author | Chengsong |
Wed, 23 Aug 2023 03:02:31 +0100 | |
changeset 668 | 3831621d7b14 |
parent 381 | 0c666a0c57d7 |
permissions | -rw-r--r-- |
365 | 1 |
|
2 |
theory Positions |
|
3 |
imports "Spec" "Lexer" |
|
4 |
begin |
|
5 |
||
6 |
chapter \<open>An alternative definition for POSIX values\<close> |
|
7 |
||
8 |
section \<open>Positions in Values\<close> |
|
9 |
||
10 |
fun |
|
11 |
at :: "val \<Rightarrow> nat list \<Rightarrow> val" |
|
12 |
where |
|
13 |
"at v [] = v" |
|
14 |
| "at (Left v) (0#ps)= at v ps" |
|
15 |
| "at (Right v) (Suc 0#ps)= at v ps" |
|
16 |
| "at (Seq v1 v2) (0#ps)= at v1 ps" |
|
17 |
| "at (Seq v1 v2) (Suc 0#ps)= at v2 ps" |
|
18 |
| "at (Stars vs) (n#ps)= at (nth vs n) ps" |
|
19 |
||
20 |
||
21 |
||
22 |
fun Pos :: "val \<Rightarrow> (nat list) set" |
|
23 |
where |
|
24 |
"Pos (Void) = {[]}" |
|
25 |
| "Pos (Char c) = {[]}" |
|
26 |
| "Pos (Left v) = {[]} \<union> {0#ps | ps. ps \<in> Pos v}" |
|
27 |
| "Pos (Right v) = {[]} \<union> {1#ps | ps. ps \<in> Pos v}" |
|
28 |
| "Pos (Seq v1 v2) = {[]} \<union> {0#ps | ps. ps \<in> Pos v1} \<union> {1#ps | ps. ps \<in> Pos v2}" |
|
29 |
| "Pos (Stars []) = {[]}" |
|
30 |
| "Pos (Stars (v#vs)) = {[]} \<union> {0#ps | ps. ps \<in> Pos v} \<union> {Suc n#ps | n ps. n#ps \<in> Pos (Stars vs)}" |
|
31 |
||
32 |
||
33 |
lemma Pos_stars: |
|
34 |
"Pos (Stars vs) = {[]} \<union> (\<Union>n < length vs. {n#ps | ps. ps \<in> Pos (vs ! n)})" |
|
35 |
apply(induct vs) |
|
36 |
apply(auto simp add: insert_ident less_Suc_eq_0_disj) |
|
37 |
done |
|
38 |
||
39 |
lemma Pos_empty: |
|
40 |
shows "[] \<in> Pos v" |
|
41 |
by (induct v rule: Pos.induct)(auto) |
|
42 |
||
43 |
||
44 |
abbreviation |
|
45 |
"intlen vs \<equiv> int (length vs)" |
|
46 |
||
47 |
||
48 |
definition pflat_len :: "val \<Rightarrow> nat list => int" |
|
49 |
where |
|
50 |
"pflat_len v p \<equiv> (if p \<in> Pos v then intlen (flat (at v p)) else -1)" |
|
51 |
||
52 |
lemma pflat_len_simps: |
|
53 |
shows "pflat_len (Seq v1 v2) (0#p) = pflat_len v1 p" |
|
54 |
and "pflat_len (Seq v1 v2) (Suc 0#p) = pflat_len v2 p" |
|
55 |
and "pflat_len (Left v) (0#p) = pflat_len v p" |
|
56 |
and "pflat_len (Left v) (Suc 0#p) = -1" |
|
57 |
and "pflat_len (Right v) (Suc 0#p) = pflat_len v p" |
|
58 |
and "pflat_len (Right v) (0#p) = -1" |
|
59 |
and "pflat_len (Stars (v#vs)) (Suc n#p) = pflat_len (Stars vs) (n#p)" |
|
60 |
and "pflat_len (Stars (v#vs)) (0#p) = pflat_len v p" |
|
61 |
and "pflat_len v [] = intlen (flat v)" |
|
62 |
by (auto simp add: pflat_len_def Pos_empty) |
|
63 |
||
64 |
lemma pflat_len_Stars_simps: |
|
65 |
assumes "n < length vs" |
|
66 |
shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p" |
|
67 |
using assms |
|
68 |
apply(induct vs arbitrary: n p) |
|
69 |
apply(auto simp add: less_Suc_eq_0_disj pflat_len_simps) |
|
70 |
done |
|
71 |
||
72 |
lemma pflat_len_outside: |
|
73 |
assumes "p \<notin> Pos v1" |
|
74 |
shows "pflat_len v1 p = -1 " |
|
75 |
using assms by (simp add: pflat_len_def) |
|
76 |
||
77 |
||
78 |
||
79 |
section \<open>Orderings\<close> |
|
80 |
||
81 |
||
82 |
definition prefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubseteq>pre _" [60,59] 60) |
|
83 |
where |
|
84 |
"ps1 \<sqsubseteq>pre ps2 \<equiv> \<exists>ps'. ps1 @ps' = ps2" |
|
85 |
||
86 |
definition sprefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubset>spre _" [60,59] 60) |
|
87 |
where |
|
88 |
"ps1 \<sqsubset>spre ps2 \<equiv> ps1 \<sqsubseteq>pre ps2 \<and> ps1 \<noteq> ps2" |
|
89 |
||
90 |
inductive lex_list :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" ("_ \<sqsubset>lex _" [60,59] 60) |
|
91 |
where |
|
92 |
"[] \<sqsubset>lex (p#ps)" |
|
93 |
| "ps1 \<sqsubset>lex ps2 \<Longrightarrow> (p#ps1) \<sqsubset>lex (p#ps2)" |
|
94 |
| "p1 < p2 \<Longrightarrow> (p1#ps1) \<sqsubset>lex (p2#ps2)" |
|
95 |
||
96 |
lemma lex_irrfl: |
|
97 |
fixes ps1 ps2 :: "nat list" |
|
98 |
assumes "ps1 \<sqsubset>lex ps2" |
|
99 |
shows "ps1 \<noteq> ps2" |
|
100 |
using assms |
|
101 |
by(induct rule: lex_list.induct)(auto) |
|
102 |
||
103 |
lemma lex_simps [simp]: |
|
104 |
fixes xs ys :: "nat list" |
|
105 |
shows "[] \<sqsubset>lex ys \<longleftrightarrow> ys \<noteq> []" |
|
106 |
and "xs \<sqsubset>lex [] \<longleftrightarrow> False" |
|
107 |
and "(x # xs) \<sqsubset>lex (y # ys) \<longleftrightarrow> (x < y \<or> (x = y \<and> xs \<sqsubset>lex ys))" |
|
108 |
by (auto simp add: neq_Nil_conv elim: lex_list.cases intro: lex_list.intros) |
|
109 |
||
110 |
lemma lex_trans: |
|
111 |
fixes ps1 ps2 ps3 :: "nat list" |
|
112 |
assumes "ps1 \<sqsubset>lex ps2" "ps2 \<sqsubset>lex ps3" |
|
113 |
shows "ps1 \<sqsubset>lex ps3" |
|
114 |
using assms |
|
115 |
by (induct arbitrary: ps3 rule: lex_list.induct) |
|
116 |
(auto elim: lex_list.cases) |
|
117 |
||
118 |
||
119 |
lemma lex_trichotomous: |
|
120 |
fixes p q :: "nat list" |
|
121 |
shows "p = q \<or> p \<sqsubset>lex q \<or> q \<sqsubset>lex p" |
|
122 |
apply(induct p arbitrary: q) |
|
123 |
apply(auto elim: lex_list.cases) |
|
124 |
apply(case_tac q) |
|
125 |
apply(auto) |
|
126 |
done |
|
127 |
||
128 |
||
129 |
||
130 |
||
131 |
section \<open>POSIX Ordering of Values According to Okui \& Suzuki\<close> |
|
132 |
||
133 |
||
134 |
definition PosOrd:: "val \<Rightarrow> nat list \<Rightarrow> val \<Rightarrow> bool" ("_ \<sqsubset>val _ _" [60, 60, 59] 60) |
|
135 |
where |
|
136 |
"v1 \<sqsubset>val p v2 \<equiv> pflat_len v1 p > pflat_len v2 p \<and> |
|
137 |
(\<forall>q \<in> Pos v1 \<union> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)" |
|
138 |
||
139 |
lemma PosOrd_def2: |
|
140 |
shows "v1 \<sqsubset>val p v2 \<longleftrightarrow> |
|
141 |
pflat_len v1 p > pflat_len v2 p \<and> |
|
142 |
(\<forall>q \<in> Pos v1. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q) \<and> |
|
143 |
(\<forall>q \<in> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)" |
|
144 |
unfolding PosOrd_def |
|
145 |
apply(auto) |
|
146 |
done |
|
147 |
||
148 |
||
149 |
definition PosOrd_ex:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubset>val _" [60, 59] 60) |
|
150 |
where |
|
151 |
"v1 :\<sqsubset>val v2 \<equiv> \<exists>p. v1 \<sqsubset>val p v2" |
|
152 |
||
153 |
definition PosOrd_ex_eq:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubseteq>val _" [60, 59] 60) |
|
154 |
where |
|
155 |
"v1 :\<sqsubseteq>val v2 \<equiv> v1 :\<sqsubset>val v2 \<or> v1 = v2" |
|
156 |
||
157 |
||
158 |
lemma PosOrd_trans: |
|
159 |
assumes "v1 :\<sqsubset>val v2" "v2 :\<sqsubset>val v3" |
|
160 |
shows "v1 :\<sqsubset>val v3" |
|
161 |
proof - |
|
162 |
from assms obtain p p' |
|
163 |
where as: "v1 \<sqsubset>val p v2" "v2 \<sqsubset>val p' v3" unfolding PosOrd_ex_def by blast |
|
164 |
then have pos: "p \<in> Pos v1" "p' \<in> Pos v2" unfolding PosOrd_def pflat_len_def |
|
165 |
by (smt not_int_zless_negative)+ |
|
166 |
have "p = p' \<or> p \<sqsubset>lex p' \<or> p' \<sqsubset>lex p" |
|
167 |
by (rule lex_trichotomous) |
|
168 |
moreover |
|
169 |
{ assume "p = p'" |
|
170 |
with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def |
|
171 |
by (smt Un_iff) |
|
172 |
then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast |
|
173 |
} |
|
174 |
moreover |
|
175 |
{ assume "p \<sqsubset>lex p'" |
|
176 |
with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def |
|
177 |
by (smt Un_iff lex_trans) |
|
178 |
then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast |
|
179 |
} |
|
180 |
moreover |
|
181 |
{ assume "p' \<sqsubset>lex p" |
|
182 |
with as have "v1 \<sqsubset>val p' v3" unfolding PosOrd_def |
|
183 |
by (smt Un_iff lex_trans pflat_len_def) |
|
184 |
then have "v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast |
|
185 |
} |
|
186 |
ultimately show "v1 :\<sqsubset>val v3" by blast |
|
187 |
qed |
|
188 |
||
189 |
lemma PosOrd_irrefl: |
|
190 |
assumes "v :\<sqsubset>val v" |
|
191 |
shows "False" |
|
192 |
using assms unfolding PosOrd_ex_def PosOrd_def |
|
193 |
by auto |
|
194 |
||
195 |
lemma PosOrd_assym: |
|
196 |
assumes "v1 :\<sqsubset>val v2" |
|
197 |
shows "\<not>(v2 :\<sqsubset>val v1)" |
|
198 |
using assms |
|
199 |
using PosOrd_irrefl PosOrd_trans by blast |
|
200 |
||
201 |
(* |
|
202 |
:\<sqsubseteq>val and :\<sqsubset>val are partial orders. |
|
203 |
*) |
|
204 |
||
205 |
lemma PosOrd_ordering: |
|
206 |
shows "ordering (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)" |
|
207 |
unfolding ordering_def PosOrd_ex_eq_def |
|
208 |
apply(auto) |
|
381
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
209 |
using PosOrd_trans partial_preordering_def apply blast |
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
210 |
using PosOrd_assym ordering_axioms_def by blast |
365 | 211 |
|
212 |
lemma PosOrd_order: |
|
213 |
shows "class.order (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)" |
|
214 |
using PosOrd_ordering |
|
215 |
apply(simp add: class.order_def class.preorder_def class.order_axioms_def) |
|
381
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
216 |
by (metis (full_types) PosOrd_ex_eq_def PosOrd_irrefl PosOrd_trans) |
365 | 217 |
|
218 |
||
219 |
lemma PosOrd_ex_eq2: |
|
220 |
shows "v1 :\<sqsubset>val v2 \<longleftrightarrow> (v1 :\<sqsubseteq>val v2 \<and> v1 \<noteq> v2)" |
|
381
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
221 |
using PosOrd_ordering |
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
222 |
using PosOrd_ex_eq_def PosOrd_irrefl by blast |
365 | 223 |
|
224 |
lemma PosOrdeq_trans: |
|
225 |
assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v3" |
|
226 |
shows "v1 :\<sqsubseteq>val v3" |
|
227 |
using assms PosOrd_ordering |
|
381
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
228 |
unfolding ordering_def |
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
229 |
by (metis partial_preordering.trans) |
365 | 230 |
|
231 |
lemma PosOrdeq_antisym: |
|
232 |
assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v1" |
|
233 |
shows "v1 = v2" |
|
234 |
using assms PosOrd_ordering |
|
381
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
235 |
unfolding ordering_def |
0c666a0c57d7
isarfied some proofs
Christian Urban <christian.urban@kcl.ac.uk>
parents:
365
diff
changeset
|
236 |
by (simp add: ordering_axioms_def) |
365 | 237 |
|
238 |
lemma PosOrdeq_refl: |
|
239 |
shows "v :\<sqsubseteq>val v" |
|
240 |
unfolding PosOrd_ex_eq_def |
|
241 |
by auto |
|
242 |
||
243 |
||
244 |
lemma PosOrd_shorterE: |
|
245 |
assumes "v1 :\<sqsubset>val v2" |
|
246 |
shows "length (flat v2) \<le> length (flat v1)" |
|
247 |
using assms unfolding PosOrd_ex_def PosOrd_def |
|
248 |
apply(auto) |
|
249 |
apply(case_tac p) |
|
250 |
apply(simp add: pflat_len_simps) |
|
251 |
apply(drule_tac x="[]" in bspec) |
|
252 |
apply(simp add: Pos_empty) |
|
253 |
apply(simp add: pflat_len_simps) |
|
254 |
done |
|
255 |
||
256 |
lemma PosOrd_shorterI: |
|
257 |
assumes "length (flat v2) < length (flat v1)" |
|
258 |
shows "v1 :\<sqsubset>val v2" |
|
259 |
unfolding PosOrd_ex_def PosOrd_def pflat_len_def |
|
260 |
using assms Pos_empty by force |
|
261 |
||
262 |
lemma PosOrd_spreI: |
|
263 |
assumes "flat v' \<sqsubset>spre flat v" |
|
264 |
shows "v :\<sqsubset>val v'" |
|
265 |
using assms |
|
266 |
apply(rule_tac PosOrd_shorterI) |
|
267 |
unfolding prefix_list_def sprefix_list_def |
|
268 |
by (metis append_Nil2 append_eq_conv_conj drop_all le_less_linear) |
|
269 |
||
270 |
lemma pflat_len_inside: |
|
271 |
assumes "pflat_len v2 p < pflat_len v1 p" |
|
272 |
shows "p \<in> Pos v1" |
|
273 |
using assms |
|
274 |
unfolding pflat_len_def |
|
275 |
by (auto split: if_splits) |
|
276 |
||
277 |
||
278 |
lemma PosOrd_Left_Right: |
|
279 |
assumes "flat v1 = flat v2" |
|
280 |
shows "Left v1 :\<sqsubset>val Right v2" |
|
281 |
unfolding PosOrd_ex_def |
|
282 |
apply(rule_tac x="[0]" in exI) |
|
283 |
apply(auto simp add: PosOrd_def pflat_len_simps assms) |
|
284 |
done |
|
285 |
||
286 |
lemma PosOrd_LeftE: |
|
287 |
assumes "Left v1 :\<sqsubset>val Left v2" "flat v1 = flat v2" |
|
288 |
shows "v1 :\<sqsubset>val v2" |
|
289 |
using assms |
|
290 |
unfolding PosOrd_ex_def PosOrd_def2 |
|
291 |
apply(auto simp add: pflat_len_simps) |
|
292 |
apply(frule pflat_len_inside) |
|
293 |
apply(auto simp add: pflat_len_simps) |
|
294 |
by (metis lex_simps(3) pflat_len_simps(3)) |
|
295 |
||
296 |
lemma PosOrd_LeftI: |
|
297 |
assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2" |
|
298 |
shows "Left v1 :\<sqsubset>val Left v2" |
|
299 |
using assms |
|
300 |
unfolding PosOrd_ex_def PosOrd_def2 |
|
301 |
apply(auto simp add: pflat_len_simps) |
|
302 |
by (metis less_numeral_extra(3) lex_simps(3) pflat_len_simps(3)) |
|
303 |
||
304 |
lemma PosOrd_Left_eq: |
|
305 |
assumes "flat v1 = flat v2" |
|
306 |
shows "Left v1 :\<sqsubset>val Left v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" |
|
307 |
using assms PosOrd_LeftE PosOrd_LeftI |
|
308 |
by blast |
|
309 |
||
310 |
||
311 |
lemma PosOrd_RightE: |
|
312 |
assumes "Right v1 :\<sqsubset>val Right v2" "flat v1 = flat v2" |
|
313 |
shows "v1 :\<sqsubset>val v2" |
|
314 |
using assms |
|
315 |
unfolding PosOrd_ex_def PosOrd_def2 |
|
316 |
apply(auto simp add: pflat_len_simps) |
|
317 |
apply(frule pflat_len_inside) |
|
318 |
apply(auto simp add: pflat_len_simps) |
|
319 |
by (metis lex_simps(3) pflat_len_simps(5)) |
|
320 |
||
321 |
lemma PosOrd_RightI: |
|
322 |
assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2" |
|
323 |
shows "Right v1 :\<sqsubset>val Right v2" |
|
324 |
using assms |
|
325 |
unfolding PosOrd_ex_def PosOrd_def2 |
|
326 |
apply(auto simp add: pflat_len_simps) |
|
327 |
by (metis lex_simps(3) nat_neq_iff pflat_len_simps(5)) |
|
328 |
||
329 |
||
330 |
lemma PosOrd_Right_eq: |
|
331 |
assumes "flat v1 = flat v2" |
|
332 |
shows "Right v1 :\<sqsubset>val Right v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" |
|
333 |
using assms PosOrd_RightE PosOrd_RightI |
|
334 |
by blast |
|
335 |
||
336 |
||
337 |
lemma PosOrd_SeqI1: |
|
338 |
assumes "v1 :\<sqsubset>val w1" "flat (Seq v1 v2) = flat (Seq w1 w2)" |
|
339 |
shows "Seq v1 v2 :\<sqsubset>val Seq w1 w2" |
|
340 |
using assms(1) |
|
341 |
apply(subst (asm) PosOrd_ex_def) |
|
342 |
apply(subst (asm) PosOrd_def) |
|
343 |
apply(clarify) |
|
344 |
apply(subst PosOrd_ex_def) |
|
345 |
apply(rule_tac x="0#p" in exI) |
|
346 |
apply(subst PosOrd_def) |
|
347 |
apply(rule conjI) |
|
348 |
apply(simp add: pflat_len_simps) |
|
349 |
apply(rule ballI) |
|
350 |
apply(rule impI) |
|
351 |
apply(simp only: Pos.simps) |
|
352 |
apply(auto)[1] |
|
353 |
apply(simp add: pflat_len_simps) |
|
354 |
apply(auto simp add: pflat_len_simps) |
|
355 |
using assms(2) |
|
356 |
apply(simp) |
|
357 |
apply(metis length_append of_nat_add) |
|
358 |
done |
|
359 |
||
360 |
lemma PosOrd_SeqI2: |
|
361 |
assumes "v2 :\<sqsubset>val w2" "flat v2 = flat w2" |
|
362 |
shows "Seq v v2 :\<sqsubset>val Seq v w2" |
|
363 |
using assms(1) |
|
364 |
apply(subst (asm) PosOrd_ex_def) |
|
365 |
apply(subst (asm) PosOrd_def) |
|
366 |
apply(clarify) |
|
367 |
apply(subst PosOrd_ex_def) |
|
368 |
apply(rule_tac x="Suc 0#p" in exI) |
|
369 |
apply(subst PosOrd_def) |
|
370 |
apply(rule conjI) |
|
371 |
apply(simp add: pflat_len_simps) |
|
372 |
apply(rule ballI) |
|
373 |
apply(rule impI) |
|
374 |
apply(simp only: Pos.simps) |
|
375 |
apply(auto)[1] |
|
376 |
apply(simp add: pflat_len_simps) |
|
377 |
using assms(2) |
|
378 |
apply(simp) |
|
379 |
apply(auto simp add: pflat_len_simps) |
|
380 |
done |
|
381 |
||
382 |
lemma PosOrd_Seq_eq: |
|
383 |
assumes "flat v2 = flat w2" |
|
384 |
shows "(Seq v v2) :\<sqsubset>val (Seq v w2) \<longleftrightarrow> v2 :\<sqsubset>val w2" |
|
385 |
using assms |
|
386 |
apply(auto) |
|
387 |
prefer 2 |
|
388 |
apply(simp add: PosOrd_SeqI2) |
|
389 |
apply(simp add: PosOrd_ex_def) |
|
390 |
apply(auto) |
|
391 |
apply(case_tac p) |
|
392 |
apply(simp add: PosOrd_def pflat_len_simps) |
|
393 |
apply(case_tac a) |
|
394 |
apply(simp add: PosOrd_def pflat_len_simps) |
|
395 |
apply(clarify) |
|
396 |
apply(case_tac nat) |
|
397 |
prefer 2 |
|
398 |
apply(simp add: PosOrd_def pflat_len_simps pflat_len_outside) |
|
399 |
apply(rule_tac x="list" in exI) |
|
400 |
apply(auto simp add: PosOrd_def2 pflat_len_simps) |
|
401 |
apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2)) |
|
402 |
apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2)) |
|
403 |
done |
|
404 |
||
405 |
||
406 |
||
407 |
lemma PosOrd_StarsI: |
|
408 |
assumes "v1 :\<sqsubset>val v2" "flats (v1#vs1) = flats (v2#vs2)" |
|
409 |
shows "Stars (v1#vs1) :\<sqsubset>val Stars (v2#vs2)" |
|
410 |
using assms(1) |
|
411 |
apply(subst (asm) PosOrd_ex_def) |
|
412 |
apply(subst (asm) PosOrd_def) |
|
413 |
apply(clarify) |
|
414 |
apply(subst PosOrd_ex_def) |
|
415 |
apply(subst PosOrd_def) |
|
416 |
apply(rule_tac x="0#p" in exI) |
|
417 |
apply(simp add: pflat_len_Stars_simps pflat_len_simps) |
|
418 |
using assms(2) |
|
419 |
apply(simp add: pflat_len_simps) |
|
420 |
apply(auto simp add: pflat_len_Stars_simps pflat_len_simps) |
|
421 |
by (metis length_append of_nat_add) |
|
422 |
||
423 |
lemma PosOrd_StarsI2: |
|
424 |
assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flats vs1 = flats vs2" |
|
425 |
shows "Stars (v#vs1) :\<sqsubset>val Stars (v#vs2)" |
|
426 |
using assms(1) |
|
427 |
apply(subst (asm) PosOrd_ex_def) |
|
428 |
apply(subst (asm) PosOrd_def) |
|
429 |
apply(clarify) |
|
430 |
apply(subst PosOrd_ex_def) |
|
431 |
apply(subst PosOrd_def) |
|
432 |
apply(case_tac p) |
|
433 |
apply(simp add: pflat_len_simps) |
|
434 |
apply(rule_tac x="Suc a#list" in exI) |
|
435 |
apply(auto simp add: pflat_len_Stars_simps pflat_len_simps assms(2)) |
|
436 |
done |
|
437 |
||
438 |
lemma PosOrd_Stars_appendI: |
|
439 |
assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flat (Stars vs1) = flat (Stars vs2)" |
|
440 |
shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)" |
|
441 |
using assms |
|
442 |
apply(induct vs) |
|
443 |
apply(simp) |
|
444 |
apply(simp add: PosOrd_StarsI2) |
|
445 |
done |
|
446 |
||
447 |
lemma PosOrd_StarsE2: |
|
448 |
assumes "Stars (v # vs1) :\<sqsubset>val Stars (v # vs2)" |
|
449 |
shows "Stars vs1 :\<sqsubset>val Stars vs2" |
|
450 |
using assms |
|
451 |
apply(subst (asm) PosOrd_ex_def) |
|
452 |
apply(erule exE) |
|
453 |
apply(case_tac p) |
|
454 |
apply(simp) |
|
455 |
apply(simp add: PosOrd_def pflat_len_simps) |
|
456 |
apply(subst PosOrd_ex_def) |
|
457 |
apply(rule_tac x="[]" in exI) |
|
458 |
apply(simp add: PosOrd_def pflat_len_simps Pos_empty) |
|
459 |
apply(simp) |
|
460 |
apply(case_tac a) |
|
461 |
apply(clarify) |
|
462 |
apply(auto simp add: pflat_len_simps PosOrd_def pflat_len_def split: if_splits)[1] |
|
463 |
apply(clarify) |
|
464 |
apply(simp add: PosOrd_ex_def) |
|
465 |
apply(rule_tac x="nat#list" in exI) |
|
466 |
apply(auto simp add: PosOrd_def pflat_len_simps)[1] |
|
467 |
apply(case_tac q) |
|
468 |
apply(simp add: PosOrd_def pflat_len_simps) |
|
469 |
apply(clarify) |
|
470 |
apply(drule_tac x="Suc a # lista" in bspec) |
|
471 |
apply(simp) |
|
472 |
apply(auto simp add: PosOrd_def pflat_len_simps)[1] |
|
473 |
apply(case_tac q) |
|
474 |
apply(simp add: PosOrd_def pflat_len_simps) |
|
475 |
apply(clarify) |
|
476 |
apply(drule_tac x="Suc a # lista" in bspec) |
|
477 |
apply(simp) |
|
478 |
apply(auto simp add: PosOrd_def pflat_len_simps)[1] |
|
479 |
done |
|
480 |
||
481 |
lemma PosOrd_Stars_appendE: |
|
482 |
assumes "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)" |
|
483 |
shows "Stars vs1 :\<sqsubset>val Stars vs2" |
|
484 |
using assms |
|
485 |
apply(induct vs) |
|
486 |
apply(simp) |
|
487 |
apply(simp add: PosOrd_StarsE2) |
|
488 |
done |
|
489 |
||
490 |
lemma PosOrd_Stars_append_eq: |
|
491 |
assumes "flats vs1 = flats vs2" |
|
492 |
shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2) \<longleftrightarrow> Stars vs1 :\<sqsubset>val Stars vs2" |
|
493 |
using assms |
|
494 |
apply(rule_tac iffI) |
|
495 |
apply(erule PosOrd_Stars_appendE) |
|
496 |
apply(rule PosOrd_Stars_appendI) |
|
497 |
apply(auto) |
|
498 |
done |
|
499 |
||
500 |
lemma PosOrd_almost_trichotomous: |
|
501 |
shows "v1 :\<sqsubset>val v2 \<or> v2 :\<sqsubset>val v1 \<or> (length (flat v1) = length (flat v2))" |
|
502 |
apply(auto simp add: PosOrd_ex_def) |
|
503 |
apply(auto simp add: PosOrd_def) |
|
504 |
apply(rule_tac x="[]" in exI) |
|
505 |
apply(auto simp add: Pos_empty pflat_len_simps) |
|
506 |
apply(drule_tac x="[]" in spec) |
|
507 |
apply(auto simp add: Pos_empty pflat_len_simps) |
|
508 |
done |
|
509 |
||
510 |
||
511 |
||
512 |
section \<open>The Posix Value is smaller than any other Value\<close> |
|
513 |
||
514 |
||
515 |
lemma Posix_PosOrd: |
|
516 |
assumes "s \<in> r \<rightarrow> v1" "v2 \<in> LV r s" |
|
517 |
shows "v1 :\<sqsubseteq>val v2" |
|
518 |
using assms |
|
519 |
proof (induct arbitrary: v2 rule: Posix.induct) |
|
520 |
case (Posix_ONE v) |
|
521 |
have "v \<in> LV ONE []" by fact |
|
522 |
then have "v = Void" |
|
523 |
by (simp add: LV_simps) |
|
524 |
then show "Void :\<sqsubseteq>val v" |
|
525 |
by (simp add: PosOrd_ex_eq_def) |
|
526 |
next |
|
527 |
case (Posix_CH c v) |
|
528 |
have "v \<in> LV (CH c) [c]" by fact |
|
529 |
then have "v = Char c" |
|
530 |
by (simp add: LV_simps) |
|
531 |
then show "Char c :\<sqsubseteq>val v" |
|
532 |
by (simp add: PosOrd_ex_eq_def) |
|
533 |
next |
|
534 |
case (Posix_ALT1 s r1 v r2 v2) |
|
535 |
have as1: "s \<in> r1 \<rightarrow> v" by fact |
|
536 |
have IH: "\<And>v2. v2 \<in> LV r1 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact |
|
537 |
have "v2 \<in> LV (ALT r1 r2) s" by fact |
|
538 |
then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s" |
|
539 |
by(auto simp add: LV_def prefix_list_def) |
|
540 |
then consider |
|
541 |
(Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" |
|
542 |
| (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s" |
|
543 |
by (auto elim: Prf.cases) |
|
544 |
then show "Left v :\<sqsubseteq>val v2" |
|
545 |
proof(cases) |
|
546 |
case (Left v3) |
|
547 |
have "v3 \<in> LV r1 s" using Left(2,3) |
|
548 |
by (auto simp add: LV_def prefix_list_def) |
|
549 |
with IH have "v :\<sqsubseteq>val v3" by simp |
|
550 |
moreover |
|
551 |
have "flat v3 = flat v" using as1 Left(3) |
|
552 |
by (simp add: Posix1(2)) |
|
553 |
ultimately have "Left v :\<sqsubseteq>val Left v3" |
|
554 |
by (simp add: PosOrd_ex_eq_def PosOrd_Left_eq) |
|
555 |
then show "Left v :\<sqsubseteq>val v2" unfolding Left . |
|
556 |
next |
|
557 |
case (Right v3) |
|
558 |
have "flat v3 = flat v" using as1 Right(3) |
|
559 |
by (simp add: Posix1(2)) |
|
560 |
then have "Left v :\<sqsubseteq>val Right v3" |
|
561 |
unfolding PosOrd_ex_eq_def |
|
562 |
by (simp add: PosOrd_Left_Right) |
|
563 |
then show "Left v :\<sqsubseteq>val v2" unfolding Right . |
|
564 |
qed |
|
565 |
next |
|
566 |
case (Posix_ALT2 s r2 v r1 v2) |
|
567 |
have as1: "s \<in> r2 \<rightarrow> v" by fact |
|
568 |
have as2: "s \<notin> L r1" by fact |
|
569 |
have IH: "\<And>v2. v2 \<in> LV r2 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact |
|
570 |
have "v2 \<in> LV (ALT r1 r2) s" by fact |
|
571 |
then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s" |
|
572 |
by(auto simp add: LV_def prefix_list_def) |
|
573 |
then consider |
|
574 |
(Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" |
|
575 |
| (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s" |
|
576 |
by (auto elim: Prf.cases) |
|
577 |
then show "Right v :\<sqsubseteq>val v2" |
|
578 |
proof (cases) |
|
579 |
case (Right v3) |
|
580 |
have "v3 \<in> LV r2 s" using Right(2,3) |
|
581 |
by (auto simp add: LV_def prefix_list_def) |
|
582 |
with IH have "v :\<sqsubseteq>val v3" by simp |
|
583 |
moreover |
|
584 |
have "flat v3 = flat v" using as1 Right(3) |
|
585 |
by (simp add: Posix1(2)) |
|
586 |
ultimately have "Right v :\<sqsubseteq>val Right v3" |
|
587 |
by (auto simp add: PosOrd_ex_eq_def PosOrd_RightI) |
|
588 |
then show "Right v :\<sqsubseteq>val v2" unfolding Right . |
|
589 |
next |
|
590 |
case (Left v3) |
|
591 |
have "v3 \<in> LV r1 s" using Left(2,3) as2 |
|
592 |
by (auto simp add: LV_def prefix_list_def) |
|
593 |
then have "flat v3 = flat v \<and> \<Turnstile> v3 : r1" using as1 Left(3) |
|
594 |
by (simp add: Posix1(2) LV_def) |
|
595 |
then have "False" using as1 as2 Left |
|
596 |
by (auto simp add: Posix1(2) L_flat_Prf1) |
|
597 |
then show "Right v :\<sqsubseteq>val v2" by simp |
|
598 |
qed |
|
599 |
next |
|
600 |
case (Posix_SEQ s1 r1 v1 s2 r2 v2 v3) |
|
601 |
have "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" by fact+ |
|
602 |
then have as1: "s1 = flat v1" "s2 = flat v2" by (simp_all add: Posix1(2)) |
|
603 |
have IH1: "\<And>v3. v3 \<in> LV r1 s1 \<Longrightarrow> v1 :\<sqsubseteq>val v3" by fact |
|
604 |
have IH2: "\<And>v3. v3 \<in> LV r2 s2 \<Longrightarrow> v2 :\<sqsubseteq>val v3" by fact |
|
605 |
have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact |
|
606 |
have "v3 \<in> LV (SEQ r1 r2) (s1 @ s2)" by fact |
|
607 |
then obtain v3a v3b where eqs: |
|
608 |
"v3 = Seq v3a v3b" "\<Turnstile> v3a : r1" "\<Turnstile> v3b : r2" |
|
609 |
"flat v3a @ flat v3b = s1 @ s2" |
|
610 |
by (force simp add: prefix_list_def LV_def elim: Prf.cases) |
|
611 |
with cond have "flat v3a \<sqsubseteq>pre s1" unfolding prefix_list_def |
|
612 |
by (smt L_flat_Prf1 append_eq_append_conv2 append_self_conv) |
|
613 |
then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat v3b = s2)" using eqs |
|
614 |
by (simp add: sprefix_list_def append_eq_conv_conj) |
|
615 |
then have q2: "v1 :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat v3b = s2)" |
|
616 |
using PosOrd_spreI as1(1) eqs by blast |
|
617 |
then have "v1 :\<sqsubset>val v3a \<or> (v3a \<in> LV r1 s1 \<and> v3b \<in> LV r2 s2)" using eqs(2,3) |
|
618 |
by (auto simp add: LV_def) |
|
619 |
then have "v1 :\<sqsubset>val v3a \<or> (v1 :\<sqsubseteq>val v3a \<and> v2 :\<sqsubseteq>val v3b)" using IH1 IH2 by blast |
|
620 |
then have "Seq v1 v2 :\<sqsubseteq>val Seq v3a v3b" using eqs q2 as1 |
|
621 |
unfolding PosOrd_ex_eq_def by (auto simp add: PosOrd_SeqI1 PosOrd_Seq_eq) |
|
622 |
then show "Seq v1 v2 :\<sqsubseteq>val v3" unfolding eqs by blast |
|
623 |
next |
|
624 |
case (Posix_STAR1 s1 r v s2 vs v3) |
|
625 |
have "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" by fact+ |
|
626 |
then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2)) |
|
627 |
have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact |
|
628 |
have IH2: "\<And>v3. v3 \<in> LV (STAR r) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact |
|
629 |
have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact |
|
630 |
have cond2: "flat v \<noteq> []" by fact |
|
631 |
have "v3 \<in> LV (STAR r) (s1 @ s2)" by fact |
|
632 |
then consider |
|
633 |
(NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" |
|
634 |
"\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : STAR r" |
|
635 |
"flat (Stars (v3a # vs3)) = s1 @ s2" |
|
636 |
| (Empty) "v3 = Stars []" |
|
637 |
unfolding LV_def |
|
638 |
apply(auto) |
|
639 |
apply(erule Prf.cases) |
|
640 |
apply(auto) |
|
641 |
apply(case_tac vs) |
|
642 |
apply(auto intro: Prf.intros) |
|
643 |
done |
|
644 |
then show "Stars (v # vs) :\<sqsubseteq>val v3" |
|
645 |
proof (cases) |
|
646 |
case (NonEmpty v3a vs3) |
|
647 |
have "flat (Stars (v3a # vs3)) = s1 @ s2" using NonEmpty(4) . |
|
648 |
with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3) |
|
649 |
unfolding prefix_list_def |
|
650 |
by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7)) |
|
651 |
then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4) |
|
652 |
by (simp add: sprefix_list_def append_eq_conv_conj) |
|
653 |
then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" |
|
654 |
using PosOrd_spreI as1(1) NonEmpty(4) by blast |
|
655 |
then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (STAR r) s2)" |
|
656 |
using NonEmpty(2,3) by (auto simp add: LV_def) |
|
657 |
then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast |
|
658 |
then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" |
|
659 |
unfolding PosOrd_ex_eq_def by auto |
|
660 |
then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1 |
|
661 |
unfolding PosOrd_ex_eq_def |
|
662 |
using PosOrd_StarsI PosOrd_StarsI2 by auto |
|
663 |
then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast |
|
664 |
next |
|
665 |
case Empty |
|
666 |
have "v3 = Stars []" by fact |
|
667 |
then show "Stars (v # vs) :\<sqsubseteq>val v3" |
|
668 |
unfolding PosOrd_ex_eq_def using cond2 |
|
669 |
by (simp add: PosOrd_shorterI) |
|
670 |
qed |
|
671 |
next |
|
672 |
case (Posix_STAR2 r v2) |
|
673 |
have "v2 \<in> LV (STAR r) []" by fact |
|
674 |
then have "v2 = Stars []" |
|
675 |
unfolding LV_def by (auto elim: Prf.cases) |
|
676 |
then show "Stars [] :\<sqsubseteq>val v2" |
|
677 |
by (simp add: PosOrd_ex_eq_def) |
|
678 |
qed |
|
679 |
||
680 |
||
681 |
lemma Posix_PosOrd_reverse: |
|
682 |
assumes "s \<in> r \<rightarrow> v1" |
|
683 |
shows "\<not>(\<exists>v2 \<in> LV r s. v2 :\<sqsubset>val v1)" |
|
684 |
using assms |
|
685 |
by (metis Posix_PosOrd less_irrefl PosOrd_def |
|
686 |
PosOrd_ex_eq_def PosOrd_ex_def PosOrd_trans) |
|
687 |
||
688 |
lemma PosOrd_Posix: |
|
689 |
assumes "v1 \<in> LV r s" "\<forall>v\<^sub>2 \<in> LV r s. \<not> v\<^sub>2 :\<sqsubset>val v1" |
|
690 |
shows "s \<in> r \<rightarrow> v1" |
|
691 |
proof - |
|
692 |
have "s \<in> L r" using assms(1) unfolding LV_def |
|
693 |
using L_flat_Prf1 by blast |
|
694 |
then obtain vposix where vp: "s \<in> r \<rightarrow> vposix" |
|
695 |
using lexer_correct_Some by blast |
|
696 |
with assms(1) have "vposix :\<sqsubseteq>val v1" by (simp add: Posix_PosOrd) |
|
697 |
then have "vposix = v1 \<or> vposix :\<sqsubset>val v1" unfolding PosOrd_ex_eq2 by auto |
|
698 |
moreover |
|
699 |
{ assume "vposix :\<sqsubset>val v1" |
|
700 |
moreover |
|
701 |
have "vposix \<in> LV r s" using vp |
|
702 |
using Posix_LV by blast |
|
703 |
ultimately have "False" using assms(2) by blast |
|
704 |
} |
|
705 |
ultimately show "s \<in> r \<rightarrow> v1" using vp by blast |
|
706 |
qed |
|
707 |
||
708 |
lemma Least_existence: |
|
709 |
assumes "LV r s \<noteq> {}" |
|
710 |
shows " \<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v" |
|
711 |
proof - |
|
712 |
from assms |
|
713 |
obtain vposix where "s \<in> r \<rightarrow> vposix" |
|
714 |
unfolding LV_def |
|
715 |
using L_flat_Prf1 lexer_correct_Some by blast |
|
716 |
then have "\<forall>v \<in> LV r s. vposix :\<sqsubseteq>val v" |
|
717 |
by (simp add: Posix_PosOrd) |
|
718 |
then show "\<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v" |
|
719 |
using Posix_LV \<open>s \<in> r \<rightarrow> vposix\<close> by blast |
|
720 |
qed |
|
721 |
||
722 |
lemma Least_existence1: |
|
723 |
assumes "LV r s \<noteq> {}" |
|
724 |
shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v" |
|
725 |
using Least_existence[OF assms] assms |
|
726 |
using PosOrdeq_antisym by blast |
|
727 |
||
728 |
lemma Least_existence2: |
|
729 |
assumes "LV r s \<noteq> {}" |
|
730 |
shows " \<exists>!vmin \<in> LV r s. lexer r s = Some vmin \<and> (\<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v)" |
|
731 |
using Least_existence[OF assms] assms |
|
732 |
using PosOrdeq_antisym |
|
733 |
using PosOrd_Posix PosOrd_ex_eq2 lexer_correctness(1) by auto |
|
734 |
||
735 |
||
736 |
lemma Least_existence1_pre: |
|
737 |
assumes "LV r s \<noteq> {}" |
|
738 |
shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> (LV r s \<union> {v'. flat v' \<sqsubset>spre s}). vmin :\<sqsubseteq>val v" |
|
739 |
using Least_existence[OF assms] assms |
|
740 |
apply - |
|
741 |
apply(erule bexE) |
|
742 |
apply(rule_tac a="vmin" in ex1I) |
|
743 |
apply(auto)[1] |
|
744 |
apply (metis PosOrd_Posix PosOrd_ex_eq2 PosOrd_spreI PosOrdeq_antisym Posix1(2)) |
|
745 |
apply(auto)[1] |
|
746 |
apply(simp add: PosOrdeq_antisym) |
|
747 |
done |
|
748 |
||
749 |
lemma |
|
750 |
shows "partial_order_on UNIV {(v1, v2). v1 :\<sqsubseteq>val v2}" |
|
751 |
apply(simp add: partial_order_on_def) |
|
752 |
apply(simp add: preorder_on_def refl_on_def) |
|
753 |
apply(simp add: PosOrdeq_refl) |
|
754 |
apply(auto) |
|
755 |
apply(rule transI) |
|
756 |
apply(auto intro: PosOrdeq_trans)[1] |
|
757 |
apply(rule antisymI) |
|
758 |
apply(simp add: PosOrdeq_antisym) |
|
759 |
done |
|
760 |
||
761 |
lemma |
|
762 |
"wf {(v1, v2). v1 :\<sqsubset>val v2 \<and> v1 \<in> LV r s \<and> v2 \<in> LV r s}" |
|
763 |
apply(rule finite_acyclic_wf) |
|
764 |
prefer 2 |
|
765 |
apply(simp add: acyclic_def) |
|
766 |
apply(induct_tac rule: trancl.induct) |
|
767 |
apply(auto)[1] |
|
768 |
oops |
|
769 |
||
770 |
||
771 |
unused_thms |
|
772 |
||
773 |
end |