thys2/Paper/Paper.thy
changeset 404 1500f96707b0
parent 402 1612f2a77bf6
child 405 3cfea5bb5e23
equal deleted inserted replaced
403:6291181fad07 404:1500f96707b0
     5    "../Simplifying" 
     5    "../Simplifying" 
     6    "../Positions"
     6    "../Positions"
     7    "../SizeBound4" 
     7    "../SizeBound4" 
     8    "HOL-Library.LaTeXsugar"
     8    "HOL-Library.LaTeXsugar"
     9 begin
     9 begin
       
    10 
       
    11 declare [[show_question_marks = false]]
       
    12 
       
    13 notation (latex output)
       
    14   If  ("(\<^latex>\<open>\\textrm{\<close>if\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textrm{\<close>then\<^latex>\<open>}\<close> (_)/ \<^latex>\<open>\\textrm{\<close>else\<^latex>\<open>}\<close> (_))" 10) and
       
    15   Cons ("_\<^latex>\<open>\\mbox{$\\,$}\<close>::\<^latex>\<open>\\mbox{$\\,$}\<close>_" [75,73] 73) 
       
    16 
       
    17 
       
    18 abbreviation 
       
    19   "der_syn r c \<equiv> der c r"
       
    20 
       
    21 notation (latex output)
       
    22   der_syn ("_\\_" [79, 1000] 76) and
       
    23 
       
    24   ZERO ("\<^bold>0" 81) and 
       
    25   ONE ("\<^bold>1" 81) and 
       
    26   CH ("_" [1000] 80) and
       
    27   ALT ("_ + _" [77,77] 78) and
       
    28   SEQ ("_ \<cdot> _" [77,77] 78) and
       
    29   STAR ("_\<^sup>\<star>" [79] 78) and
       
    30 
       
    31   val.Void ("Empty" 78) and
       
    32   val.Char ("Char _" [1000] 78) and
       
    33   val.Left ("Left _" [79] 78) and
       
    34   val.Right ("Right _" [1000] 78) and
       
    35   val.Seq ("Seq _ _" [79,79] 78) and
       
    36   val.Stars ("Stars _" [79] 78) and
       
    37 
       
    38   Posix ("'(_, _') \<rightarrow> _" [63,75,75] 75) and
       
    39 
       
    40   flat ("|_|" [75] 74) and
       
    41   flats ("|_|" [72] 74) and
       
    42   injval ("inj _ _ _" [79,77,79] 76) and 
       
    43   mkeps ("mkeps _" [79] 76) and 
       
    44   length ("len _" [73] 73) and
       
    45   set ("_" [73] 73) and
       
    46 
       
    47   AZERO ("ZERO" 81) and 
       
    48   AONE ("ONE _" [79] 81) and 
       
    49   ACHAR ("CHAR _ _" [79, 79] 80) and
       
    50   AALTs ("ALTs _ _" [77,77] 78) and
       
    51   ASEQ ("SEQ _ _ _" [79, 77,77] 78) and
       
    52   ASTAR ("STAR _ _" [79, 79] 78) and
       
    53 
       
    54   code ("code _" [79] 74) and
       
    55   intern ("_\<^latex>\<open>\\mbox{$^\\uparrow$}\<close>" [900] 80) and
       
    56   erase ("_\<^latex>\<open>\\mbox{$^\\downarrow$}\<close>" [1000] 74) and
       
    57   bnullable ("nullable\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80) and
       
    58   bmkeps ("mkeps\<^latex>\<open>\\mbox{$_b$}\<close> _" [1000] 80)
       
    59 
       
    60 
       
    61 lemma better_retrieve:
       
    62    shows "rs \<noteq> Nil ==> retrieve (AALTs bs (r#rs)) (Left v) = bs @ retrieve r v"
       
    63    and   "rs \<noteq> Nil ==> retrieve (AALTs bs (r#rs)) (Right v) = bs @ retrieve (AALTs [] rs) v"
       
    64   apply (metis list.exhaust retrieve.simps(4))
       
    65   by (metis list.exhaust retrieve.simps(5))
       
    66 
    10 (*>*)
    67 (*>*)
       
    68 
       
    69 section {* Introduction *}
       
    70 
       
    71 text {*
       
    72 
       
    73 In the last fifteen or so years, Brzozowski's derivatives of regular
       
    74 expressions have sparked quite a bit of interest in the functional
       
    75 programming and theorem prover communities.  The beauty of
       
    76 Brzozowski's derivatives \cite{Brzozowski1964} is that they are neatly
       
    77 expressible in any functional language, and easily definable and
       
    78 reasoned about in theorem provers---the definitions just consist of
       
    79 inductive datatypes and simple recursive functions. A mechanised
       
    80 correctness proof of Brzozowski's matcher in for example HOL4 has been
       
    81 mentioned by Owens and Slind~\cite{Owens2008}. Another one in
       
    82 Isabelle/HOL is part of the work by Krauss and Nipkow
       
    83 \cite{Krauss2011}.  And another one in Coq is given by Coquand and
       
    84 Siles \cite{Coquand2012}.
       
    85 
       
    86 
       
    87 The notion of derivatives
       
    88 \cite{Brzozowski1964}, written @{term "der c r"}, of a regular
       
    89 expression give a simple solution to the problem of matching a string
       
    90 @{term s} with a regular expression @{term r}: if the derivative of
       
    91 @{term r} w.r.t.\ (in succession) all the characters of the string
       
    92 matches the empty string, then @{term r} matches @{term s} (and {\em
       
    93 vice versa}). The derivative has the property (which may almost be
       
    94 regarded as its specification) that, for every string @{term s} and
       
    95 regular expression @{term r} and character @{term c}, one has @{term
       
    96 "cs \<in> L(r)"} if and only if \mbox{@{term "s \<in> L(der c r)"}}.
       
    97 
       
    98 
       
    99 If a regular expression matches a string, then in general there is more
       
   100 than one way of how the string is matched. There are two commonly used
       
   101 disambiguation strategies to generate a unique answer: one is called
       
   102 GREEDY matching \cite{Frisch2004} and the other is POSIX
       
   103 matching~\cite{POSIX,Kuklewicz,OkuiSuzuki2010,Sulzmann2014,Vansummeren2006}.
       
   104 For example consider the string @{term xy} and the regular expression
       
   105 \mbox{@{term "STAR (ALT (ALT x y) xy)"}}. Either the string can be
       
   106 matched in two `iterations' by the single letter-regular expressions
       
   107 @{term x} and @{term y}, or directly in one iteration by @{term xy}. The
       
   108 first case corresponds to GREEDY matching, which first matches with the
       
   109 left-most symbol and only matches the next symbol in case of a mismatch
       
   110 (this is greedy in the sense of preferring instant gratification to
       
   111 delayed repletion). The second case is POSIX matching, which prefers the
       
   112 longest match.
       
   113 
       
   114 
       
   115 \begin{center}
       
   116 \begin{tabular}{cc}
       
   117   \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
       
   118   @{thm (lhs) der.simps(1)} & $\dn$ & @{thm (rhs) der.simps(1)}\\
       
   119   @{thm (lhs) der.simps(2)} & $\dn$ & @{thm (rhs) der.simps(2)}\\
       
   120   @{thm (lhs) der.simps(3)} & $\dn$ & @{thm (rhs) der.simps(3)}\\
       
   121   @{thm (lhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) der.simps(4)[of c "r\<^sub>1" "r\<^sub>2"]}\\
       
   122   @{thm (lhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{text "if"} @{term "nullable(r\<^sub>1)"}\\
       
   123   & & @{text "then"} @{term "ALT (SEQ (der c r\<^sub>1) r\<^sub>2) (der c r\<^sub>2)"}\\
       
   124   & & @{text "else"} @{term "SEQ (der c r\<^sub>1) r\<^sub>2"}\\
       
   125   % & & @{thm (rhs) der.simps(5)[of c "r\<^sub>1" "r\<^sub>2"]}\\
       
   126   @{thm (lhs) der.simps(6)} & $\dn$ & @{thm (rhs) der.simps(6)}
       
   127   \end{tabular}
       
   128   &
       
   129   \begin{tabular}{l@ {\hspace{1mm}}c@ {\hspace{1mm}}l}
       
   130   @{thm (lhs) nullable.simps(1)} & $\dn$ & @{thm (rhs) nullable.simps(1)}\\
       
   131   @{thm (lhs) nullable.simps(2)} & $\dn$ & @{thm (rhs) nullable.simps(2)}\\
       
   132   @{thm (lhs) nullable.simps(3)} & $\dn$ & @{thm (rhs) nullable.simps(3)}\\
       
   133   @{thm (lhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(4)[of "r\<^sub>1" "r\<^sub>2"]}\\
       
   134   @{thm (lhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) nullable.simps(5)[of "r\<^sub>1" "r\<^sub>2"]}\\
       
   135   @{thm (lhs) nullable.simps(6)} & $\dn$ & @{thm (rhs) nullable.simps(6)}\medskip\\
       
   136   \end{tabular}  
       
   137 \end{tabular}  
       
   138 \end{center}
       
   139 
       
   140 
       
   141 \begin{figure}[t]
       
   142 \begin{center}
       
   143 \begin{tikzpicture}[scale=2,node distance=1.3cm,
       
   144                     every node/.style={minimum size=6mm}]
       
   145 \node (r1)  {@{term "r\<^sub>1"}};
       
   146 \node (r2) [right=of r1]{@{term "r\<^sub>2"}};
       
   147 \draw[->,line width=1mm](r1)--(r2) node[above,midway] {@{term "der a DUMMY"}};
       
   148 \node (r3) [right=of r2]{@{term "r\<^sub>3"}};
       
   149 \draw[->,line width=1mm](r2)--(r3) node[above,midway] {@{term "der b DUMMY"}};
       
   150 \node (r4) [right=of r3]{@{term "r\<^sub>4"}};
       
   151 \draw[->,line width=1mm](r3)--(r4) node[above,midway] {@{term "der c DUMMY"}};
       
   152 \draw (r4) node[anchor=west] {\;\raisebox{3mm}{@{term nullable}}};
       
   153 \node (v4) [below=of r4]{@{term "v\<^sub>4"}};
       
   154 \draw[->,line width=1mm](r4) -- (v4);
       
   155 \node (v3) [left=of v4] {@{term "v\<^sub>3"}};
       
   156 \draw[->,line width=1mm](v4)--(v3) node[below,midway] {\<open>inj r\<^sub>3 c\<close>};
       
   157 \node (v2) [left=of v3]{@{term "v\<^sub>2"}};
       
   158 \draw[->,line width=1mm](v3)--(v2) node[below,midway] {\<open>inj r\<^sub>2 b\<close>};
       
   159 \node (v1) [left=of v2] {@{term "v\<^sub>1"}};
       
   160 \draw[->,line width=1mm](v2)--(v1) node[below,midway] {\<open>inj r\<^sub>1 a\<close>};
       
   161 \draw (r4) node[anchor=north west] {\;\raisebox{-8mm}{@{term "mkeps"}}};
       
   162 \end{tikzpicture}
       
   163 \end{center}
       
   164 \mbox{}\\[-13mm]
       
   165 
       
   166 \caption{The two phases of the algorithm by Sulzmann \& Lu \cite{Sulzmann2014},
       
   167 matching the string @{term "[a,b,c]"}. The first phase (the arrows from 
       
   168 left to right) is \Brz's matcher building successive derivatives. If the 
       
   169 last regular expression is @{term nullable}, then the functions of the 
       
   170 second phase are called (the top-down and right-to-left arrows): first 
       
   171 @{term mkeps} calculates a value @{term "v\<^sub>4"} witnessing
       
   172 how the empty string has been recognised by @{term "r\<^sub>4"}. After
       
   173 that the function @{term inj} ``injects back'' the characters of the string into
       
   174 the values.
       
   175 \label{Sulz}}
       
   176 \end{figure} 
       
   177 
       
   178 
       
   179 *}
       
   180 
       
   181 section {* Background *}
       
   182 
       
   183 text {*
       
   184   Sulzmann-Lu algorithm with inj. State that POSIX rules.
       
   185   metion slg is correct.
       
   186 
       
   187 
       
   188   \begin{figure}[t]
       
   189   \begin{center}
       
   190   \begin{tabular}{c}
       
   191   @{thm[mode=Axiom] Posix.intros(1)}\<open>P\<close>@{term "ONE"} \qquad
       
   192   @{thm[mode=Axiom] Posix.intros(2)}\<open>P\<close>@{term "c"}\medskip\\
       
   193   @{thm[mode=Rule] Posix.intros(3)[of "s" "r\<^sub>1" "v" "r\<^sub>2"]}\<open>P+L\<close>\qquad
       
   194   @{thm[mode=Rule] Posix.intros(4)[of "s" "r\<^sub>2" "v" "r\<^sub>1"]}\<open>P+R\<close>\medskip\\
       
   195   $\mprset{flushleft}
       
   196    \inferrule
       
   197    {@{thm (prem 1) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \qquad
       
   198     @{thm (prem 2) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]} \\\\
       
   199     @{thm (prem 3) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}
       
   200    {@{thm (concl) Posix.intros(5)[of "s\<^sub>1" "r\<^sub>1" "v\<^sub>1" "s\<^sub>2" "r\<^sub>2" "v\<^sub>2"]}}$\<open>PS\<close>\\
       
   201   @{thm[mode=Axiom] Posix.intros(7)}\<open>P[]\<close>\medskip\\
       
   202   $\mprset{flushleft}
       
   203    \inferrule
       
   204    {@{thm (prem 1) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad
       
   205     @{thm (prem 2) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \qquad
       
   206     @{thm (prem 3) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]} \\\\
       
   207     @{thm (prem 4) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}
       
   208    {@{thm (concl) Posix.intros(6)[of "s\<^sub>1" "r" "v" "s\<^sub>2" "vs"]}}$\<open>P\<star>\<close>
       
   209   \end{tabular}
       
   210   \end{center}
       
   211   \caption{Our inductive definition of POSIX values.}\label{POSIXrules}
       
   212   \end{figure}
       
   213 
       
   214 
       
   215   \begin{center}
       
   216   \begin{tabular}{lcl}
       
   217   @{thm (lhs) mkeps.simps(1)} & $\dn$ & @{thm (rhs) mkeps.simps(1)}\\
       
   218   @{thm (lhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(2)[of "r\<^sub>1" "r\<^sub>2"]}\\
       
   219   @{thm (lhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]} & $\dn$ & @{thm (rhs) mkeps.simps(3)[of "r\<^sub>1" "r\<^sub>2"]}\\
       
   220   @{thm (lhs) mkeps.simps(4)} & $\dn$ & @{thm (rhs) mkeps.simps(4)}\\
       
   221   \end{tabular}
       
   222   \end{center}
       
   223 
       
   224   \begin{center}
       
   225   \begin{tabular}{l@ {\hspace{5mm}}lcl}
       
   226   \textit{(1)} & @{thm (lhs) injval.simps(1)} & $\dn$ & @{thm (rhs) injval.simps(1)}\\
       
   227   \textit{(2)} & @{thm (lhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]} & $\dn$ & 
       
   228       @{thm (rhs) injval.simps(2)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1"]}\\
       
   229   \textit{(3)} & @{thm (lhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ & 
       
   230       @{thm (rhs) injval.simps(3)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
       
   231   \textit{(4)} & @{thm (lhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
       
   232       & @{thm (rhs) injval.simps(4)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
       
   233   \textit{(5)} & @{thm (lhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]} & $\dn$ 
       
   234       & @{thm (rhs) injval.simps(5)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>1" "v\<^sub>2"]}\\
       
   235   \textit{(6)} & @{thm (lhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]} & $\dn$ 
       
   236       & @{thm (rhs) injval.simps(6)[of "r\<^sub>1" "r\<^sub>2" "c" "v\<^sub>2"]}\\
       
   237   \textit{(7)} & @{thm (lhs) injval.simps(7)[of "r" "c" "v" "vs"]} & $\dn$ 
       
   238       & @{thm (rhs) injval.simps(7)[of "r" "c" "v" "vs"]}\\
       
   239   \end{tabular}
       
   240   \end{center}
       
   241 
       
   242 *}
       
   243 
       
   244 section {* Bitcoded Regular Expressions and Derivatives *}
       
   245 
       
   246 text {*
       
   247   bitcoded regexes / decoding / bmkeps
       
   248   gets rid of the second phase (only single phase)   
       
   249   correctness
       
   250 
       
   251 
       
   252   \begin{center}
       
   253   \begin{tabular}{lcl}
       
   254   @{thm (lhs) code.simps(1)} & $\dn$ & @{thm (rhs) code.simps(1)}\\
       
   255   @{thm (lhs) code.simps(2)} & $\dn$ & @{thm (rhs) code.simps(2)}\\
       
   256   @{thm (lhs) code.simps(3)} & $\dn$ & @{thm (rhs) code.simps(3)}\\
       
   257   @{thm (lhs) code.simps(4)} & $\dn$ & @{thm (rhs) code.simps(4)}\\
       
   258   @{thm (lhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]} & $\dn$ & @{thm (rhs) code.simps(5)[of "v\<^sub>1" "v\<^sub>2"]}\\
       
   259   @{thm (lhs) code.simps(6)} & $\dn$ & @{thm (rhs) code.simps(6)}\\
       
   260   @{thm (lhs) code.simps(7)} & $\dn$ & @{thm (rhs) code.simps(7)}
       
   261   \end{tabular}
       
   262   \end{center}
       
   263 
       
   264 
       
   265   The idea of the bitcodes is to annotate them to regular expressions and generate values
       
   266   incrementally. The bitcodes can be read off from the @{text breg} and then decoded into a value.
       
   267 
       
   268   \begin{center}
       
   269   \begin{tabular}{lcl}
       
   270   @{term breg} & $::=$ & @{term "AZERO"}\\
       
   271                & $\mid$ & @{term "AONE bs"}\\
       
   272                & $\mid$ & @{term "ACHAR bs c"}\\
       
   273                & $\mid$ & @{term "AALTs bs rs"}\\
       
   274                & $\mid$ & @{term "ASEQ bs r\<^sub>1 r\<^sub>2"}\\
       
   275                & $\mid$ & @{term "ASTAR bs r"}
       
   276   \end{tabular}
       
   277   \end{center}
       
   278 
       
   279 
       
   280 
       
   281   \begin{center}
       
   282   \begin{tabular}{lcl}
       
   283   @{thm (lhs) retrieve.simps(1)} & $\dn$ & @{thm (rhs) retrieve.simps(1)}\\
       
   284   @{thm (lhs) retrieve.simps(2)} & $\dn$ & @{thm (rhs) retrieve.simps(2)}\\
       
   285   @{thm (lhs) retrieve.simps(3)} & $\dn$ & @{thm (rhs) retrieve.simps(3)}\\
       
   286   @{thm (lhs) better_retrieve(1)} & $\dn$ & @{thm (rhs) better_retrieve(1)}\\
       
   287   @{thm (lhs) better_retrieve(2)} & $\dn$ & @{thm (rhs) better_retrieve(2)}\\
       
   288   @{thm (lhs) retrieve.simps(6)[of _ "r\<^sub>1" "r\<^sub>2" "v\<^sub>1" "v\<^sub>2"]}
       
   289       & $\dn$ & @{thm (rhs) retrieve.simps(6)[of _ "r\<^sub>1" "r\<^sub>2" "v\<^sub>1" "v\<^sub>2"]}\\
       
   290   @{thm (lhs) retrieve.simps(7)} & $\dn$ & @{thm (rhs) retrieve.simps(7)}\\
       
   291   @{thm (lhs) retrieve.simps(8)} & $\dn$ & @{thm (rhs) retrieve.simps(8)}
       
   292   \end{tabular}
       
   293   \end{center}
       
   294 
       
   295 
       
   296   \begin{theorem}
       
   297   @{thm blexer_correctness} 
       
   298   \end{theorem}
       
   299 *}
       
   300 
       
   301 
       
   302 section {* Simplification *}
       
   303 
       
   304 text {*
       
   305      Sulzmann \& Lu apply simplification via a fixpoint operation; also does not use erase to filter out duplicates.
       
   306   
       
   307    not direct correspondence with PDERs, because of example
       
   308    problem with retrieve 
       
   309 
       
   310    correctness
       
   311 
       
   312    
       
   313     
       
   314 
       
   315 
       
   316 
       
   317    \begin{figure}[t]
       
   318   \begin{center}
       
   319   \begin{tabular}{c}
       
   320   @{thm[mode=Axiom] bs1[of _ "r\<^sub>2"]}\qquad
       
   321   @{thm[mode=Axiom] bs2[of _ "r\<^sub>1"]}\qquad
       
   322   @{thm[mode=Axiom] bs3[of "bs\<^sub>1" "bs\<^sub>2"]}\\
       
   323   @{thm[mode=Rule] bs4[of "r\<^sub>1" "r\<^sub>2" _ "r\<^sub>3"]}\qquad
       
   324   @{thm[mode=Rule] bs5[of "r\<^sub>3" "r\<^sub>4" _ "r\<^sub>1"]}\\
       
   325   @{thm[mode=Axiom] bs6}\qquad
       
   326   @{thm[mode=Axiom] bs7}\\
       
   327   @{thm[mode=Rule] bs8[of "rs\<^sub>1" "rs\<^sub>2"]}\\
       
   328   @{thm[mode=Axiom] ss1}\qquad
       
   329   @{thm[mode=Rule] ss2[of "rs\<^sub>1" "rs\<^sub>2"]}\qquad
       
   330   @{thm[mode=Rule] ss3[of "r\<^sub>1" "r\<^sub>2"]}\\
       
   331   @{thm[mode=Axiom] ss4}\qquad
       
   332   @{thm[mode=Axiom] ss5[of "bs" "rs\<^sub>1" "rs\<^sub>2"]}\\
       
   333   @{thm[mode=Rule] ss6[of "r\<^sub>1" "r\<^sub>2" "rs\<^sub>1" "rs\<^sub>2" "rs\<^sub>3"]}\\
       
   334   \end{tabular}
       
   335   \end{center}
       
   336   \caption{???}\label{SimpRewrites}
       
   337   \end{figure}
       
   338 *}
       
   339 
       
   340 section {* Bound - NO *}
       
   341 
       
   342 section {* Bounded Regex / Not *}
       
   343 
       
   344 section {* Conclusion *}
       
   345 
    11 text {*
   346 text {*
    12 
   347 
    13 \cite{AusafDyckhoffUrban2016}
   348 \cite{AusafDyckhoffUrban2016}
    14 
   349 
    15 %%\bibliographystyle{plain}
   350 %%\bibliographystyle{plain}