None \<Rightarrow> RZERO |
|
2071 |
|
2072 |
|
2073 " |
|
2074 |
|
2075 abbreviation |
|
2076 "optermosimp r SN \<equiv> case SN of |
|
2077 Some (s, n) \<Rightarrow> RSEQ (rsimp (rders r s)) (RNTIMES r n) |
|
2078 | None \<Rightarrow> RZERO |
|
2079 " |
|
2080 |
|
2081 lemma ntimes_closed_form51: |
|
2082 shows "rsimp (RALTS (map (opterm r) (nupdates s r [Some ([c], n)]))) = |
|
2083 rsimp (RALTS (map (rsimp \<circ> (opterm r)) (nupdates s r [Some ([c], n)])))" |
|
2084 by (metis map_map simp_flatten_aux0) |
|
2085 |
|
2086 |
|
2087 |
|
2088 lemma osimp_Osimp: |
|
2089 shows " nonempty_string sn \<Longrightarrow> optermosimp r sn = optermsimp r sn" |
|
2090 apply(induct rule: nonempty_string.induct) |
|
2091 apply force |
|
2092 apply auto[1] |
|
2093 apply simp |
|
2094 by (metis list.distinct(1) rders.simps(2) rders_simp.simps(2) rders_simp_same_simpders) |
|
2095 |
|
2096 |
|
2097 |
|
2098 lemma osimp_Osimp_list: |
|
2099 shows "\<forall>sn \<in> set snlist. nonempty_string sn \<Longrightarrow> map (optermosimp r) snlist = map (optermsimp r) snlist" |
|
2100 by (simp add: osimp_Osimp) |
|
2101 |
|
2102 |
|
2103 lemma ntimes_closed_form8: |
|
2104 shows |
|
2105 "rsimp (RALTS (map (optermosimp r) (nupdates s r [Some ([c], n)]))) = |
|
2106 rsimp (RALTS (map (optermsimp r) (nupdates s r [Some ([c], n)])))" |
|
2107 apply(subgoal_tac "\<forall>opt \<in> set (nupdates s r [Some ([c], n)]). nonempty_string opt") |
|
2108 using osimp_Osimp_list apply presburger |
|
2109 by (metis list.distinct(1) list.set_cases nonempty_string.simps(3) nupdates_nonempty set_ConsD) |
|
2110 |
|
2111 |
|
2112 |
|
2113 lemma ntimes_closed_form9aux: |
|
2114 shows "\<forall>snopt \<in> set (nupdates s r [Some ([c], n)]). nonempty_string snopt" |
|
2115 by (metis list.distinct(1) list.set_cases nonempty_string.simps(3) nupdates_nonempty set_ConsD) |
|
2116 |
|
2117 lemma ntimes_closed_form9aux1: |
|
2118 shows "\<forall>snopt \<in> set snlist. nonempty_string snopt \<Longrightarrow> |
|
2119 rsimp (RALTS (map (optermosimp r) snlist)) = |
|
2120 rsimp (RALTS (map (optermOsimp r) snlist))" |
|
2121 apply(induct snlist) |
|
2122 apply simp+ |
|
2123 apply(case_tac "a") |
|
2124 apply simp+ |
|
2125 by (smt (z3) case_prod_conv idem_after_simp1 map_eq_conv nonempty_string.elims(2) o_apply option.simps(4) option.simps(5) rsimp.simps(1) rsimp.simps(7) rsimp_idem) |
|
2126 |
|
2127 |
|
2128 |
|
2129 |
|
2130 lemma ntimes_closed_form9: |
|
2131 shows |
|
2132 "rsimp (RALTS (map (optermosimp r) (nupdates s r [Some ([c], n)]))) = |
|
2133 rsimp (RALTS (map (optermOsimp r) (nupdates s r [Some ([c], n)])))" |
|
2134 using ntimes_closed_form9aux ntimes_closed_form9aux1 by presburger |
|
2135 |
|
2136 |
|
2137 lemma ntimes_closed_form10rewrites_aux: |
|
2138 shows " map (rsimp \<circ> (opterm r)) optlist scf\<leadsto>* |
|
2139 map (optermOsimp r) optlist" |
|
2140 apply(induct optlist) |
|
2141 apply simp |
|
2142 apply (simp add: ss1) |
|
2143 apply simp |
|
2144 apply(case_tac a) |
|
2145 using ss2 apply fastforce |
|
2146 using ss2 by force |
|
2147 |
|
2148 |
|
2149 lemma ntimes_closed_form10rewrites: |
|
2150 shows " map (rsimp \<circ> (opterm r)) (nupdates s r [Some ([c], n)]) scf\<leadsto>* |
|
2151 map (optermOsimp r) (nupdates s r [Some ([c], n)])" |
|
2152 using ntimes_closed_form10rewrites_aux by blast |
|
2153 |
|
2154 lemma ntimes_closed_form10: |
|
2155 shows "rsimp (RALTS (map (rsimp \<circ> (opterm r)) (nupdates s r [Some ([c], n)]))) = |
|
2156 rsimp (RALTS (map (optermOsimp r) (nupdates s r [Some ([c], n)])))" |
|
2157 by (smt (verit, best) case_prod_conv hpower_rs_elems map_eq_conv nupdates_mono2 o_apply option.case(2) option.simps(4) rsimp.simps(3)) |
|
2158 |
|
2159 |
|
2160 lemma rders_simp_cons: |
|
2161 shows "rders_simp r (c # s) = rders_simp (rsimp (rder c r)) s" |
|
2162 by simp |
|
2163 |
|
2164 lemma rder_ntimes: |
|
2165 shows "rder c (RNTIMES r (Suc n)) = RSEQ (rder c r) (RNTIMES r n)" |
|
2166 by simp |
|
2167 |
|
2168 |
|
2169 lemma ntimes_closed_form: |
|
2170 shows "rders_simp (RNTIMES r0 (Suc n)) (c#s) = |
|
2171 rsimp ( RALTS ( (map (optermsimp r0 ) (nupdates s r0 [Some ([c], n)]) ) ))" |
|
2172 apply (subst rders_simp_cons) |
|
2173 apply(subst rder_ntimes) |
|
2174 using ntimes_closed_form10 ntimes_closed_form4 ntimes_closed_form51 ntimes_closed_form8 ntimes_closed_form9 by force |
|
2175 |
|
2176 |
|
2177 |
|
2178 |
|
2179 |
|
2180 |
|
2181 (* |
|
2182 lemma ntimes_closed_form: |
|
2183 assumes "s \<noteq> []" |
|
2184 shows "rders_simp (RNTIMES r (Suc n)) s = |
|
2185 rsimp ( RALTS ( map |
|
2186 (\<lambda> optSN. case optSN of |
|
2187 Some (s, n) \<Rightarrow> RSEQ (rders_simp r s) (RNTIMES r n) |
|
2188 | None \<Rightarrow> RZERO |
|
2189 ) |
|
2190 (ntset r n s) |
|
2191 ) |
|
2192 )" |
|
2193 |
|
2194 *) |
|
2195 |
|
2196 |
|
2197 end |