thys/Paper/Paper.thy
changeset 123 1bee7006b92b
parent 122 7c6c907660d8
child 124 5378ddbd1381
equal deleted inserted replaced
122:7c6c907660d8 123:1bee7006b92b
   539   \end{lemma}
   539   \end{lemma}
   540 
   540 
   541   \begin{proof}
   541   \begin{proof}
   542   Both properties are by routine inductions: the first one, for example,
   542   Both properties are by routine inductions: the first one, for example,
   543   by an induction over the definition of @{term derivatives}; the second by
   543   by an induction over the definition of @{term derivatives}; the second by
   544   induction on @{term r}. There are no interesting cases.
   544   induction on @{term r}. There are no interesting cases.\qed
   545   \end{proof}
   545   \end{proof}
   546 
   546 
   547   Having defined the @{const mkeps} and @{text inj} function we can extend
   547   Having defined the @{const mkeps} and @{text inj} function we can extend
   548   \Brz's matcher so that a [lexical] value is constructed (assuming the
   548   \Brz's matcher so that a [lexical] value is constructed (assuming the
   549   regular expression matches the string). The clauses of the lexer are
   549   regular expression matches the string). The clauses of the lexer are
   639   @{thm[mode=IfThen] PMatch_determ(1)[of _ _ "v\<^sub>1" "v\<^sub>2"]}
   639   @{thm[mode=IfThen] PMatch_determ(1)[of _ _ "v\<^sub>1" "v\<^sub>2"]}
   640   \end{theorem}
   640   \end{theorem}
   641 
   641 
   642   \begin{proof}
   642   \begin{proof}
   643   By induction on the definition of @{term "s \<in> r \<rightarrow> v\<^sub>1"} and a case
   643   By induction on the definition of @{term "s \<in> r \<rightarrow> v\<^sub>1"} and a case
   644   analysis of @{term "s \<in> r \<rightarrow> v\<^sub>2"}.
   644   analysis of @{term "s \<in> r \<rightarrow> v\<^sub>2"}.\qed
   645   \end{proof}
   645   \end{proof}
   646 
   646 
   647   \begin{lemma}
   647   \begin{lemma}
   648   @{thm[mode=IfThen] PMatch_mkeps}
   648   @{thm[mode=IfThen] PMatch_mkeps}
   649   \end{lemma}
   649   \end{lemma}
   650 
   650 
   651   
   651   \begin{proof}
       
   652   By routine induction on @{term r}.\qed 
       
   653   \end{proof}
   652 
   654 
   653   \begin{lemma}
   655   \begin{lemma}
   654   @{thm[mode=IfThen] PMatch2_roy_version}
   656   @{thm[mode=IfThen] PMatch2_roy_version}
   655   \end{lemma}
   657   \end{lemma}
   656 
   658