|
1 theory BasicIdentities |
|
2 imports "Lexer" |
|
3 begin |
|
4 |
|
5 datatype rrexp = |
|
6 RZERO |
|
7 | RONE |
|
8 | RCHAR char |
|
9 | RSEQ rrexp rrexp |
|
10 | RALTS "rrexp list" |
|
11 | RSTAR rrexp |
|
12 | RNTIMES rrexp nat |
|
13 |
|
14 abbreviation |
|
15 "RALT r1 r2 \<equiv> RALTS [r1, r2]" |
|
16 |
|
17 |
|
18 fun |
|
19 rnullable :: "rrexp \<Rightarrow> bool" |
|
20 where |
|
21 "rnullable (RZERO) = False" |
|
22 | "rnullable (RONE) = True" |
|
23 | "rnullable (RCHAR c) = False" |
|
24 | "rnullable (RALTS rs) = (\<exists>r \<in> set rs. rnullable r)" |
|
25 | "rnullable (RSEQ r1 r2) = (rnullable r1 \<and> rnullable r2)" |
|
26 | "rnullable (RSTAR r) = True" |
|
27 | "rnullable (RNTIMES r n) = (if n = 0 then True else rnullable r)" |
|
28 |
|
29 fun |
|
30 rder :: "char \<Rightarrow> rrexp \<Rightarrow> rrexp" |
|
31 where |
|
32 "rder c (RZERO) = RZERO" |
|
33 | "rder c (RONE) = RZERO" |
|
34 | "rder c (RCHAR d) = (if c = d then RONE else RZERO)" |
|
35 | "rder c (RALTS rs) = RALTS (map (rder c) rs)" |
|
36 | "rder c (RSEQ r1 r2) = |
|
37 (if rnullable r1 |
|
38 then RALT (RSEQ (rder c r1) r2) (rder c r2) |
|
39 else RSEQ (rder c r1) r2)" |
|
40 | "rder c (RSTAR r) = RSEQ (rder c r) (RSTAR r)" |
|
41 | "rder c (RNTIMES r n) = (if n = 0 then RZERO else RSEQ (rder c r) (RNTIMES r (n - 1)))" |
|
42 |
|
43 fun |
|
44 rders :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp" |
|
45 where |
|
46 "rders r [] = r" |
|
47 | "rders r (c#s) = rders (rder c r) s" |
|
48 |
|
49 fun rdistinct :: "'a list \<Rightarrow>'a set \<Rightarrow> 'a list" |
|
50 where |
|
51 "rdistinct [] acc = []" |
|
52 | "rdistinct (x#xs) acc = |
|
53 (if x \<in> acc then rdistinct xs acc |
|
54 else x # (rdistinct xs ({x} \<union> acc)))" |
|
55 |
|
56 lemma rdistinct1: |
|
57 assumes "a \<in> acc" |
|
58 shows "a \<notin> set (rdistinct rs acc)" |
|
59 using assms |
|
60 apply(induct rs arbitrary: acc a) |
|
61 apply(auto) |
|
62 done |
|
63 |
|
64 |
|
65 lemma rdistinct_does_the_job: |
|
66 shows "distinct (rdistinct rs s)" |
|
67 apply(induct rs s rule: rdistinct.induct) |
|
68 apply(auto simp add: rdistinct1) |
|
69 done |
|
70 |
|
71 |
|
72 |
|
73 lemma rdistinct_concat: |
|
74 assumes "set rs \<subseteq> rset" |
|
75 shows "rdistinct (rs @ rsa) rset = rdistinct rsa rset" |
|
76 using assms |
|
77 apply(induct rs) |
|
78 apply simp+ |
|
79 done |
|
80 |
|
81 lemma distinct_not_exist: |
|
82 assumes "a \<notin> set rs" |
|
83 shows "rdistinct rs rset = rdistinct rs (insert a rset)" |
|
84 using assms |
|
85 apply(induct rs arbitrary: rset) |
|
86 apply(auto) |
|
87 done |
|
88 |
|
89 lemma rdistinct_on_distinct: |
|
90 shows "distinct rs \<Longrightarrow> rdistinct rs {} = rs" |
|
91 apply(induct rs) |
|
92 apply simp |
|
93 using distinct_not_exist by fastforce |
|
94 |
|
95 lemma distinct_rdistinct_append: |
|
96 assumes "distinct rs1" "\<forall>r \<in> set rs1. r \<notin> acc" |
|
97 shows "rdistinct (rs1 @ rsa) acc = rs1 @ (rdistinct rsa (acc \<union> set rs1))" |
|
98 using assms |
|
99 apply(induct rs1 arbitrary: rsa acc) |
|
100 apply(auto)[1] |
|
101 apply(auto)[1] |
|
102 apply(drule_tac x="rsa" in meta_spec) |
|
103 apply(drule_tac x="{a} \<union> acc" in meta_spec) |
|
104 apply(simp) |
|
105 apply(drule meta_mp) |
|
106 apply(auto)[1] |
|
107 apply(simp) |
|
108 done |
|
109 |
|
110 |
|
111 lemma rdistinct_set_equality1: |
|
112 shows "set (rdistinct rs acc) = set rs - acc" |
|
113 apply(induct rs acc rule: rdistinct.induct) |
|
114 apply(auto) |
|
115 done |
|
116 |
|
117 |
|
118 lemma rdistinct_set_equality: |
|
119 shows "set (rdistinct rs {}) = set rs" |
|
120 by (simp add: rdistinct_set_equality1) |
|
121 |
|
122 |
|
123 fun rflts :: "rrexp list \<Rightarrow> rrexp list" |
|
124 where |
|
125 "rflts [] = []" |
|
126 | "rflts (RZERO # rs) = rflts rs" |
|
127 | "rflts ((RALTS rs1) # rs) = rs1 @ rflts rs" |
|
128 | "rflts (r1 # rs) = r1 # rflts rs" |
|
129 |
|
130 |
|
131 lemma rflts_def_idiot: |
|
132 shows "\<lbrakk> a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow> rflts (a # rs) = a # rflts rs" |
|
133 apply(case_tac a) |
|
134 apply simp_all |
|
135 done |
|
136 |
|
137 lemma rflts_def_idiot2: |
|
138 shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1; a \<in> set rs\<rbrakk> \<Longrightarrow> a \<in> set (rflts rs)" |
|
139 apply(induct rs rule: rflts.induct) |
|
140 apply(auto) |
|
141 done |
|
142 |
|
143 lemma flts_append: |
|
144 shows "rflts (rs1 @ rs2) = rflts rs1 @ rflts rs2" |
|
145 apply(induct rs1) |
|
146 apply simp |
|
147 apply(case_tac a) |
|
148 apply simp+ |
|
149 done |
|
150 |
|
151 |
|
152 fun rsimp_ALTs :: " rrexp list \<Rightarrow> rrexp" |
|
153 where |
|
154 "rsimp_ALTs [] = RZERO" |
|
155 | "rsimp_ALTs [r] = r" |
|
156 | "rsimp_ALTs rs = RALTS rs" |
|
157 |
|
158 lemma rsimpalts_conscons: |
|
159 shows "rsimp_ALTs (r1 # rsa @ r2 # rsb) = RALTS (r1 # rsa @ r2 # rsb)" |
|
160 by (metis Nil_is_append_conv list.exhaust rsimp_ALTs.simps(3)) |
|
161 |
|
162 lemma rsimp_alts_equal: |
|
163 shows "rsimp_ALTs (rsa @ a # rsb @ a # rsc) = RALTS (rsa @ a # rsb @ a # rsc) " |
|
164 by (metis append_Cons append_Nil neq_Nil_conv rsimpalts_conscons) |
|
165 |
|
166 |
|
167 fun rsimp_SEQ :: " rrexp \<Rightarrow> rrexp \<Rightarrow> rrexp" |
|
168 where |
|
169 "rsimp_SEQ RZERO _ = RZERO" |
|
170 | "rsimp_SEQ _ RZERO = RZERO" |
|
171 | "rsimp_SEQ RONE r2 = r2" |
|
172 | "rsimp_SEQ r1 r2 = RSEQ r1 r2" |
|
173 |
|
174 |
|
175 fun rsimp :: "rrexp \<Rightarrow> rrexp" |
|
176 where |
|
177 "rsimp (RSEQ r1 r2) = rsimp_SEQ (rsimp r1) (rsimp r2)" |
|
178 | "rsimp (RALTS rs) = rsimp_ALTs (rdistinct (rflts (map rsimp rs)) {}) " |
|
179 | "rsimp r = r" |
|
180 |
|
181 |
|
182 fun |
|
183 rders_simp :: "rrexp \<Rightarrow> string \<Rightarrow> rrexp" |
|
184 where |
|
185 "rders_simp r [] = r" |
|
186 | "rders_simp r (c#s) = rders_simp (rsimp (rder c r)) s" |
|
187 |
|
188 fun rsize :: "rrexp \<Rightarrow> nat" where |
|
189 "rsize RZERO = 1" |
|
190 | "rsize (RONE) = 1" |
|
191 | "rsize (RCHAR c) = 1" |
|
192 | "rsize (RALTS rs) = Suc (sum_list (map rsize rs))" |
|
193 | "rsize (RSEQ r1 r2) = Suc (rsize r1 + rsize r2)" |
|
194 | "rsize (RSTAR r) = Suc (rsize r)" |
|
195 | "rsize (RNTIMES r n) = Suc (rsize r) + n" |
|
196 |
|
197 abbreviation rsizes where |
|
198 "rsizes rs \<equiv> sum_list (map rsize rs)" |
|
199 |
|
200 |
|
201 lemma rder_rsimp_ALTs_commute: |
|
202 shows " (rder x (rsimp_ALTs rs)) = rsimp_ALTs (map (rder x) rs)" |
|
203 apply(induct rs) |
|
204 apply simp |
|
205 apply(case_tac rs) |
|
206 apply simp |
|
207 apply auto |
|
208 done |
|
209 |
|
210 |
|
211 lemma rsimp_aalts_smaller: |
|
212 shows "rsize (rsimp_ALTs rs) \<le> rsize (RALTS rs)" |
|
213 apply(induct rs) |
|
214 apply simp |
|
215 apply simp |
|
216 apply(case_tac "rs = []") |
|
217 apply simp |
|
218 apply(subgoal_tac "\<exists>rsp ap. rs = ap # rsp") |
|
219 apply(erule exE)+ |
|
220 apply simp |
|
221 apply simp |
|
222 by(meson neq_Nil_conv) |
|
223 |
|
224 |
|
225 |
|
226 |
|
227 |
|
228 lemma rSEQ_mono: |
|
229 shows "rsize (rsimp_SEQ r1 r2) \<le>rsize (RSEQ r1 r2)" |
|
230 apply auto |
|
231 apply(induct r1) |
|
232 apply auto |
|
233 apply(case_tac "r2") |
|
234 apply simp_all |
|
235 apply(case_tac r2) |
|
236 apply simp_all |
|
237 apply(case_tac r2) |
|
238 apply simp_all |
|
239 apply(case_tac r2) |
|
240 apply simp_all |
|
241 apply(case_tac r2) |
|
242 apply simp_all |
|
243 apply(case_tac r2) |
|
244 apply simp_all |
|
245 done |
|
246 |
|
247 lemma ralts_cap_mono: |
|
248 shows "rsize (RALTS rs) \<le> Suc (rsizes rs)" |
|
249 by simp |
|
250 |
|
251 |
|
252 |
|
253 |
|
254 lemma rflts_mono: |
|
255 shows "rsizes (rflts rs) \<le> rsizes rs" |
|
256 apply(induct rs) |
|
257 apply simp |
|
258 apply(case_tac "a = RZERO") |
|
259 apply simp |
|
260 apply(case_tac "\<exists>rs1. a = RALTS rs1") |
|
261 apply(erule exE) |
|
262 apply simp |
|
263 apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)") |
|
264 prefer 2 |
|
265 |
|
266 using rflts_def_idiot apply blast |
|
267 apply simp |
|
268 done |
|
269 |
|
270 lemma rdistinct_smaller: |
|
271 shows "rsizes (rdistinct rs ss) \<le> rsizes rs" |
|
272 apply (induct rs arbitrary: ss) |
|
273 apply simp |
|
274 by (simp add: trans_le_add2) |
|
275 |
|
276 |
|
277 lemma rsimp_alts_mono : |
|
278 shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa) \<Longrightarrow> |
|
279 rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (rsizes x)" |
|
280 apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} )) |
|
281 \<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))") |
|
282 prefer 2 |
|
283 using rsimp_aalts_smaller apply auto[1] |
|
284 apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc (rsizes (rdistinct (rflts (map rsimp x)) {}))") |
|
285 prefer 2 |
|
286 using ralts_cap_mono apply blast |
|
287 apply(subgoal_tac "rsizes (rdistinct (rflts (map rsimp x)) {}) \<le> rsizes (rflts (map rsimp x))") |
|
288 prefer 2 |
|
289 using rdistinct_smaller apply presburger |
|
290 apply(subgoal_tac "rsizes (rflts (map rsimp x)) \<le> rsizes (map rsimp x)") |
|
291 prefer 2 |
|
292 using rflts_mono apply blast |
|
293 apply(subgoal_tac "rsizes (map rsimp x) \<le> rsizes x") |
|
294 prefer 2 |
|
295 |
|
296 apply (simp add: sum_list_mono) |
|
297 by linarith |
|
298 |
|
299 |
|
300 |
|
301 |
|
302 |
|
303 lemma rsimp_mono: |
|
304 shows "rsize (rsimp r) \<le> rsize r" |
|
305 apply(induct r) |
|
306 apply simp_all |
|
307 apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))") |
|
308 apply force |
|
309 using rSEQ_mono |
|
310 apply presburger |
|
311 using rsimp_alts_mono by auto |
|
312 |
|
313 lemma idiot: |
|
314 shows "rsimp_SEQ RONE r = r" |
|
315 apply(case_tac r) |
|
316 apply simp_all |
|
317 done |
|
318 |
|
319 |
|
320 |
|
321 |
|
322 |
|
323 lemma idiot2: |
|
324 shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk> |
|
325 \<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2" |
|
326 apply(case_tac r1) |
|
327 apply(case_tac r2) |
|
328 apply simp_all |
|
329 apply(case_tac r2) |
|
330 apply simp_all |
|
331 apply(case_tac r2) |
|
332 apply simp_all |
|
333 apply(case_tac r2) |
|
334 apply simp_all |
|
335 apply(case_tac r2) |
|
336 apply simp_all |
|
337 apply(case_tac r2) |
|
338 apply simp_all |
|
339 done |
|
340 |
|
341 lemma rders__onechar: |
|
342 shows " (rders_simp r [c]) = (rsimp (rders r [c]))" |
|
343 by simp |
|
344 |
|
345 lemma rders_append: |
|
346 "rders c (s1 @ s2) = rders (rders c s1) s2" |
|
347 apply(induct s1 arbitrary: c s2) |
|
348 apply(simp_all) |
|
349 done |
|
350 |
|
351 lemma rders_simp_append: |
|
352 "rders_simp c (s1 @ s2) = rders_simp (rders_simp c s1) s2" |
|
353 apply(induct s1 arbitrary: c s2) |
|
354 apply(simp_all) |
|
355 done |
|
356 |
|
357 |
|
358 lemma rders_simp_one_char: |
|
359 shows "rders_simp r [c] = rsimp (rder c r)" |
|
360 apply auto |
|
361 done |
|
362 |
|
363 |
|
364 |
|
365 fun nonalt :: "rrexp \<Rightarrow> bool" |
|
366 where |
|
367 "nonalt (RALTS rs) = False" |
|
368 | "nonalt r = True" |
|
369 |
|
370 |
|
371 fun good :: "rrexp \<Rightarrow> bool" where |
|
372 "good RZERO = False" |
|
373 | "good (RONE) = True" |
|
374 | "good (RCHAR c) = True" |
|
375 | "good (RALTS []) = False" |
|
376 | "good (RALTS [r]) = False" |
|
377 | "good (RALTS (r1 # r2 # rs)) = ((distinct ( (r1 # r2 # rs))) \<and>(\<forall>r' \<in> set (r1 # r2 # rs). good r' \<and> nonalt r'))" |
|
378 | "good (RSEQ RZERO _) = False" |
|
379 | "good (RSEQ RONE _) = False" |
|
380 | "good (RSEQ _ RZERO) = False" |
|
381 | "good (RSEQ r1 r2) = (good r1 \<and> good r2)" |
|
382 | "good (RSTAR r) = True" |
|
383 | "good (RNTIMES r n) = True" |
|
384 |
|
385 lemma k0a: |
|
386 shows "rflts [RALTS rs] = rs" |
|
387 apply(simp) |
|
388 done |
|
389 |
|
390 lemma bbbbs: |
|
391 assumes "good r" "r = RALTS rs" |
|
392 shows "rsimp_ALTs (rflts [r]) = RALTS rs" |
|
393 using assms |
|
394 by (metis good.simps(4) good.simps(5) k0a rsimp_ALTs.elims) |
|
395 |
|
396 lemma bbbbs1: |
|
397 shows "nonalt r \<or> (\<exists> rs. r = RALTS rs)" |
|
398 by (meson nonalt.elims(3)) |
|
399 |
|
400 |
|
401 |
|
402 lemma good0: |
|
403 assumes "rs \<noteq> Nil" "\<forall>r \<in> set rs. nonalt r" "distinct rs" |
|
404 shows "good (rsimp_ALTs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. good r)" |
|
405 using assms |
|
406 apply(induct rs rule: rsimp_ALTs.induct) |
|
407 apply(auto) |
|
408 done |
|
409 |
|
410 lemma flts1: |
|
411 assumes "good r" |
|
412 shows "rflts [r] \<noteq> []" |
|
413 using assms |
|
414 apply(induct r) |
|
415 apply(simp_all) |
|
416 using good.simps(4) by blast |
|
417 |
|
418 lemma flts2: |
|
419 assumes "good r" |
|
420 shows "\<forall>r' \<in> set (rflts [r]). good r' \<and> nonalt r'" |
|
421 using assms |
|
422 apply(induct r) |
|
423 apply(simp) |
|
424 apply(simp) |
|
425 apply(simp) |
|
426 prefer 2 |
|
427 apply(simp) |
|
428 apply(auto)[1] |
|
429 |
|
430 apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv) |
|
431 apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv) |
|
432 apply fastforce |
|
433 apply(simp) |
|
434 by simp |
|
435 |
|
436 |
|
437 lemma flts3: |
|
438 assumes "\<forall>r \<in> set rs. good r \<or> r = RZERO" |
|
439 shows "\<forall>r \<in> set (rflts rs). good r" |
|
440 using assms |
|
441 apply(induct rs arbitrary: rule: rflts.induct) |
|
442 apply(simp_all) |
|
443 by (metis UnE flts2 k0a) |
|
444 |
|
445 |
|
446 lemma k0: |
|
447 shows "rflts (r # rs1) = rflts [r] @ rflts rs1" |
|
448 apply(induct r arbitrary: rs1) |
|
449 apply(auto) |
|
450 done |
|
451 |
|
452 |
|
453 lemma good_SEQ: |
|
454 assumes "r1 \<noteq> RZERO" "r2 \<noteq> RZERO" " r1 \<noteq> RONE" |
|
455 shows "good (RSEQ r1 r2) = (good r1 \<and> good r2)" |
|
456 using assms |
|
457 apply(case_tac r1) |
|
458 apply(simp_all) |
|
459 apply(case_tac r2) |
|
460 apply(simp_all) |
|
461 apply(case_tac r2) |
|
462 apply(simp_all) |
|
463 apply(case_tac r2) |
|
464 apply(simp_all) |
|
465 apply(case_tac r2) |
|
466 apply(simp_all) |
|
467 apply(case_tac r2) |
|
468 apply(simp_all) |
|
469 done |
|
470 |
|
471 lemma rsize0: |
|
472 shows "0 < rsize r" |
|
473 apply(induct r) |
|
474 apply(auto) |
|
475 done |
|
476 |
|
477 |
|
478 fun nonnested :: "rrexp \<Rightarrow> bool" |
|
479 where |
|
480 "nonnested (RALTS []) = True" |
|
481 | "nonnested (RALTS ((RALTS rs1) # rs2)) = False" |
|
482 | "nonnested (RALTS (r # rs2)) = nonnested (RALTS rs2)" |
|
483 | "nonnested r = True" |
|
484 |
|
485 |
|
486 |
|
487 lemma k00: |
|
488 shows "rflts (rs1 @ rs2) = rflts rs1 @ rflts rs2" |
|
489 apply(induct rs1 arbitrary: rs2) |
|
490 apply(auto) |
|
491 by (metis append.assoc k0) |
|
492 |
|
493 |
|
494 |
|
495 |
|
496 lemma k0b: |
|
497 assumes "nonalt r" "r \<noteq> RZERO" |
|
498 shows "rflts [r] = [r]" |
|
499 using assms |
|
500 apply(case_tac r) |
|
501 apply(simp_all) |
|
502 done |
|
503 |
|
504 lemma nn1qq: |
|
505 assumes "nonnested (RALTS rs)" |
|
506 shows "\<nexists> rs1. RALTS rs1 \<in> set rs" |
|
507 using assms |
|
508 apply(induct rs rule: rflts.induct) |
|
509 apply(auto) |
|
510 done |
|
511 |
|
512 |
|
513 |
|
514 lemma n0: |
|
515 shows "nonnested (RALTS rs) \<longleftrightarrow> (\<forall>r \<in> set rs. nonalt r)" |
|
516 apply(induct rs ) |
|
517 apply(auto) |
|
518 apply (metis list.set_intros(1) nn1qq nonalt.elims(3)) |
|
519 apply (metis nonalt.elims(2) nonnested.simps(3) nonnested.simps(4) nonnested.simps(5) nonnested.simps(6) nonnested.simps(7) nonnested.simps(8)) |
|
520 using bbbbs1 apply fastforce |
|
521 by (metis bbbbs1 list.set_intros(2) nn1qq) |
|
522 |
|
523 |
|
524 |
|
525 |
|
526 lemma nn1c: |
|
527 assumes "\<forall>r \<in> set rs. nonnested r" |
|
528 shows "\<forall>r \<in> set (rflts rs). nonalt r" |
|
529 using assms |
|
530 apply(induct rs rule: rflts.induct) |
|
531 apply(auto) |
|
532 using n0 by blast |
|
533 |
|
534 lemma nn1bb: |
|
535 assumes "\<forall>r \<in> set rs. nonalt r" |
|
536 shows "nonnested (rsimp_ALTs rs)" |
|
537 using assms |
|
538 apply(induct rs rule: rsimp_ALTs.induct) |
|
539 apply(auto) |
|
540 using nonalt.simps(1) nonnested.elims(3) apply blast |
|
541 using n0 by auto |
|
542 |
|
543 lemma bsimp_ASEQ0: |
|
544 shows "rsimp_SEQ r1 RZERO = RZERO" |
|
545 apply(induct r1) |
|
546 apply(auto) |
|
547 done |
|
548 |
|
549 lemma nn1b: |
|
550 shows "nonnested (rsimp r)" |
|
551 apply(induct r) |
|
552 apply(simp_all) |
|
553 apply(case_tac "rsimp r1 = RZERO") |
|
554 apply(simp) |
|
555 apply(case_tac "rsimp r2 = RZERO") |
|
556 apply(simp) |
|
557 apply(subst bsimp_ASEQ0) |
|
558 apply(simp) |
|
559 apply(case_tac "\<exists>bs. rsimp r1 = RONE") |
|
560 apply(auto)[1] |
|
561 using idiot apply fastforce |
|
562 apply (simp add: idiot2) |
|
563 by (metis (mono_tags, lifting) image_iff list.set_map nn1bb nn1c rdistinct_set_equality) |
|
564 |
|
565 lemma nonalt_flts_rd: |
|
566 shows "\<lbrakk>xa \<in> set (rdistinct (rflts (map rsimp rs)) {})\<rbrakk> |
|
567 \<Longrightarrow> nonalt xa" |
|
568 by (metis Diff_empty ex_map_conv nn1b nn1c rdistinct_set_equality1) |
|
569 |
|
570 |
|
571 lemma rsimpalts_implies1: |
|
572 shows " rsimp_ALTs (a # rdistinct rs {a}) = RZERO \<Longrightarrow> a = RZERO" |
|
573 using rsimp_ALTs.elims by auto |
|
574 |
|
575 |
|
576 lemma rsimpalts_implies2: |
|
577 shows "rsimp_ALTs (a # rdistinct rs rset) = RZERO \<Longrightarrow> rdistinct rs rset = []" |
|
578 by (metis append_butlast_last_id rrexp.distinct(7) rsimpalts_conscons) |
|
579 |
|
580 lemma rsimpalts_implies21: |
|
581 shows "rsimp_ALTs (a # rdistinct rs {a}) = RZERO \<Longrightarrow> rdistinct rs {a} = []" |
|
582 using rsimpalts_implies2 by blast |
|
583 |
|
584 |
|
585 lemma bsimp_ASEQ2: |
|
586 shows "rsimp_SEQ RONE r2 = r2" |
|
587 apply(induct r2) |
|
588 apply(auto) |
|
589 done |
|
590 |
|
591 lemma elem_smaller_than_set: |
|
592 shows "xa \<in> set list \<Longrightarrow> rsize xa < Suc (rsizes list)" |
|
593 apply(induct list) |
|
594 apply simp |
|
595 by (metis image_eqI le_imp_less_Suc list.set_map member_le_sum_list) |
|
596 |
|
597 lemma rsimp_list_mono: |
|
598 shows "rsizes (map rsimp rs) \<le> rsizes rs" |
|
599 apply(induct rs) |
|
600 apply simp+ |
|
601 by (simp add: add_mono_thms_linordered_semiring(1) rsimp_mono) |
|
602 |
|
603 |
|
604 (*says anything coming out of simp+flts+db will be good*) |
|
605 lemma good2_obv_simplified: |
|
606 shows " \<lbrakk>\<forall>y. rsize y < Suc (rsizes rs) \<longrightarrow> good (rsimp y) \<or> rsimp y = RZERO; |
|
607 xa \<in> set (rdistinct (rflts (map rsimp rs)) {}); good (rsimp xa) \<or> rsimp xa = RZERO\<rbrakk> \<Longrightarrow> good xa" |
|
608 apply(subgoal_tac " \<forall>xa' \<in> set (map rsimp rs). good xa' \<or> xa' = RZERO") |
|
609 prefer 2 |
|
610 apply (simp add: elem_smaller_than_set) |
|
611 by (metis Diff_empty flts3 rdistinct_set_equality1) |
|
612 |
|
613 thm Diff_empty flts3 rdistinct_set_equality1 |
|
614 |
|
615 lemma good1: |
|
616 shows "good (rsimp a) \<or> rsimp a = RZERO" |
|
617 apply(induct a taking: rsize rule: measure_induct) |
|
618 apply(case_tac x) |
|
619 apply(simp) |
|
620 apply(simp) |
|
621 apply(simp) |
|
622 prefer 3 |
|
623 apply(simp) |
|
624 prefer 2 |
|
625 apply(simp only:) |
|
626 apply simp |
|
627 apply (smt (verit, ccfv_threshold) add_mono_thms_linordered_semiring(1) elem_smaller_than_set good0 good2_obv_simplified le_eq_less_or_eq nonalt_flts_rd order_less_trans plus_1_eq_Suc rdistinct_does_the_job rdistinct_smaller rflts_mono rsimp_ALTs.simps(1) rsimp_list_mono) |
|
628 apply simp |
|
629 apply(subgoal_tac "good (rsimp x41) \<or> rsimp x41 = RZERO") |
|
630 apply(subgoal_tac "good (rsimp x42) \<or> rsimp x42 = RZERO") |
|
631 apply(case_tac "rsimp x41 = RZERO") |
|
632 apply simp |
|
633 apply(case_tac "rsimp x42 = RZERO") |
|
634 apply simp |
|
635 using bsimp_ASEQ0 apply blast |
|
636 apply(subgoal_tac "good (rsimp x41)") |
|
637 apply(subgoal_tac "good (rsimp x42)") |
|
638 apply simp |
|
639 apply (metis bsimp_ASEQ2 good_SEQ idiot2) |
|
640 apply blast |
|
641 apply fastforce |
|
642 using less_add_Suc2 apply blast |
|
643 using less_iff_Suc_add apply blast |
|
644 using good.simps(45) rsimp.simps(7) by presburger |
|
645 |
|
646 |
|
647 |
|
648 fun |
|
649 RL :: "rrexp \<Rightarrow> string set" |
|
650 where |
|
651 "RL (RZERO) = {}" |
|
652 | "RL (RONE) = {[]}" |
|
653 | "RL (RCHAR c) = {[c]}" |
|
654 | "RL (RSEQ r1 r2) = (RL r1) ;; (RL r2)" |
|
655 | "RL (RALTS rs) = (\<Union> (set (map RL rs)))" |
|
656 | "RL (RSTAR r) = (RL r)\<star>" |
|
657 | "RL (RNTIMES r n) = (RL r) ^^ n" |
|
658 |
|
659 lemma pow_rempty_iff: |
|
660 shows "[] \<in> (RL r) ^^ n \<longleftrightarrow> (if n = 0 then True else [] \<in> (RL r))" |
|
661 by (induct n) (auto simp add: Sequ_def) |
|
662 |
|
663 lemma RL_rnullable: |
|
664 shows "rnullable r = ([] \<in> RL r)" |
|
665 apply(induct r) |
|
666 apply(auto simp add: Sequ_def pow_rempty_iff) |
|
667 done |
|
668 |
|
669 lemma concI_if_Nil1: "[] \<in> A \<Longrightarrow> xs : B \<Longrightarrow> xs \<in> A ;; B" |
|
670 by (metis append_Nil concI) |
|
671 |
|
672 |
|
673 lemma empty_pow_add: |
|
674 fixes A::"string set" |
|
675 assumes "[] \<in> A" "s \<in> A ^^ n" |
|
676 shows "s \<in> A ^^ (n + m)" |
|
677 using assms |
|
678 apply(induct m arbitrary: n) |
|
679 apply(auto simp add: Sequ_def) |
|
680 done |
|
681 |
|
682 (* |
|
683 lemma der_pow: |
|
684 shows "Der c (A ^^ n) = (if n = 0 then {} else (Der c A) ;; (A ^^ (n - 1)))" |
|
685 apply(induct n arbitrary: A) |
|
686 apply(auto) |
|
687 by (smt (verit, best) Suc_pred concE concI concI_if_Nil2 conc_pow_comm lang_pow.simps(2)) |
|
688 *) |
|
689 |
|
690 lemma RL_rder: |
|
691 shows "RL (rder c r) = Der c (RL r)" |
|
692 apply(induct r) |
|
693 apply(auto simp add: Sequ_def Der_def)[5] |
|
694 apply (metis append_Cons) |
|
695 using RL_rnullable apply blast |
|
696 apply (metis append_eq_Cons_conv) |
|
697 apply (metis append_Cons) |
|
698 apply (metis RL_rnullable append_eq_Cons_conv) |
|
699 apply simp |
|
700 apply(simp) |
|
701 done |
|
702 |
|
703 lemma RL_rsimp_RSEQ: |
|
704 shows "RL (rsimp_SEQ r1 r2) = (RL r1 ;; RL r2)" |
|
705 apply(induct r1 r2 rule: rsimp_SEQ.induct) |
|
706 apply(simp_all) |
|
707 done |
|
708 |
|
709 lemma RL_rsimp_RALTS: |
|
710 shows "RL (rsimp_ALTs rs) = (\<Union> (set (map RL rs)))" |
|
711 apply(induct rs rule: rsimp_ALTs.induct) |
|
712 apply(simp_all) |
|
713 done |
|
714 |
|
715 lemma RL_rsimp_rdistinct: |
|
716 shows "(\<Union> (set (map RL (rdistinct rs {})))) = (\<Union> (set (map RL rs)))" |
|
717 apply(auto) |
|
718 apply (metis Diff_iff rdistinct_set_equality1) |
|
719 by (metis Diff_empty rdistinct_set_equality1) |
|
720 |
|
721 lemma RL_rsimp_rflts: |
|
722 shows "(\<Union> (set (map RL (rflts rs)))) = (\<Union> (set (map RL rs)))" |
|
723 apply(induct rs rule: rflts.induct) |
|
724 apply(simp_all) |
|
725 done |
|
726 |
|
727 lemma RL_rsimp: |
|
728 shows "RL r = RL (rsimp r)" |
|
729 apply(induct r rule: rsimp.induct) |
|
730 apply(auto simp add: Sequ_def RL_rsimp_RSEQ) |
|
731 using RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts apply auto[1] |
|
732 by (smt (verit, del_insts) RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts UN_E image_iff list.set_map) |
|
733 |
|
734 |
|
735 lemma qqq1: |
|
736 shows "RZERO \<notin> set (rflts (map rsimp rs))" |
|
737 by (metis ex_map_conv flts3 good.simps(1) good1) |
|
738 |
|
739 |
|
740 fun nonazero :: "rrexp \<Rightarrow> bool" |
|
741 where |
|
742 "nonazero RZERO = False" |
|
743 | "nonazero r = True" |
|
744 |
|
745 |
|
746 lemma flts_single1: |
|
747 assumes "nonalt r" "nonazero r" |
|
748 shows "rflts [r] = [r]" |
|
749 using assms |
|
750 apply(induct r) |
|
751 apply(auto) |
|
752 done |
|
753 |
|
754 lemma nonalt0_flts_keeps: |
|
755 shows "(a \<noteq> RZERO) \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow> rflts (a # xs) = a # rflts xs" |
|
756 apply(case_tac a) |
|
757 apply simp+ |
|
758 done |
|
759 |
|
760 |
|
761 lemma nonalt0_fltseq: |
|
762 shows "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r \<Longrightarrow> rflts rs = rs" |
|
763 apply(induct rs) |
|
764 apply simp |
|
765 apply(case_tac "a = RZERO") |
|
766 apply fastforce |
|
767 apply(case_tac "\<exists>rs1. a = RALTS rs1") |
|
768 apply(erule exE) |
|
769 apply simp+ |
|
770 using nonalt0_flts_keeps by presburger |
|
771 |
|
772 |
|
773 |
|
774 |
|
775 lemma goodalts_nonalt: |
|
776 shows "good (RALTS rs) \<Longrightarrow> rflts rs = rs" |
|
777 apply(induct x == "RALTS rs" arbitrary: rs rule: good.induct) |
|
778 apply simp |
|
779 |
|
780 using good.simps(5) apply blast |
|
781 apply simp |
|
782 apply(case_tac "r1 = RZERO") |
|
783 using good.simps(1) apply force |
|
784 apply(case_tac "r2 = RZERO") |
|
785 using good.simps(1) apply force |
|
786 apply(subgoal_tac "rflts (r1 # r2 # rs) = r1 # r2 # rflts rs") |
|
787 prefer 2 |
|
788 apply (metis nonalt.simps(1) rflts_def_idiot) |
|
789 apply(subgoal_tac "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r") |
|
790 apply(subgoal_tac "rflts rs = rs") |
|
791 apply presburger |
|
792 using nonalt0_fltseq apply presburger |
|
793 using good.simps(1) by blast |
|
794 |
|
795 |
|
796 |
|
797 |
|
798 |
|
799 lemma test: |
|
800 assumes "good r" |
|
801 shows "rsimp r = r" |
|
802 |
|
803 using assms |
|
804 apply(induct rule: good.induct) |
|
805 apply simp |
|
806 apply simp |
|
807 apply simp |
|
808 apply simp |
|
809 apply simp |
|
810 apply(subgoal_tac "distinct (r1 # r2 # rs)") |
|
811 prefer 2 |
|
812 using good.simps(6) apply blast |
|
813 apply(subgoal_tac "rflts (r1 # r2 # rs ) = r1 # r2 # rs") |
|
814 prefer 2 |
|
815 using goodalts_nonalt apply blast |
|
816 |
|
817 apply(subgoal_tac "r1 \<noteq> r2") |
|
818 prefer 2 |
|
819 apply (meson distinct_length_2_or_more) |
|
820 apply(subgoal_tac "r1 \<notin> set rs") |
|
821 apply(subgoal_tac "r2 \<notin> set rs") |
|
822 apply(subgoal_tac "\<forall>r \<in> set rs. rsimp r = r") |
|
823 apply(subgoal_tac "map rsimp rs = rs") |
|
824 apply simp |
|
825 apply(subgoal_tac "\<forall>r \<in> {r1, r2}. r \<notin> set rs") |
|
826 apply (metis distinct_not_exist rdistinct_on_distinct) |
|
827 |
|
828 apply blast |
|
829 apply (meson map_idI) |
|
830 apply (metis good.simps(6) insert_iff list.simps(15)) |
|
831 |
|
832 apply (meson distinct.simps(2)) |
|
833 apply (simp add: distinct_length_2_or_more) |
|
834 apply simp+ |
|
835 done |
|
836 |
|
837 |
|
838 |
|
839 lemma rsimp_idem: |
|
840 shows "rsimp (rsimp r) = rsimp r" |
|
841 using test good1 |
|
842 by force |
|
843 |
|
844 corollary rsimp_inner_idem4: |
|
845 shows "rsimp r = RALTS rs \<Longrightarrow> rflts rs = rs" |
|
846 by (metis good1 goodalts_nonalt rrexp.simps(12)) |
|
847 |
|
848 |
|
849 lemma head_one_more_simp: |
|
850 shows "map rsimp (r # rs) = map rsimp (( rsimp r) # rs)" |
|
851 by (simp add: rsimp_idem) |
|
852 |
|
853 |
|
854 lemma der_simp_nullability: |
|
855 shows "rnullable r = rnullable (rsimp r)" |
|
856 using RL_rnullable RL_rsimp by auto |
|
857 |
|
858 |
|
859 lemma no_alt_short_list_after_simp: |
|
860 shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs" |
|
861 by (metis bbbbs good1 k0a rrexp.simps(12)) |
|
862 |
|
863 |
|
864 lemma no_further_dB_after_simp: |
|
865 shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs" |
|
866 apply(subgoal_tac "good (RALTS rs)") |
|
867 apply(subgoal_tac "distinct rs") |
|
868 using rdistinct_on_distinct apply blast |
|
869 apply (metis distinct.simps(1) distinct.simps(2) empty_iff good.simps(6) list.exhaust set_empty2) |
|
870 using good1 by fastforce |
|
871 |
|
872 |
|
873 lemma idem_after_simp1: |
|
874 shows "rsimp_ALTs (rdistinct (rflts [rsimp aa]) {}) = rsimp aa" |
|
875 apply(case_tac "rsimp aa") |
|
876 apply simp+ |
|
877 apply (metis no_alt_short_list_after_simp no_further_dB_after_simp) |
|
878 apply(simp) |
|
879 apply(simp) |
|
880 done |
|
881 |
|
882 lemma identity_wwo0: |
|
883 shows "rsimp (rsimp_ALTs (RZERO # rs)) = rsimp (rsimp_ALTs rs)" |
|
884 apply (metis idem_after_simp1 list.exhaust list.simps(8) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3)) |
|
885 done |
|
886 |
|
887 lemma distinct_removes_last: |
|
888 shows "\<lbrakk>a \<in> set as\<rbrakk> |
|
889 \<Longrightarrow> rdistinct as rset = rdistinct (as @ [a]) rset" |
|
890 and "rdistinct (ab # as @ [ab]) rset1 = rdistinct (ab # as) rset1" |
|
891 apply(induct as arbitrary: rset ab rset1 a) |
|
892 apply simp |
|
893 apply simp |
|
894 apply(case_tac "aa \<in> rset") |
|
895 apply(case_tac "a = aa") |
|
896 apply (metis append_Cons) |
|
897 apply simp |
|
898 apply(case_tac "a \<in> set as") |
|
899 apply (metis append_Cons rdistinct.simps(2) set_ConsD) |
|
900 apply(case_tac "a = aa") |
|
901 prefer 2 |
|
902 apply simp |
|
903 apply (metis append_Cons) |
|
904 apply(case_tac "ab \<in> rset1") |
|
905 prefer 2 |
|
906 apply(subgoal_tac "rdistinct (ab # (a # as) @ [ab]) rset1 = |
|
907 ab # (rdistinct ((a # as) @ [ab]) (insert ab rset1))") |
|
908 prefer 2 |
|
909 apply force |
|
910 apply(simp only:) |
|
911 apply(subgoal_tac "rdistinct (ab # a # as) rset1 = ab # (rdistinct (a # as) (insert ab rset1))") |
|
912 apply(simp only:) |
|
913 apply(subgoal_tac "rdistinct ((a # as) @ [ab]) (insert ab rset1) = rdistinct (a # as) (insert ab rset1)") |
|
914 apply blast |
|
915 apply(case_tac "a \<in> insert ab rset1") |
|
916 apply simp |
|
917 apply (metis insertI1) |
|
918 apply simp |
|
919 apply (meson insertI1) |
|
920 apply simp |
|
921 apply(subgoal_tac "rdistinct ((a # as) @ [ab]) rset1 = rdistinct (a # as) rset1") |
|
922 apply simp |
|
923 by (metis append_Cons insert_iff insert_is_Un rdistinct.simps(2)) |
|
924 |
|
925 |
|
926 lemma distinct_removes_middle: |
|
927 shows "\<lbrakk>a \<in> set as\<rbrakk> |
|
928 \<Longrightarrow> rdistinct (as @ as2) rset = rdistinct (as @ [a] @ as2) rset" |
|
929 and "rdistinct (ab # as @ [ab] @ as3) rset1 = rdistinct (ab # as @ as3) rset1" |
|
930 apply(induct as arbitrary: rset rset1 ab as2 as3 a) |
|
931 apply simp |
|
932 apply simp |
|
933 apply(case_tac "a \<in> rset") |
|
934 apply simp |
|
935 apply metis |
|
936 apply simp |
|
937 apply (metis insertI1) |
|
938 apply(case_tac "a = ab") |
|
939 apply simp |
|
940 apply(case_tac "ab \<in> rset") |
|
941 apply simp |
|
942 apply presburger |
|
943 apply (meson insertI1) |
|
944 apply(case_tac "a \<in> rset") |
|
945 apply (metis (no_types, opaque_lifting) Un_insert_left append_Cons insert_iff rdistinct.simps(2) sup_bot_left) |
|
946 apply(case_tac "ab \<in> rset") |
|
947 apply simp |
|
948 apply (meson insert_iff) |
|
949 apply simp |
|
950 by (metis insertI1) |
|
951 |
|
952 |
|
953 lemma distinct_removes_middle3: |
|
954 shows "\<lbrakk>a \<in> set as\<rbrakk> |
|
955 \<Longrightarrow> rdistinct (as @ a #as2) rset = rdistinct (as @ as2) rset" |
|
956 using distinct_removes_middle(1) by fastforce |
|
957 |
|
958 |
|
959 lemma distinct_removes_list: |
|
960 shows "\<lbrakk> \<forall>r \<in> set rs. r \<in> set as\<rbrakk> \<Longrightarrow> rdistinct (as @ rs) {} = rdistinct as {}" |
|
961 apply(induct rs) |
|
962 apply simp+ |
|
963 apply(subgoal_tac "rdistinct (as @ a # rs) {} = rdistinct (as @ rs) {}") |
|
964 prefer 2 |
|
965 apply (metis append_Cons append_Nil distinct_removes_middle(1)) |
|
966 by presburger |
|
967 |
|
968 |
|
969 lemma spawn_simp_rsimpalts: |
|
970 shows "rsimp (rsimp_ALTs rs) = rsimp (rsimp_ALTs (map rsimp rs))" |
|
971 apply(cases rs) |
|
972 apply simp |
|
973 apply(case_tac list) |
|
974 apply simp |
|
975 apply(subst rsimp_idem[symmetric]) |
|
976 apply simp |
|
977 apply(subgoal_tac "rsimp_ALTs rs = RALTS rs") |
|
978 apply(simp only:) |
|
979 apply(subgoal_tac "rsimp_ALTs (map rsimp rs) = RALTS (map rsimp rs)") |
|
980 apply(simp only:) |
|
981 prefer 2 |
|
982 apply simp |
|
983 prefer 2 |
|
984 using rsimp_ALTs.simps(3) apply presburger |
|
985 apply auto |
|
986 apply(subst rsimp_idem)+ |
|
987 by (metis comp_apply rsimp_idem) |
|
988 |
|
989 |
|
990 lemma simp_singlealt_flatten: |
|
991 shows "rsimp (RALTS [RALTS rsa]) = rsimp (RALTS (rsa @ []))" |
|
992 apply(induct rsa) |
|
993 apply simp |
|
994 apply simp |
|
995 by (metis idem_after_simp1 list.simps(9) rsimp.simps(2)) |
|
996 |
|
997 |
|
998 lemma good1_rsimpalts: |
|
999 shows "rsimp r = RALTS rs \<Longrightarrow> rsimp_ALTs rs = RALTS rs" |
|
1000 by (metis no_alt_short_list_after_simp) |
|
1001 |
|
1002 |
|
1003 |
|
1004 |
|
1005 lemma good1_flatten: |
|
1006 shows "\<lbrakk> rsimp r = (RALTS rs1)\<rbrakk> |
|
1007 \<Longrightarrow> rflts (rsimp_ALTs rs1 # map rsimp rsb) = rflts (rs1 @ map rsimp rsb)" |
|
1008 apply(subst good1_rsimpalts) |
|
1009 apply simp+ |
|
1010 apply(subgoal_tac "rflts (rs1 @ map rsimp rsb) = rs1 @ rflts (map rsimp rsb)") |
|
1011 apply simp |
|
1012 using flts_append rsimp_inner_idem4 by presburger |
|
1013 |
|
1014 |
|
1015 lemma flatten_rsimpalts: |
|
1016 shows "rflts (rsimp_ALTs (rdistinct (rflts (map rsimp rsa)) {}) # map rsimp rsb) = |
|
1017 rflts ( (rdistinct (rflts (map rsimp rsa)) {}) @ map rsimp rsb)" |
|
1018 apply(case_tac "map rsimp rsa") |
|
1019 apply simp |
|
1020 apply(case_tac "list") |
|
1021 apply simp |
|
1022 apply(case_tac a) |
|
1023 apply simp+ |
|
1024 apply(rename_tac rs1) |
|
1025 apply (metis good1_flatten map_eq_Cons_D no_further_dB_after_simp) |
|
1026 |
|
1027 apply simp |
|
1028 |
|
1029 apply(subgoal_tac "\<forall>r \<in> set( rflts (map rsimp rsa)). good r") |
|
1030 apply(case_tac "rdistinct (rflts (map rsimp rsa)) {}") |
|
1031 apply simp |
|
1032 apply auto[1] |
|
1033 apply simp |
|
1034 apply(simp) |
|
1035 apply(case_tac "lista") |
|
1036 apply simp_all |
|
1037 |
|
1038 apply (metis append_Cons append_Nil good1_flatten rflts.simps(2) rsimp.simps(2) rsimp_ALTs.elims) |
|
1039 by (metis (no_types, opaque_lifting) append_Cons append_Nil good1_flatten rflts.simps(2) rsimp.simps(2) rsimp_ALTs.elims) |
|
1040 |
|
1041 lemma last_elem_out: |
|
1042 shows "\<lbrakk>x \<notin> set xs; x \<notin> rset \<rbrakk> \<Longrightarrow> rdistinct (xs @ [x]) rset = rdistinct xs rset @ [x]" |
|
1043 apply(induct xs arbitrary: rset) |
|
1044 apply simp+ |
|
1045 done |
|
1046 |
|
1047 |
|
1048 |
|
1049 |
|
1050 lemma rdistinct_concat_general: |
|
1051 shows "rdistinct (rs1 @ rs2) {} = (rdistinct rs1 {}) @ (rdistinct rs2 (set rs1))" |
|
1052 apply(induct rs1 arbitrary: rs2 rule: rev_induct) |
|
1053 apply simp |
|
1054 apply(drule_tac x = "x # rs2" in meta_spec) |
|
1055 apply simp |
|
1056 apply(case_tac "x \<in> set xs") |
|
1057 apply simp |
|
1058 |
|
1059 apply (simp add: distinct_removes_middle3 insert_absorb) |
|
1060 apply simp |
|
1061 by (simp add: last_elem_out) |
|
1062 |
|
1063 |
|
1064 |
|
1065 |
|
1066 lemma distinct_once_enough: |
|
1067 shows "rdistinct (rs @ rsa) {} = rdistinct (rdistinct rs {} @ rsa) {}" |
|
1068 apply(subgoal_tac "distinct (rdistinct rs {})") |
|
1069 apply(subgoal_tac |
|
1070 " rdistinct (rdistinct rs {} @ rsa) {} = rdistinct rs {} @ (rdistinct rsa (set rs))") |
|
1071 apply(simp only:) |
|
1072 using rdistinct_concat_general apply blast |
|
1073 apply (simp add: distinct_rdistinct_append rdistinct_set_equality1) |
|
1074 by (simp add: rdistinct_does_the_job) |
|
1075 |
|
1076 |
|
1077 lemma simp_flatten: |
|
1078 shows "rsimp (RALTS ((RALTS rsa) # rsb)) = rsimp (RALTS (rsa @ rsb))" |
|
1079 apply simp |
|
1080 apply(subst flatten_rsimpalts) |
|
1081 apply(simp add: flts_append) |
|
1082 by (metis Diff_empty distinct_once_enough flts_append nonalt0_fltseq nonalt_flts_rd qqq1 rdistinct_set_equality1) |
|
1083 |
|
1084 lemma basic_rsimp_SEQ_property1: |
|
1085 shows "rsimp_SEQ RONE r = r" |
|
1086 by (simp add: idiot) |
|
1087 |
|
1088 |
|
1089 |
|
1090 lemma basic_rsimp_SEQ_property3: |
|
1091 shows "rsimp_SEQ r RZERO = RZERO" |
|
1092 using rsimp_SEQ.elims by blast |
|
1093 |
|
1094 |
|
1095 |
|
1096 fun vsuf :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list" where |
|
1097 "vsuf [] _ = []" |
|
1098 |"vsuf (c#cs) r1 = (if (rnullable r1) then (vsuf cs (rder c r1)) @ [c # cs] |
|
1099 else (vsuf cs (rder c r1)) |
|
1100 ) " |
|
1101 |
|
1102 |
|
1103 |
|
1104 |
|
1105 |
|
1106 |
|
1107 fun star_update :: "char \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list" where |
|
1108 "star_update c r [] = []" |
|
1109 |"star_update c r (s # Ss) = (if (rnullable (rders r s)) |
|
1110 then (s@[c]) # [c] # (star_update c r Ss) |
|
1111 else (s@[c]) # (star_update c r Ss) )" |
|
1112 |
|
1113 |
|
1114 fun star_updates :: "char list \<Rightarrow> rrexp \<Rightarrow> char list list \<Rightarrow> char list list" |
|
1115 where |
|
1116 "star_updates [] r Ss = Ss" |
|
1117 | "star_updates (c # cs) r Ss = star_updates cs r (star_update c r Ss)" |
|
1118 |
|
1119 lemma stupdates_append: shows |
|
1120 "star_updates (s @ [c]) r Ss = star_update c r (star_updates s r Ss)" |
|
1121 apply(induct s arbitrary: Ss) |
|
1122 apply simp |
|
1123 apply simp |
|
1124 done |
|
1125 |
|
1126 lemma flts_removes0: |
|
1127 shows " rflts (rs @ [RZERO]) = |
|
1128 rflts rs" |
|
1129 apply(induct rs) |
|
1130 apply simp |
|
1131 by (metis append_Cons rflts.simps(2) rflts.simps(3) rflts_def_idiot) |
|
1132 |
|
1133 |
|
1134 lemma rflts_spills_last: |
|
1135 shows "rflts (rs1 @ [RALTS rs]) = rflts rs1 @ rs" |
|
1136 apply (induct rs1 rule: rflts.induct) |
|
1137 apply(auto) |
|
1138 done |
|
1139 |
|
1140 lemma flts_keeps1: |
|
1141 shows "rflts (rs @ [RONE]) = rflts rs @ [RONE]" |
|
1142 apply (induct rs rule: rflts.induct) |
|
1143 apply(auto) |
|
1144 done |
|
1145 |
|
1146 lemma flts_keeps_others: |
|
1147 shows "\<lbrakk>a \<noteq> RZERO; \<nexists>rs1. a = RALTS rs1\<rbrakk> \<Longrightarrow>rflts (rs @ [a]) = rflts rs @ [a]" |
|
1148 apply(induct rs rule: rflts.induct) |
|
1149 apply(auto) |
|
1150 by (meson k0b nonalt.elims(3)) |
|
1151 |
|
1152 lemma spilled_alts_contained: |
|
1153 shows "\<lbrakk>a = RALTS rs ; a \<in> set rs1\<rbrakk> \<Longrightarrow> \<forall>r \<in> set rs. r \<in> set (rflts rs1)" |
|
1154 apply(induct rs1) |
|
1155 apply simp |
|
1156 apply(case_tac "a = aa") |
|
1157 apply simp |
|
1158 apply(subgoal_tac " a \<in> set rs1") |
|
1159 prefer 2 |
|
1160 apply (meson set_ConsD) |
|
1161 apply(case_tac aa) |
|
1162 using rflts.simps(2) apply presburger |
|
1163 apply fastforce |
|
1164 apply fastforce |
|
1165 apply fastforce |
|
1166 apply fastforce |
|
1167 apply fastforce |
|
1168 by simp |
|
1169 |
|
1170 |
|
1171 lemma distinct_removes_duplicate_flts: |
|
1172 shows " a \<in> set rsa |
|
1173 \<Longrightarrow> rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} = |
|
1174 rdistinct (rflts (map rsimp rsa)) {}" |
|
1175 apply(subgoal_tac "rsimp a \<in> set (map rsimp rsa)") |
|
1176 prefer 2 |
|
1177 apply simp |
|
1178 apply(induct "rsimp a") |
|
1179 apply simp |
|
1180 using flts_removes0 apply presburger |
|
1181 apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} = |
|
1182 rdistinct (rflts (map rsimp rsa @ [RONE])) {}") |
|
1183 apply (simp only:) |
|
1184 apply(subst flts_keeps1) |
|
1185 apply (metis distinct_removes_last(1) flts_append in_set_conv_decomp rflts.simps(4)) |
|
1186 apply presburger |
|
1187 apply(subgoal_tac " rdistinct (rflts (map rsimp rsa @ [rsimp a])) {} = |
|
1188 rdistinct ((rflts (map rsimp rsa)) @ [RCHAR x]) {}") |
|
1189 apply (simp only:) |
|
1190 prefer 2 |
|
1191 apply (metis flts_append rflts.simps(1) rflts.simps(5)) |
|
1192 apply (metis distinct_removes_last(1) rflts_def_idiot2 rrexp.distinct(25) rrexp.distinct(3)) |
|
1193 apply (metis distinct_removes_last(1) flts_append rflts.simps(1) rflts.simps(6) rflts_def_idiot2 rrexp.distinct(31) rrexp.distinct(5)) |
|
1194 apply (metis distinct_removes_list rflts_spills_last spilled_alts_contained) |
|
1195 apply (metis distinct_removes_last(1) flts_append good.simps(1) good.simps(44) rflts.simps(1) rflts.simps(7) rflts_def_idiot2 rrexp.distinct(37)) |
|
1196 by (metis distinct_removes_last(1) flts_append rflts.simps(1) rflts.simps(8) rflts_def_idiot2 rrexp.distinct(11) rrexp.distinct(39)) |
|
1197 |
|
1198 (*some basic facts about rsimp*) |
|
1199 |
|
1200 unused_thms |
|
1201 |
|
1202 |
|
1203 end |