273
|
1 |
|
|
2 |
theory SpecExt
|
294
|
3 |
imports Main (*"~~/src/HOL/Library/Sublist"*)
|
273
|
4 |
begin
|
|
5 |
|
|
6 |
section {* Sequential Composition of Languages *}
|
|
7 |
|
|
8 |
definition
|
|
9 |
Sequ :: "string set \<Rightarrow> string set \<Rightarrow> string set" ("_ ;; _" [100,100] 100)
|
|
10 |
where
|
|
11 |
"A ;; B = {s1 @ s2 | s1 s2. s1 \<in> A \<and> s2 \<in> B}"
|
|
12 |
|
|
13 |
text {* Two Simple Properties about Sequential Composition *}
|
|
14 |
|
|
15 |
lemma Sequ_empty_string [simp]:
|
|
16 |
shows "A ;; {[]} = A"
|
|
17 |
and "{[]} ;; A = A"
|
|
18 |
by (simp_all add: Sequ_def)
|
|
19 |
|
|
20 |
lemma Sequ_empty [simp]:
|
|
21 |
shows "A ;; {} = {}"
|
|
22 |
and "{} ;; A = {}"
|
|
23 |
by (simp_all add: Sequ_def)
|
|
24 |
|
|
25 |
lemma Sequ_assoc:
|
|
26 |
shows "(A ;; B) ;; C = A ;; (B ;; C)"
|
|
27 |
apply(auto simp add: Sequ_def)
|
|
28 |
apply blast
|
|
29 |
by (metis append_assoc)
|
|
30 |
|
|
31 |
lemma Sequ_Union_in:
|
|
32 |
shows "(A ;; (\<Union>x\<in> B. C x)) = (\<Union>x\<in> B. A ;; C x)"
|
|
33 |
by (auto simp add: Sequ_def)
|
|
34 |
|
|
35 |
section {* Semantic Derivative (Left Quotient) of Languages *}
|
|
36 |
|
|
37 |
definition
|
|
38 |
Der :: "char \<Rightarrow> string set \<Rightarrow> string set"
|
|
39 |
where
|
|
40 |
"Der c A \<equiv> {s. c # s \<in> A}"
|
|
41 |
|
|
42 |
definition
|
|
43 |
Ders :: "string \<Rightarrow> string set \<Rightarrow> string set"
|
|
44 |
where
|
|
45 |
"Ders s A \<equiv> {s'. s @ s' \<in> A}"
|
|
46 |
|
|
47 |
lemma Der_null [simp]:
|
|
48 |
shows "Der c {} = {}"
|
|
49 |
unfolding Der_def
|
|
50 |
by auto
|
|
51 |
|
|
52 |
lemma Der_empty [simp]:
|
|
53 |
shows "Der c {[]} = {}"
|
|
54 |
unfolding Der_def
|
|
55 |
by auto
|
|
56 |
|
|
57 |
lemma Der_char [simp]:
|
|
58 |
shows "Der c {[d]} = (if c = d then {[]} else {})"
|
|
59 |
unfolding Der_def
|
|
60 |
by auto
|
|
61 |
|
|
62 |
lemma Der_union [simp]:
|
|
63 |
shows "Der c (A \<union> B) = Der c A \<union> Der c B"
|
|
64 |
unfolding Der_def
|
|
65 |
by auto
|
|
66 |
|
|
67 |
lemma Der_UNION [simp]:
|
|
68 |
shows "Der c (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. Der c (B x))"
|
|
69 |
by (auto simp add: Der_def)
|
|
70 |
|
|
71 |
lemma Der_Sequ [simp]:
|
|
72 |
shows "Der c (A ;; B) = (Der c A) ;; B \<union> (if [] \<in> A then Der c B else {})"
|
|
73 |
unfolding Der_def Sequ_def
|
280
|
74 |
by (auto simp add: Cons_eq_append_conv)
|
273
|
75 |
|
|
76 |
|
|
77 |
section {* Kleene Star for Languages *}
|
|
78 |
|
|
79 |
inductive_set
|
|
80 |
Star :: "string set \<Rightarrow> string set" ("_\<star>" [101] 102)
|
|
81 |
for A :: "string set"
|
|
82 |
where
|
|
83 |
start[intro]: "[] \<in> A\<star>"
|
|
84 |
| step[intro]: "\<lbrakk>s1 \<in> A; s2 \<in> A\<star>\<rbrakk> \<Longrightarrow> s1 @ s2 \<in> A\<star>"
|
|
85 |
|
|
86 |
(* Arden's lemma *)
|
|
87 |
|
|
88 |
lemma Star_cases:
|
|
89 |
shows "A\<star> = {[]} \<union> A ;; A\<star>"
|
|
90 |
unfolding Sequ_def
|
|
91 |
by (auto) (metis Star.simps)
|
|
92 |
|
|
93 |
lemma Star_decomp:
|
|
94 |
assumes "c # x \<in> A\<star>"
|
|
95 |
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A\<star>"
|
|
96 |
using assms
|
|
97 |
by (induct x\<equiv>"c # x" rule: Star.induct)
|
|
98 |
(auto simp add: append_eq_Cons_conv)
|
|
99 |
|
|
100 |
lemma Star_Der_Sequ:
|
|
101 |
shows "Der c (A\<star>) \<subseteq> (Der c A) ;; A\<star>"
|
|
102 |
unfolding Der_def Sequ_def
|
|
103 |
by(auto simp add: Star_decomp)
|
|
104 |
|
|
105 |
|
|
106 |
lemma Der_star [simp]:
|
|
107 |
shows "Der c (A\<star>) = (Der c A) ;; A\<star>"
|
|
108 |
proof -
|
|
109 |
have "Der c (A\<star>) = Der c ({[]} \<union> A ;; A\<star>)"
|
|
110 |
by (simp only: Star_cases[symmetric])
|
|
111 |
also have "... = Der c (A ;; A\<star>)"
|
|
112 |
by (simp only: Der_union Der_empty) (simp)
|
|
113 |
also have "... = (Der c A) ;; A\<star> \<union> (if [] \<in> A then Der c (A\<star>) else {})"
|
|
114 |
by simp
|
|
115 |
also have "... = (Der c A) ;; A\<star>"
|
|
116 |
using Star_Der_Sequ by auto
|
|
117 |
finally show "Der c (A\<star>) = (Der c A) ;; A\<star>" .
|
|
118 |
qed
|
|
119 |
|
|
120 |
section {* Power operation for Sets *}
|
|
121 |
|
|
122 |
fun
|
|
123 |
Pow :: "string set \<Rightarrow> nat \<Rightarrow> string set" ("_ \<up> _" [101, 102] 101)
|
|
124 |
where
|
|
125 |
"A \<up> 0 = {[]}"
|
|
126 |
| "A \<up> (Suc n) = A ;; (A \<up> n)"
|
|
127 |
|
|
128 |
lemma Pow_empty [simp]:
|
|
129 |
shows "[] \<in> A \<up> n \<longleftrightarrow> (n = 0 \<or> [] \<in> A)"
|
|
130 |
by(induct n) (auto simp add: Sequ_def)
|
|
131 |
|
|
132 |
lemma Pow_Suc_rev:
|
|
133 |
"A \<up> (Suc n) = (A \<up> n) ;; A"
|
|
134 |
apply(induct n arbitrary: A)
|
|
135 |
apply(simp_all)
|
|
136 |
by (metis Sequ_assoc)
|
|
137 |
|
|
138 |
|
|
139 |
lemma Pow_decomp:
|
|
140 |
assumes "c # x \<in> A \<up> n"
|
|
141 |
shows "\<exists>s1 s2. x = s1 @ s2 \<and> c # s1 \<in> A \<and> s2 \<in> A \<up> (n - 1)"
|
|
142 |
using assms
|
|
143 |
apply(induct n)
|
|
144 |
apply(auto simp add: Cons_eq_append_conv Sequ_def)
|
|
145 |
apply(case_tac n)
|
|
146 |
apply(auto simp add: Sequ_def)
|
|
147 |
apply(blast)
|
|
148 |
done
|
|
149 |
|
|
150 |
lemma Star_Pow:
|
|
151 |
assumes "s \<in> A\<star>"
|
|
152 |
shows "\<exists>n. s \<in> A \<up> n"
|
|
153 |
using assms
|
|
154 |
apply(induct)
|
|
155 |
apply(auto)
|
|
156 |
apply(rule_tac x="Suc n" in exI)
|
|
157 |
apply(auto simp add: Sequ_def)
|
|
158 |
done
|
|
159 |
|
|
160 |
lemma Pow_Star:
|
|
161 |
assumes "s \<in> A \<up> n"
|
|
162 |
shows "s \<in> A\<star>"
|
|
163 |
using assms
|
|
164 |
apply(induct n arbitrary: s)
|
|
165 |
apply(auto simp add: Sequ_def)
|
|
166 |
done
|
|
167 |
|
|
168 |
lemma Der_Pow_0:
|
|
169 |
shows "Der c (A \<up> 0) = {}"
|
|
170 |
by(simp add: Der_def)
|
|
171 |
|
|
172 |
lemma Der_Pow_Suc:
|
|
173 |
shows "Der c (A \<up> (Suc n)) = (Der c A) ;; (A \<up> n)"
|
|
174 |
unfolding Der_def Sequ_def
|
|
175 |
apply(auto simp add: Cons_eq_append_conv Sequ_def dest!: Pow_decomp)
|
|
176 |
apply(case_tac n)
|
|
177 |
apply(force simp add: Sequ_def)+
|
|
178 |
done
|
|
179 |
|
|
180 |
lemma Der_Pow [simp]:
|
|
181 |
shows "Der c (A \<up> n) = (if n = 0 then {} else (Der c A) ;; (A \<up> (n - 1)))"
|
|
182 |
apply(case_tac n)
|
|
183 |
apply(simp_all del: Pow.simps add: Der_Pow_0 Der_Pow_Suc)
|
|
184 |
done
|
|
185 |
|
|
186 |
lemma Der_Pow_Sequ [simp]:
|
|
187 |
shows "Der c (A ;; A \<up> n) = (Der c A) ;; (A \<up> n)"
|
|
188 |
by (simp only: Pow.simps[symmetric] Der_Pow) (simp)
|
|
189 |
|
|
190 |
|
|
191 |
lemma Pow_Sequ_Un:
|
|
192 |
assumes "0 < x"
|
|
193 |
shows "(\<Union>n \<in> {..x}. (A \<up> n)) = ({[]} \<union> (\<Union>n \<in> {..x - Suc 0}. A ;; (A \<up> n)))"
|
|
194 |
using assms
|
|
195 |
apply(auto simp add: Sequ_def)
|
|
196 |
apply(smt Pow.elims Sequ_def Suc_le_mono Suc_pred atMost_iff empty_iff insert_iff mem_Collect_eq)
|
|
197 |
apply(rule_tac x="Suc xa" in bexI)
|
|
198 |
apply(auto simp add: Sequ_def)
|
|
199 |
done
|
|
200 |
|
|
201 |
lemma Pow_Sequ_Un2:
|
|
202 |
assumes "0 < x"
|
|
203 |
shows "(\<Union>n \<in> {x..}. (A \<up> n)) = (\<Union>n \<in> {x - Suc 0..}. A ;; (A \<up> n))"
|
|
204 |
using assms
|
|
205 |
apply(auto simp add: Sequ_def)
|
|
206 |
apply(case_tac n)
|
|
207 |
apply(auto simp add: Sequ_def)
|
|
208 |
apply fastforce
|
|
209 |
apply(case_tac x)
|
|
210 |
apply(auto)
|
|
211 |
apply(rule_tac x="Suc xa" in bexI)
|
|
212 |
apply(auto simp add: Sequ_def)
|
|
213 |
done
|
|
214 |
|
|
215 |
section {* Regular Expressions *}
|
|
216 |
|
|
217 |
datatype rexp =
|
|
218 |
ZERO
|
|
219 |
| ONE
|
|
220 |
| CHAR char
|
|
221 |
| SEQ rexp rexp
|
|
222 |
| ALT rexp rexp
|
|
223 |
| STAR rexp
|
|
224 |
| UPNTIMES rexp nat
|
|
225 |
| NTIMES rexp nat
|
|
226 |
| FROMNTIMES rexp nat
|
|
227 |
| NMTIMES rexp nat nat
|
|
228 |
|
|
229 |
section {* Semantics of Regular Expressions *}
|
|
230 |
|
|
231 |
fun
|
|
232 |
L :: "rexp \<Rightarrow> string set"
|
|
233 |
where
|
|
234 |
"L (ZERO) = {}"
|
|
235 |
| "L (ONE) = {[]}"
|
|
236 |
| "L (CHAR c) = {[c]}"
|
|
237 |
| "L (SEQ r1 r2) = (L r1) ;; (L r2)"
|
|
238 |
| "L (ALT r1 r2) = (L r1) \<union> (L r2)"
|
|
239 |
| "L (STAR r) = (L r)\<star>"
|
280
|
240 |
| "L (UPNTIMES r n) = (\<Union>i\<in>{..n} . (L r) \<up> i)"
|
273
|
241 |
| "L (NTIMES r n) = (L r) \<up> n"
|
280
|
242 |
| "L (FROMNTIMES r n) = (\<Union>i\<in>{n..} . (L r) \<up> i)"
|
273
|
243 |
| "L (NMTIMES r n m) = (\<Union>i\<in>{n..m} . (L r) \<up> i)"
|
|
244 |
|
|
245 |
section {* Nullable, Derivatives *}
|
|
246 |
|
|
247 |
fun
|
|
248 |
nullable :: "rexp \<Rightarrow> bool"
|
|
249 |
where
|
|
250 |
"nullable (ZERO) = False"
|
|
251 |
| "nullable (ONE) = True"
|
|
252 |
| "nullable (CHAR c) = False"
|
|
253 |
| "nullable (ALT r1 r2) = (nullable r1 \<or> nullable r2)"
|
|
254 |
| "nullable (SEQ r1 r2) = (nullable r1 \<and> nullable r2)"
|
|
255 |
| "nullable (STAR r) = True"
|
|
256 |
| "nullable (UPNTIMES r n) = True"
|
|
257 |
| "nullable (NTIMES r n) = (if n = 0 then True else nullable r)"
|
|
258 |
| "nullable (FROMNTIMES r n) = (if n = 0 then True else nullable r)"
|
|
259 |
| "nullable (NMTIMES r n m) = (if m < n then False else (if n = 0 then True else nullable r))"
|
|
260 |
|
|
261 |
fun
|
|
262 |
der :: "char \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
263 |
where
|
|
264 |
"der c (ZERO) = ZERO"
|
|
265 |
| "der c (ONE) = ZERO"
|
|
266 |
| "der c (CHAR d) = (if c = d then ONE else ZERO)"
|
|
267 |
| "der c (ALT r1 r2) = ALT (der c r1) (der c r2)"
|
|
268 |
| "der c (SEQ r1 r2) =
|
|
269 |
(if nullable r1
|
|
270 |
then ALT (SEQ (der c r1) r2) (der c r2)
|
|
271 |
else SEQ (der c r1) r2)"
|
|
272 |
| "der c (STAR r) = SEQ (der c r) (STAR r)"
|
|
273 |
| "der c (UPNTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (UPNTIMES r (n - 1)))"
|
|
274 |
| "der c (NTIMES r n) = (if n = 0 then ZERO else SEQ (der c r) (NTIMES r (n - 1)))"
|
294
|
275 |
| "der c (FROMNTIMES r n) =
|
277
|
276 |
(if n = 0
|
|
277 |
then SEQ (der c r) (STAR r)
|
|
278 |
else SEQ (der c r) (FROMNTIMES r (n - 1)))"
|
273
|
279 |
| "der c (NMTIMES r n m) =
|
|
280 |
(if m < n then ZERO
|
|
281 |
else (if n = 0 then (if m = 0 then ZERO else
|
|
282 |
SEQ (der c r) (UPNTIMES r (m - 1))) else
|
|
283 |
SEQ (der c r) (NMTIMES r (n - 1) (m - 1))))"
|
|
284 |
|
294
|
285 |
lemma
|
|
286 |
"L(der c (UPNTIMES r m)) =
|
|
287 |
L(if (m = 0) then ZERO else ALT ONE (SEQ(der c r) (UPNTIMES r (m - 1))))"
|
|
288 |
apply(case_tac m)
|
|
289 |
apply(simp)
|
|
290 |
apply(simp del: der.simps)
|
|
291 |
apply(simp only: der.simps)
|
|
292 |
apply(simp add: Sequ_def)
|
|
293 |
apply(auto)
|
|
294 |
defer
|
|
295 |
apply blast
|
|
296 |
oops
|
|
297 |
|
|
298 |
lemma pow_add:
|
|
299 |
assumes "s1 \<in> A \<up> n" "s2 \<in> A \<up> m"
|
|
300 |
shows "s1 @ s2 \<in> A \<up> (n + m)"
|
|
301 |
using assms
|
|
302 |
apply(induct n arbitrary: m s1 s2)
|
|
303 |
apply(auto simp add: Sequ_def)
|
|
304 |
by blast
|
|
305 |
|
|
306 |
lemma pow_add2:
|
|
307 |
assumes "x \<in> A \<up> (m + n)"
|
|
308 |
shows "x \<in> A \<up> m ;; A \<up> n"
|
|
309 |
using assms
|
|
310 |
apply(induct m arbitrary: n x)
|
|
311 |
apply(auto simp add: Sequ_def)
|
|
312 |
by (metis append.assoc)
|
|
313 |
|
|
314 |
|
|
315 |
|
|
316 |
lemma
|
|
317 |
"L(FROMNTIMES r n) = L(SEQ (NTIMES r n) (STAR r))"
|
|
318 |
apply(auto simp add: Sequ_def)
|
|
319 |
defer
|
|
320 |
apply(subgoal_tac "\<exists>m. s2 \<in> (L r) \<up> m")
|
|
321 |
prefer 2
|
|
322 |
apply (simp add: Star_Pow)
|
|
323 |
apply(auto)
|
|
324 |
apply(rule_tac x="n + m" in bexI)
|
|
325 |
apply (simp add: pow_add)
|
|
326 |
apply simp
|
|
327 |
apply(subgoal_tac "\<exists>m. m + n = xa")
|
|
328 |
apply(auto)
|
|
329 |
prefer 2
|
|
330 |
using le_add_diff_inverse2 apply auto[1]
|
|
331 |
by (smt Pow_Star Sequ_def add.commute mem_Collect_eq pow_add2)
|
|
332 |
|
|
333 |
lemma
|
|
334 |
"L (der c (FROMNTIMES r n)) =
|
|
335 |
L (SEQ (der c r) (FROMNTIMES r (n - 1)))"
|
|
336 |
apply(auto simp add: Sequ_def)
|
|
337 |
using Star_Pow apply blast
|
|
338 |
using Pow_Star by blast
|
|
339 |
|
|
340 |
lemma
|
|
341 |
"L (der c (UPNTIMES r n)) =
|
|
342 |
L(if n = 0 then ZERO else
|
|
343 |
ALT (der c r) (SEQ (der c r) (UPNTIMES r (n - 1))))"
|
|
344 |
apply(auto simp add: Sequ_def)
|
|
345 |
using SpecExt.Pow_empty by blast
|
|
346 |
|
273
|
347 |
fun
|
|
348 |
ders :: "string \<Rightarrow> rexp \<Rightarrow> rexp"
|
|
349 |
where
|
|
350 |
"ders [] r = r"
|
|
351 |
| "ders (c # s) r = ders s (der c r)"
|
|
352 |
|
|
353 |
|
|
354 |
lemma nullable_correctness:
|
|
355 |
shows "nullable r \<longleftrightarrow> [] \<in> (L r)"
|
|
356 |
by(induct r) (auto simp add: Sequ_def)
|
|
357 |
|
|
358 |
|
|
359 |
lemma der_correctness:
|
|
360 |
shows "L (der c r) = Der c (L r)"
|
|
361 |
apply(induct r)
|
|
362 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
363 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
364 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
365 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
366 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
367 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
368 |
prefer 2
|
|
369 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
370 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
371 |
apply(rule impI)
|
|
372 |
apply(subst Sequ_Union_in)
|
|
373 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
374 |
apply(subst Pow.simps[symmetric])
|
|
375 |
apply(subst Der_UNION[symmetric])
|
|
376 |
apply(subst Pow_Sequ_Un)
|
|
377 |
apply(simp)
|
|
378 |
apply(simp only: Der_union Der_empty)
|
276
|
379 |
apply(simp)
|
|
380 |
(* FROMNTIMES *)
|
|
381 |
apply(simp add: nullable_correctness del: Der_UNION)
|
277
|
382 |
apply(rule conjI)
|
|
383 |
prefer 2
|
273
|
384 |
apply(subst Sequ_Union_in)
|
|
385 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
386 |
apply(subst Pow.simps[symmetric])
|
|
387 |
apply(case_tac x2)
|
|
388 |
prefer 2
|
|
389 |
apply(subst Pow_Sequ_Un2)
|
|
390 |
apply(simp)
|
|
391 |
apply(simp)
|
277
|
392 |
apply(auto simp add: Sequ_def Der_def)[1]
|
|
393 |
apply(auto simp add: Sequ_def split: if_splits)[1]
|
|
394 |
using Star_Pow apply fastforce
|
|
395 |
using Pow_Star apply blast
|
276
|
396 |
(* NMTIMES *)
|
273
|
397 |
apply(simp add: nullable_correctness del: Der_UNION)
|
|
398 |
apply(rule impI)
|
|
399 |
apply(rule conjI)
|
|
400 |
apply(rule impI)
|
|
401 |
apply(subst Sequ_Union_in)
|
|
402 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
403 |
apply(subst Pow.simps[symmetric])
|
|
404 |
apply(subst Der_UNION[symmetric])
|
|
405 |
apply(case_tac x3a)
|
|
406 |
apply(simp)
|
|
407 |
apply(clarify)
|
|
408 |
apply(auto simp add: Sequ_def Der_def Cons_eq_append_conv)[1]
|
|
409 |
apply(rule_tac x="Suc xa" in bexI)
|
|
410 |
apply(auto simp add: Sequ_def)[2]
|
|
411 |
apply (metis append_Cons)
|
|
412 |
apply (metis (no_types, hide_lams) Pow_decomp atMost_iff diff_Suc_eq_diff_pred diff_is_0_eq)
|
|
413 |
apply(rule impI)+
|
|
414 |
apply(subst Sequ_Union_in)
|
|
415 |
apply(subst Der_Pow_Sequ[symmetric])
|
|
416 |
apply(subst Pow.simps[symmetric])
|
|
417 |
apply(subst Der_UNION[symmetric])
|
|
418 |
apply(case_tac x2)
|
|
419 |
apply(simp)
|
|
420 |
apply(simp del: Pow.simps)
|
|
421 |
apply(auto simp add: Sequ_def Der_def)
|
|
422 |
apply (metis One_nat_def Suc_le_D Suc_le_mono atLeastAtMost_iff diff_Suc_1 not_le)
|
|
423 |
by fastforce
|
|
424 |
|
|
425 |
|
|
426 |
|
|
427 |
lemma ders_correctness:
|
|
428 |
shows "L (ders s r) = Ders s (L r)"
|
|
429 |
by (induct s arbitrary: r)
|
|
430 |
(simp_all add: Ders_def der_correctness Der_def)
|
|
431 |
|
|
432 |
|
|
433 |
section {* Values *}
|
|
434 |
|
|
435 |
datatype val =
|
|
436 |
Void
|
|
437 |
| Char char
|
|
438 |
| Seq val val
|
|
439 |
| Right val
|
|
440 |
| Left val
|
|
441 |
| Stars "val list"
|
|
442 |
|
|
443 |
|
|
444 |
section {* The string behind a value *}
|
|
445 |
|
|
446 |
fun
|
|
447 |
flat :: "val \<Rightarrow> string"
|
|
448 |
where
|
|
449 |
"flat (Void) = []"
|
|
450 |
| "flat (Char c) = [c]"
|
|
451 |
| "flat (Left v) = flat v"
|
|
452 |
| "flat (Right v) = flat v"
|
|
453 |
| "flat (Seq v1 v2) = (flat v1) @ (flat v2)"
|
|
454 |
| "flat (Stars []) = []"
|
|
455 |
| "flat (Stars (v#vs)) = (flat v) @ (flat (Stars vs))"
|
|
456 |
|
|
457 |
abbreviation
|
|
458 |
"flats vs \<equiv> concat (map flat vs)"
|
|
459 |
|
|
460 |
lemma flat_Stars [simp]:
|
|
461 |
"flat (Stars vs) = flats vs"
|
|
462 |
by (induct vs) (auto)
|
|
463 |
|
|
464 |
lemma Star_concat:
|
|
465 |
assumes "\<forall>s \<in> set ss. s \<in> A"
|
|
466 |
shows "concat ss \<in> A\<star>"
|
|
467 |
using assms by (induct ss) (auto)
|
|
468 |
|
|
469 |
lemma Star_cstring:
|
|
470 |
assumes "s \<in> A\<star>"
|
|
471 |
shows "\<exists>ss. concat ss = s \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
|
|
472 |
using assms
|
|
473 |
apply(induct rule: Star.induct)
|
|
474 |
apply(auto)[1]
|
|
475 |
apply(rule_tac x="[]" in exI)
|
|
476 |
apply(simp)
|
|
477 |
apply(erule exE)
|
|
478 |
apply(clarify)
|
|
479 |
apply(case_tac "s1 = []")
|
|
480 |
apply(rule_tac x="ss" in exI)
|
|
481 |
apply(simp)
|
|
482 |
apply(rule_tac x="s1#ss" in exI)
|
|
483 |
apply(simp)
|
|
484 |
done
|
|
485 |
|
|
486 |
lemma Aux:
|
|
487 |
assumes "\<forall>s\<in>set ss. s = []"
|
|
488 |
shows "concat ss = []"
|
|
489 |
using assms
|
|
490 |
by (induct ss) (auto)
|
|
491 |
|
|
492 |
lemma Pow_cstring_nonempty:
|
|
493 |
assumes "s \<in> A \<up> n"
|
|
494 |
shows "\<exists>ss. concat ss = s \<and> length ss \<le> n \<and> (\<forall>s \<in> set ss. s \<in> A \<and> s \<noteq> [])"
|
|
495 |
using assms
|
|
496 |
apply(induct n arbitrary: s)
|
|
497 |
apply(auto)
|
|
498 |
apply(simp add: Sequ_def)
|
|
499 |
apply(erule exE)+
|
|
500 |
apply(clarify)
|
|
501 |
apply(drule_tac x="s2" in meta_spec)
|
|
502 |
apply(simp)
|
|
503 |
apply(clarify)
|
|
504 |
apply(case_tac "s1 = []")
|
|
505 |
apply(simp)
|
|
506 |
apply(rule_tac x="ss" in exI)
|
|
507 |
apply(simp)
|
|
508 |
apply(rule_tac x="s1 # ss" in exI)
|
|
509 |
apply(simp)
|
|
510 |
done
|
|
511 |
|
|
512 |
lemma Pow_cstring:
|
|
513 |
assumes "s \<in> A \<up> n"
|
|
514 |
shows "\<exists>ss1 ss2. concat (ss1 @ ss2) = s \<and> length (ss1 @ ss2) = n \<and>
|
|
515 |
(\<forall>s \<in> set ss1. s \<in> A \<and> s \<noteq> []) \<and> (\<forall>s \<in> set ss2. s \<in> A \<and> s = [])"
|
|
516 |
using assms
|
|
517 |
apply(induct n arbitrary: s)
|
|
518 |
apply(auto)[1]
|
|
519 |
apply(simp only: Pow_Suc_rev)
|
|
520 |
apply(simp add: Sequ_def)
|
|
521 |
apply(erule exE)+
|
|
522 |
apply(clarify)
|
|
523 |
apply(drule_tac x="s1" in meta_spec)
|
|
524 |
apply(simp)
|
|
525 |
apply(erule exE)+
|
|
526 |
apply(clarify)
|
|
527 |
apply(case_tac "s2 = []")
|
|
528 |
apply(simp)
|
|
529 |
apply(rule_tac x="ss1" in exI)
|
|
530 |
apply(rule_tac x="s2#ss2" in exI)
|
|
531 |
apply(simp)
|
|
532 |
apply(rule_tac x="ss1 @ [s2]" in exI)
|
|
533 |
apply(rule_tac x="ss2" in exI)
|
|
534 |
apply(simp)
|
|
535 |
apply(subst Aux)
|
|
536 |
apply(auto)[1]
|
|
537 |
apply(subst Aux)
|
|
538 |
apply(auto)[1]
|
|
539 |
apply(simp)
|
|
540 |
done
|
|
541 |
|
|
542 |
|
|
543 |
section {* Lexical Values *}
|
|
544 |
|
|
545 |
|
|
546 |
|
|
547 |
inductive
|
|
548 |
Prf :: "val \<Rightarrow> rexp \<Rightarrow> bool" ("\<Turnstile> _ : _" [100, 100] 100)
|
|
549 |
where
|
|
550 |
"\<lbrakk>\<Turnstile> v1 : r1; \<Turnstile> v2 : r2\<rbrakk> \<Longrightarrow> \<Turnstile> Seq v1 v2 : SEQ r1 r2"
|
|
551 |
| "\<Turnstile> v1 : r1 \<Longrightarrow> \<Turnstile> Left v1 : ALT r1 r2"
|
|
552 |
| "\<Turnstile> v2 : r2 \<Longrightarrow> \<Turnstile> Right v2 : ALT r1 r2"
|
|
553 |
| "\<Turnstile> Void : ONE"
|
|
554 |
| "\<Turnstile> Char c : CHAR c"
|
|
555 |
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : STAR r"
|
|
556 |
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs \<le> n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : UPNTIMES r n"
|
|
557 |
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
|
|
558 |
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
|
|
559 |
length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NTIMES r n"
|
|
560 |
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
|
|
561 |
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
|
275
|
562 |
length (vs1 @ vs2) = n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : FROMNTIMES r n"
|
|
563 |
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> []; length vs > n\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : FROMNTIMES r n"
|
273
|
564 |
| "\<lbrakk>\<forall>v \<in> set vs1. \<Turnstile> v : r \<and> flat v \<noteq> [];
|
|
565 |
\<forall>v \<in> set vs2. \<Turnstile> v : r \<and> flat v = [];
|
275
|
566 |
length (vs1 @ vs2) = n; length (vs1 @ vs2) \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars (vs1 @ vs2) : NMTIMES r n m"
|
|
567 |
| "\<lbrakk>\<forall>v \<in> set vs. \<Turnstile> v : r \<and> flat v \<noteq> [];
|
|
568 |
length vs > n; length vs \<le> m\<rbrakk> \<Longrightarrow> \<Turnstile> Stars vs : NMTIMES r n m"
|
273
|
569 |
|
293
|
570 |
|
|
571 |
|
|
572 |
|
|
573 |
|
273
|
574 |
inductive_cases Prf_elims:
|
|
575 |
"\<Turnstile> v : ZERO"
|
|
576 |
"\<Turnstile> v : SEQ r1 r2"
|
|
577 |
"\<Turnstile> v : ALT r1 r2"
|
|
578 |
"\<Turnstile> v : ONE"
|
|
579 |
"\<Turnstile> v : CHAR c"
|
|
580 |
"\<Turnstile> vs : STAR r"
|
|
581 |
"\<Turnstile> vs : UPNTIMES r n"
|
|
582 |
"\<Turnstile> vs : NTIMES r n"
|
|
583 |
"\<Turnstile> vs : FROMNTIMES r n"
|
|
584 |
"\<Turnstile> vs : NMTIMES r n m"
|
|
585 |
|
|
586 |
lemma Prf_Stars_appendE:
|
|
587 |
assumes "\<Turnstile> Stars (vs1 @ vs2) : STAR r"
|
|
588 |
shows "\<Turnstile> Stars vs1 : STAR r \<and> \<Turnstile> Stars vs2 : STAR r"
|
|
589 |
using assms
|
|
590 |
by (auto intro: Prf.intros elim!: Prf_elims)
|
|
591 |
|
274
|
592 |
|
|
593 |
|
273
|
594 |
lemma flats_empty:
|
|
595 |
assumes "(\<forall>v\<in>set vs. flat v = [])"
|
|
596 |
shows "flats vs = []"
|
|
597 |
using assms
|
|
598 |
by(induct vs) (simp_all)
|
|
599 |
|
|
600 |
lemma Star_cval:
|
|
601 |
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
|
|
602 |
shows "\<exists>vs. flats vs = concat ss \<and> (\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
|
|
603 |
using assms
|
|
604 |
apply(induct ss)
|
|
605 |
apply(auto)
|
|
606 |
apply(rule_tac x="[]" in exI)
|
|
607 |
apply(simp)
|
|
608 |
apply(case_tac "flat v = []")
|
|
609 |
apply(rule_tac x="vs" in exI)
|
|
610 |
apply(simp)
|
|
611 |
apply(rule_tac x="v#vs" in exI)
|
|
612 |
apply(simp)
|
|
613 |
done
|
|
614 |
|
|
615 |
|
|
616 |
lemma flats_cval:
|
|
617 |
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
|
|
618 |
shows "\<exists>vs1 vs2. flats (vs1 @ vs2) = concat ss \<and> length (vs1 @ vs2) = length ss \<and>
|
|
619 |
(\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []) \<and>
|
|
620 |
(\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = [])"
|
|
621 |
using assms
|
|
622 |
apply(induct ss rule: rev_induct)
|
|
623 |
apply(rule_tac x="[]" in exI)+
|
|
624 |
apply(simp)
|
|
625 |
apply(simp)
|
|
626 |
apply(clarify)
|
|
627 |
apply(case_tac "flat v = []")
|
|
628 |
apply(rule_tac x="vs1" in exI)
|
|
629 |
apply(rule_tac x="v#vs2" in exI)
|
|
630 |
apply(simp)
|
|
631 |
apply(rule_tac x="vs1 @ [v]" in exI)
|
|
632 |
apply(rule_tac x="vs2" in exI)
|
|
633 |
apply(simp)
|
|
634 |
apply(subst (asm) (2) flats_empty)
|
|
635 |
apply(simp)
|
|
636 |
apply(simp)
|
|
637 |
done
|
|
638 |
|
|
639 |
lemma flats_cval_nonempty:
|
|
640 |
assumes "\<forall>s\<in>set ss. \<exists>v. s = flat v \<and> \<Turnstile> v : r"
|
|
641 |
shows "\<exists>vs. flats vs = concat ss \<and> length vs \<le> length ss \<and>
|
|
642 |
(\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> [])"
|
|
643 |
using assms
|
|
644 |
apply(induct ss)
|
|
645 |
apply(rule_tac x="[]" in exI)
|
|
646 |
apply(simp)
|
|
647 |
apply(simp)
|
|
648 |
apply(clarify)
|
|
649 |
apply(case_tac "flat v = []")
|
|
650 |
apply(rule_tac x="vs" in exI)
|
|
651 |
apply(simp)
|
|
652 |
apply(rule_tac x="v # vs" in exI)
|
|
653 |
apply(simp)
|
|
654 |
done
|
|
655 |
|
|
656 |
lemma Pow_flats:
|
|
657 |
assumes "\<forall>v \<in> set vs. flat v \<in> A"
|
|
658 |
shows "flats vs \<in> A \<up> length vs"
|
|
659 |
using assms
|
|
660 |
by(induct vs)(auto simp add: Sequ_def)
|
|
661 |
|
|
662 |
lemma Pow_flats_appends:
|
|
663 |
assumes "\<forall>v \<in> set vs1. flat v \<in> A" "\<forall>v \<in> set vs2. flat v \<in> A"
|
|
664 |
shows "flats vs1 @ flats vs2 \<in> A \<up> (length vs1 + length vs2)"
|
|
665 |
using assms
|
|
666 |
apply(induct vs1)
|
|
667 |
apply(auto simp add: Sequ_def Pow_flats)
|
|
668 |
done
|
|
669 |
|
|
670 |
lemma L_flat_Prf1:
|
|
671 |
assumes "\<Turnstile> v : r"
|
|
672 |
shows "flat v \<in> L r"
|
|
673 |
using assms
|
|
674 |
apply(induct)
|
|
675 |
apply(auto simp add: Sequ_def Star_concat Pow_flats)
|
|
676 |
apply(meson Pow_flats atMost_iff)
|
|
677 |
using Pow_flats_appends apply blast
|
275
|
678 |
using Pow_flats_appends apply blast
|
|
679 |
apply (meson Pow_flats atLeast_iff less_imp_le)
|
|
680 |
apply(rule_tac x="length vs1 + length vs2" in bexI)
|
273
|
681 |
apply(meson Pow_flats_appends atLeastAtMost_iff)
|
275
|
682 |
apply(simp)
|
|
683 |
apply(meson Pow_flats atLeastAtMost_iff less_or_eq_imp_le)
|
273
|
684 |
done
|
|
685 |
|
|
686 |
lemma L_flat_Prf2:
|
|
687 |
assumes "s \<in> L r"
|
|
688 |
shows "\<exists>v. \<Turnstile> v : r \<and> flat v = s"
|
|
689 |
using assms
|
|
690 |
proof(induct r arbitrary: s)
|
|
691 |
case (STAR r s)
|
|
692 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
693 |
have "s \<in> L (STAR r)" by fact
|
|
694 |
then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []"
|
|
695 |
using Star_cstring by auto
|
|
696 |
then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []"
|
|
697 |
using IH Star_cval by metis
|
|
698 |
then show "\<exists>v. \<Turnstile> v : STAR r \<and> flat v = s"
|
|
699 |
using Prf.intros(6) flat_Stars by blast
|
|
700 |
next
|
|
701 |
case (SEQ r1 r2 s)
|
|
702 |
then show "\<exists>v. \<Turnstile> v : SEQ r1 r2 \<and> flat v = s"
|
|
703 |
unfolding Sequ_def L.simps by (fastforce intro: Prf.intros)
|
|
704 |
next
|
|
705 |
case (ALT r1 r2 s)
|
|
706 |
then show "\<exists>v. \<Turnstile> v : ALT r1 r2 \<and> flat v = s"
|
|
707 |
unfolding L.simps by (fastforce intro: Prf.intros)
|
|
708 |
next
|
|
709 |
case (NTIMES r n)
|
|
710 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
711 |
have "s \<in> L (NTIMES r n)" by fact
|
|
712 |
then obtain ss1 ss2 where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = n"
|
|
713 |
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
|
|
714 |
using Pow_cstring by force
|
|
715 |
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = n"
|
|
716 |
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
|
|
717 |
using IH flats_cval
|
|
718 |
apply -
|
|
719 |
apply(drule_tac x="ss1 @ ss2" in meta_spec)
|
|
720 |
apply(drule_tac x="r" in meta_spec)
|
|
721 |
apply(drule meta_mp)
|
|
722 |
apply(simp)
|
|
723 |
apply (metis Un_iff)
|
|
724 |
apply(clarify)
|
|
725 |
apply(drule_tac x="vs1" in meta_spec)
|
|
726 |
apply(drule_tac x="vs2" in meta_spec)
|
|
727 |
apply(simp)
|
|
728 |
done
|
|
729 |
then show "\<exists>v. \<Turnstile> v : NTIMES r n \<and> flat v = s"
|
|
730 |
using Prf.intros(8) flat_Stars by blast
|
|
731 |
next
|
|
732 |
case (FROMNTIMES r n)
|
|
733 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
734 |
have "s \<in> L (FROMNTIMES r n)" by fact
|
276
|
735 |
then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k"
|
273
|
736 |
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
|
275
|
737 |
using Pow_cstring by force
|
276
|
738 |
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k"
|
273
|
739 |
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
|
|
740 |
using IH flats_cval
|
|
741 |
apply -
|
|
742 |
apply(drule_tac x="ss1 @ ss2" in meta_spec)
|
|
743 |
apply(drule_tac x="r" in meta_spec)
|
|
744 |
apply(drule meta_mp)
|
|
745 |
apply(simp)
|
|
746 |
apply (metis Un_iff)
|
|
747 |
apply(clarify)
|
|
748 |
apply(drule_tac x="vs1" in meta_spec)
|
|
749 |
apply(drule_tac x="vs2" in meta_spec)
|
|
750 |
apply(simp)
|
|
751 |
done
|
|
752 |
then show "\<exists>v. \<Turnstile> v : FROMNTIMES r n \<and> flat v = s"
|
275
|
753 |
apply(case_tac "length vs1 \<le> n")
|
|
754 |
apply(rule_tac x="Stars (vs1 @ take (n - length vs1) vs2)" in exI)
|
|
755 |
apply(simp)
|
|
756 |
apply(subgoal_tac "flats (take (n - length vs1) vs2) = []")
|
|
757 |
prefer 2
|
|
758 |
apply (meson flats_empty in_set_takeD)
|
|
759 |
apply(clarify)
|
|
760 |
apply(rule conjI)
|
|
761 |
apply(rule Prf.intros)
|
|
762 |
apply(simp)
|
|
763 |
apply (meson in_set_takeD)
|
|
764 |
apply(simp)
|
|
765 |
apply(simp)
|
|
766 |
apply (simp add: flats_empty)
|
|
767 |
apply(rule_tac x="Stars vs1" in exI)
|
|
768 |
apply(simp)
|
|
769 |
apply(rule conjI)
|
|
770 |
apply(rule Prf.intros(10))
|
|
771 |
apply(auto)
|
|
772 |
done
|
273
|
773 |
next
|
|
774 |
case (NMTIMES r n m)
|
|
775 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
776 |
have "s \<in> L (NMTIMES r n m)" by fact
|
|
777 |
then obtain ss1 ss2 k where "concat (ss1 @ ss2) = s" "length (ss1 @ ss2) = k" "n \<le> k" "k \<le> m"
|
|
778 |
"\<forall>s \<in> set ss1. s \<in> L r \<and> s \<noteq> []" "\<forall>s \<in> set ss2. s \<in> L r \<and> s = []"
|
|
779 |
using Pow_cstring by (auto, blast)
|
|
780 |
then obtain vs1 vs2 where "flats (vs1 @ vs2) = s" "length (vs1 @ vs2) = k" "n \<le> k" "k \<le> m"
|
|
781 |
"\<forall>v\<in>set vs1. \<Turnstile> v : r \<and> flat v \<noteq> []" "\<forall>v\<in>set vs2. \<Turnstile> v : r \<and> flat v = []"
|
|
782 |
using IH flats_cval
|
|
783 |
apply -
|
|
784 |
apply(drule_tac x="ss1 @ ss2" in meta_spec)
|
|
785 |
apply(drule_tac x="r" in meta_spec)
|
|
786 |
apply(drule meta_mp)
|
|
787 |
apply(simp)
|
|
788 |
apply (metis Un_iff)
|
|
789 |
apply(clarify)
|
|
790 |
apply(drule_tac x="vs1" in meta_spec)
|
|
791 |
apply(drule_tac x="vs2" in meta_spec)
|
|
792 |
apply(simp)
|
|
793 |
done
|
|
794 |
then show "\<exists>v. \<Turnstile> v : NMTIMES r n m \<and> flat v = s"
|
276
|
795 |
apply(case_tac "length vs1 \<le> n")
|
|
796 |
apply(rule_tac x="Stars (vs1 @ take (n - length vs1) vs2)" in exI)
|
273
|
797 |
apply(simp)
|
276
|
798 |
apply(subgoal_tac "flats (take (n - length vs1) vs2) = []")
|
|
799 |
prefer 2
|
|
800 |
apply (meson flats_empty in_set_takeD)
|
|
801 |
apply(clarify)
|
|
802 |
apply(rule conjI)
|
|
803 |
apply(rule Prf.intros)
|
|
804 |
apply(simp)
|
|
805 |
apply (meson in_set_takeD)
|
|
806 |
apply(simp)
|
|
807 |
apply(simp)
|
|
808 |
apply (simp add: flats_empty)
|
|
809 |
apply(rule_tac x="Stars vs1" in exI)
|
|
810 |
apply(simp)
|
|
811 |
apply(rule conjI)
|
|
812 |
apply(rule Prf.intros)
|
|
813 |
apply(auto)
|
|
814 |
done
|
273
|
815 |
next
|
|
816 |
case (UPNTIMES r n s)
|
|
817 |
have IH: "\<And>s. s \<in> L r \<Longrightarrow> \<exists>v. \<Turnstile> v : r \<and> flat v = s" by fact
|
|
818 |
have "s \<in> L (UPNTIMES r n)" by fact
|
|
819 |
then obtain ss where "concat ss = s" "\<forall>s \<in> set ss. s \<in> L r \<and> s \<noteq> []" "length ss \<le> n"
|
|
820 |
using Pow_cstring_nonempty by force
|
|
821 |
then obtain vs where "flats vs = s" "\<forall>v\<in>set vs. \<Turnstile> v : r \<and> flat v \<noteq> []" "length vs \<le> n"
|
|
822 |
using IH flats_cval_nonempty by (smt order.trans)
|
|
823 |
then show "\<exists>v. \<Turnstile> v : UPNTIMES r n \<and> flat v = s"
|
|
824 |
using Prf.intros(7) flat_Stars by blast
|
|
825 |
qed (auto intro: Prf.intros)
|
|
826 |
|
|
827 |
|
|
828 |
lemma L_flat_Prf:
|
|
829 |
shows "L(r) = {flat v | v. \<Turnstile> v : r}"
|
|
830 |
using L_flat_Prf1 L_flat_Prf2 by blast
|
|
831 |
|
293
|
832 |
thm Prf.intros
|
|
833 |
thm Prf.cases
|
273
|
834 |
|
293
|
835 |
lemma
|
|
836 |
assumes "\<Turnstile> v : (STAR r)"
|
|
837 |
shows "\<Turnstile> v : (FROMNTIMES r 0)"
|
|
838 |
using assms
|
|
839 |
apply(erule_tac Prf.cases)
|
|
840 |
apply(simp_all)
|
|
841 |
apply(case_tac vs)
|
|
842 |
apply(auto)
|
|
843 |
apply(subst append_Nil[symmetric])
|
|
844 |
apply(rule Prf.intros)
|
|
845 |
apply(auto)
|
|
846 |
apply(simp add: Prf.intros)
|
|
847 |
done
|
|
848 |
|
|
849 |
lemma
|
|
850 |
assumes "\<Turnstile> v : (FROMNTIMES r 0)"
|
|
851 |
shows "\<Turnstile> v : (STAR r)"
|
|
852 |
using assms
|
|
853 |
apply(erule_tac Prf.cases)
|
|
854 |
apply(simp_all)
|
|
855 |
apply(rule Prf.intros)
|
|
856 |
apply(simp)
|
|
857 |
apply(rule Prf.intros)
|
|
858 |
apply(simp)
|
|
859 |
done
|
273
|
860 |
|
|
861 |
section {* Sets of Lexical Values *}
|
|
862 |
|
|
863 |
text {*
|
|
864 |
Shows that lexical values are finite for a given regex and string.
|
|
865 |
*}
|
|
866 |
|
|
867 |
definition
|
|
868 |
LV :: "rexp \<Rightarrow> string \<Rightarrow> val set"
|
|
869 |
where "LV r s \<equiv> {v. \<Turnstile> v : r \<and> flat v = s}"
|
|
870 |
|
|
871 |
lemma LV_simps:
|
|
872 |
shows "LV ZERO s = {}"
|
|
873 |
and "LV ONE s = (if s = [] then {Void} else {})"
|
|
874 |
and "LV (CHAR c) s = (if s = [c] then {Char c} else {})"
|
|
875 |
and "LV (ALT r1 r2) s = Left ` LV r1 s \<union> Right ` LV r2 s"
|
|
876 |
unfolding LV_def
|
274
|
877 |
apply(auto intro: Prf.intros elim: Prf.cases)
|
|
878 |
done
|
273
|
879 |
|
|
880 |
abbreviation
|
275
|
881 |
"Prefixes s \<equiv> {s'. prefix s' s}"
|
273
|
882 |
|
|
883 |
abbreviation
|
275
|
884 |
"Suffixes s \<equiv> {s'. suffix s' s}"
|
273
|
885 |
|
|
886 |
abbreviation
|
275
|
887 |
"SSuffixes s \<equiv> {s'. strict_suffix s' s}"
|
273
|
888 |
|
|
889 |
lemma Suffixes_cons [simp]:
|
|
890 |
shows "Suffixes (c # s) = Suffixes s \<union> {c # s}"
|
275
|
891 |
by (auto simp add: suffix_def Cons_eq_append_conv)
|
273
|
892 |
|
|
893 |
|
|
894 |
lemma finite_Suffixes:
|
|
895 |
shows "finite (Suffixes s)"
|
|
896 |
by (induct s) (simp_all)
|
|
897 |
|
|
898 |
lemma finite_SSuffixes:
|
|
899 |
shows "finite (SSuffixes s)"
|
|
900 |
proof -
|
|
901 |
have "SSuffixes s \<subseteq> Suffixes s"
|
275
|
902 |
unfolding suffix_def strict_suffix_def by auto
|
273
|
903 |
then show "finite (SSuffixes s)"
|
|
904 |
using finite_Suffixes finite_subset by blast
|
|
905 |
qed
|
|
906 |
|
|
907 |
lemma finite_Prefixes:
|
|
908 |
shows "finite (Prefixes s)"
|
|
909 |
proof -
|
|
910 |
have "finite (Suffixes (rev s))"
|
|
911 |
by (rule finite_Suffixes)
|
|
912 |
then have "finite (rev ` Suffixes (rev s))" by simp
|
|
913 |
moreover
|
|
914 |
have "rev ` (Suffixes (rev s)) = Prefixes s"
|
275
|
915 |
unfolding suffix_def prefix_def image_def
|
273
|
916 |
by (auto)(metis rev_append rev_rev_ident)+
|
|
917 |
ultimately show "finite (Prefixes s)" by simp
|
|
918 |
qed
|
|
919 |
|
276
|
920 |
definition
|
|
921 |
"Stars_Cons V Vs \<equiv> {Stars (v # vs) | v vs. v \<in> V \<and> Stars vs \<in> Vs}"
|
|
922 |
|
|
923 |
definition
|
|
924 |
"Stars_Append Vs1 Vs2 \<equiv> {Stars (vs1 @ vs2) | vs1 vs2. Stars vs1 \<in> Vs1 \<and> Stars vs2 \<in> Vs2}"
|
|
925 |
|
|
926 |
fun Stars_Pow :: "val set \<Rightarrow> nat \<Rightarrow> val set"
|
|
927 |
where
|
|
928 |
"Stars_Pow Vs 0 = {Stars []}"
|
|
929 |
| "Stars_Pow Vs (Suc n) = Stars_Cons Vs (Stars_Pow Vs n)"
|
|
930 |
|
|
931 |
lemma finite_Stars_Cons:
|
|
932 |
assumes "finite V" "finite Vs"
|
|
933 |
shows "finite (Stars_Cons V Vs)"
|
|
934 |
using assms
|
|
935 |
proof -
|
|
936 |
from assms(2) have "finite (Stars -` Vs)"
|
|
937 |
by(simp add: finite_vimageI inj_on_def)
|
|
938 |
with assms(1) have "finite (V \<times> (Stars -` Vs))"
|
|
939 |
by(simp)
|
|
940 |
then have "finite ((\<lambda>(v, vs). Stars (v # vs)) ` (V \<times> (Stars -` Vs)))"
|
|
941 |
by simp
|
|
942 |
moreover have "Stars_Cons V Vs = (\<lambda>(v, vs). Stars (v # vs)) ` (V \<times> (Stars -` Vs))"
|
|
943 |
unfolding Stars_Cons_def by auto
|
|
944 |
ultimately show "finite (Stars_Cons V Vs)"
|
|
945 |
by simp
|
|
946 |
qed
|
|
947 |
|
|
948 |
lemma finite_Stars_Append:
|
|
949 |
assumes "finite Vs1" "finite Vs2"
|
|
950 |
shows "finite (Stars_Append Vs1 Vs2)"
|
|
951 |
using assms
|
|
952 |
proof -
|
|
953 |
define UVs1 where "UVs1 \<equiv> Stars -` Vs1"
|
|
954 |
define UVs2 where "UVs2 \<equiv> Stars -` Vs2"
|
|
955 |
from assms have "finite UVs1" "finite UVs2"
|
|
956 |
unfolding UVs1_def UVs2_def
|
|
957 |
by(simp_all add: finite_vimageI inj_on_def)
|
|
958 |
then have "finite ((\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2))"
|
|
959 |
by simp
|
|
960 |
moreover
|
|
961 |
have "Stars_Append Vs1 Vs2 = (\<lambda>(vs1, vs2). Stars (vs1 @ vs2)) ` (UVs1 \<times> UVs2)"
|
|
962 |
unfolding Stars_Append_def UVs1_def UVs2_def by auto
|
|
963 |
ultimately show "finite (Stars_Append Vs1 Vs2)"
|
|
964 |
by simp
|
|
965 |
qed
|
|
966 |
|
|
967 |
lemma finite_Stars_Pow:
|
|
968 |
assumes "finite Vs"
|
|
969 |
shows "finite (Stars_Pow Vs n)"
|
|
970 |
by (induct n) (simp_all add: finite_Stars_Cons assms)
|
|
971 |
|
273
|
972 |
lemma LV_STAR_finite:
|
|
973 |
assumes "\<forall>s. finite (LV r s)"
|
|
974 |
shows "finite (LV (STAR r) s)"
|
|
975 |
proof(induct s rule: length_induct)
|
|
976 |
fix s::"char list"
|
|
977 |
assume "\<forall>s'. length s' < length s \<longrightarrow> finite (LV (STAR r) s')"
|
|
978 |
then have IH: "\<forall>s' \<in> SSuffixes s. finite (LV (STAR r) s')"
|
279
|
979 |
apply(auto simp add: strict_suffix_def suffix_def)
|
|
980 |
by force
|
275
|
981 |
define f where "f \<equiv> \<lambda>(v, vs). Stars (v # vs)"
|
|
982 |
define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r s'"
|
276
|
983 |
define S2 where "S2 \<equiv> \<Union>s2 \<in> SSuffixes s. LV (STAR r) s2"
|
273
|
984 |
have "finite S1" using assms
|
|
985 |
unfolding S1_def by (simp_all add: finite_Prefixes)
|
|
986 |
moreover
|
|
987 |
with IH have "finite S2" unfolding S2_def
|
276
|
988 |
by (auto simp add: finite_SSuffixes)
|
273
|
989 |
ultimately
|
276
|
990 |
have "finite ({Stars []} \<union> Stars_Cons S1 S2)"
|
|
991 |
by (simp add: finite_Stars_Cons)
|
273
|
992 |
moreover
|
276
|
993 |
have "LV (STAR r) s \<subseteq> {Stars []} \<union> (Stars_Cons S1 S2)"
|
|
994 |
unfolding S1_def S2_def f_def LV_def Stars_Cons_def
|
|
995 |
unfolding prefix_def strict_suffix_def
|
|
996 |
unfolding image_def
|
275
|
997 |
apply(auto)
|
|
998 |
apply(case_tac x)
|
273
|
999 |
apply(auto elim: Prf_elims)
|
|
1000 |
apply(erule Prf_elims)
|
|
1001 |
apply(auto)
|
|
1002 |
apply(case_tac vs)
|
275
|
1003 |
apply(auto intro: Prf.intros)
|
|
1004 |
apply(rule exI)
|
|
1005 |
apply(rule conjI)
|
276
|
1006 |
apply(rule_tac x="flats list" in exI)
|
279
|
1007 |
apply(rule conjI)
|
|
1008 |
apply(simp add: suffix_def)
|
275
|
1009 |
apply(blast)
|
276
|
1010 |
using Prf.intros(6) flat_Stars by blast
|
273
|
1011 |
ultimately
|
|
1012 |
show "finite (LV (STAR r) s)" by (simp add: finite_subset)
|
|
1013 |
qed
|
|
1014 |
|
|
1015 |
lemma LV_UPNTIMES_STAR:
|
|
1016 |
"LV (UPNTIMES r n) s \<subseteq> LV (STAR r) s"
|
|
1017 |
by(auto simp add: LV_def intro: Prf.intros elim: Prf_elims)
|
|
1018 |
|
274
|
1019 |
lemma LV_NTIMES_3:
|
|
1020 |
shows "LV (NTIMES r (Suc n)) [] = (\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (NTIMES r n) [])))"
|
|
1021 |
unfolding LV_def
|
|
1022 |
apply(auto elim!: Prf_elims simp add: image_def)
|
|
1023 |
apply(case_tac vs1)
|
|
1024 |
apply(auto)
|
|
1025 |
apply(case_tac vs2)
|
|
1026 |
apply(auto)
|
|
1027 |
apply(subst append.simps(1)[symmetric])
|
|
1028 |
apply(rule Prf.intros)
|
|
1029 |
apply(auto)
|
|
1030 |
apply(subst append.simps(1)[symmetric])
|
|
1031 |
apply(rule Prf.intros)
|
|
1032 |
apply(auto)
|
276
|
1033 |
done
|
275
|
1034 |
|
276
|
1035 |
lemma LV_FROMNTIMES_3:
|
|
1036 |
shows "LV (FROMNTIMES r (Suc n)) [] =
|
|
1037 |
(\<lambda>(v,vs). Stars (v#vs)) ` (LV r [] \<times> (Stars -` (LV (FROMNTIMES r n) [])))"
|
|
1038 |
unfolding LV_def
|
|
1039 |
apply(auto elim!: Prf_elims simp add: image_def)
|
|
1040 |
apply(case_tac vs1)
|
|
1041 |
apply(auto)
|
|
1042 |
apply(case_tac vs2)
|
|
1043 |
apply(auto)
|
|
1044 |
apply(subst append.simps(1)[symmetric])
|
|
1045 |
apply(rule Prf.intros)
|
|
1046 |
apply(auto)
|
|
1047 |
apply (metis le_imp_less_Suc length_greater_0_conv less_antisym list.exhaust list.set_intros(1) not_less_eq zero_le)
|
|
1048 |
prefer 2
|
|
1049 |
using nth_mem apply blast
|
|
1050 |
apply(case_tac vs1)
|
|
1051 |
apply (smt Groups.add_ac(2) Prf.intros(9) add.right_neutral add_Suc_right append.simps(1) insert_iff length_append list.set(2) list.size(3) list.size(4))
|
275
|
1052 |
apply(auto)
|
276
|
1053 |
done
|
|
1054 |
|
|
1055 |
lemma LV_NTIMES_4:
|
|
1056 |
"LV (NTIMES r n) [] = Stars_Pow (LV r []) n"
|
|
1057 |
apply(induct n)
|
|
1058 |
apply(simp add: LV_def)
|
|
1059 |
apply(auto elim!: Prf_elims simp add: image_def)[1]
|
|
1060 |
apply(subst append.simps[symmetric])
|
|
1061 |
apply(rule Prf.intros)
|
|
1062 |
apply(simp_all)
|
|
1063 |
apply(simp add: LV_NTIMES_3 image_def Stars_Cons_def)
|
|
1064 |
apply blast
|
|
1065 |
done
|
274
|
1066 |
|
276
|
1067 |
lemma LV_NTIMES_5:
|
|
1068 |
"LV (NTIMES r n) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (NTIMES r i) [])"
|
|
1069 |
apply(auto simp add: LV_def)
|
|
1070 |
apply(auto elim!: Prf_elims)
|
|
1071 |
apply(auto simp add: Stars_Append_def)
|
|
1072 |
apply(rule_tac x="vs1" in exI)
|
|
1073 |
apply(rule_tac x="vs2" in exI)
|
|
1074 |
apply(auto)
|
|
1075 |
using Prf.intros(6) apply(auto)
|
|
1076 |
apply(rule_tac x="length vs2" in bexI)
|
|
1077 |
thm Prf.intros
|
|
1078 |
apply(subst append.simps(1)[symmetric])
|
|
1079 |
apply(rule Prf.intros)
|
|
1080 |
apply(auto)[1]
|
|
1081 |
apply(auto)[1]
|
|
1082 |
apply(simp)
|
|
1083 |
apply(simp)
|
|
1084 |
done
|
|
1085 |
|
|
1086 |
lemma ttty:
|
|
1087 |
"LV (FROMNTIMES r n) [] = Stars_Pow (LV r []) n"
|
|
1088 |
apply(induct n)
|
|
1089 |
apply(simp add: LV_def)
|
|
1090 |
apply(auto elim: Prf_elims simp add: image_def)[1]
|
|
1091 |
prefer 2
|
|
1092 |
apply(subst append.simps[symmetric])
|
|
1093 |
apply(rule Prf.intros)
|
|
1094 |
apply(simp_all)
|
|
1095 |
apply(erule Prf_elims)
|
|
1096 |
apply(case_tac vs1)
|
|
1097 |
apply(simp)
|
|
1098 |
apply(simp)
|
|
1099 |
apply(case_tac x)
|
|
1100 |
apply(simp_all)
|
|
1101 |
apply(simp add: LV_FROMNTIMES_3 image_def Stars_Cons_def)
|
|
1102 |
apply blast
|
|
1103 |
done
|
|
1104 |
|
|
1105 |
lemma LV_FROMNTIMES_5:
|
|
1106 |
"LV (FROMNTIMES r n) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (FROMNTIMES r i) [])"
|
|
1107 |
apply(auto simp add: LV_def)
|
|
1108 |
apply(auto elim!: Prf_elims)
|
|
1109 |
apply(auto simp add: Stars_Append_def)
|
|
1110 |
apply(rule_tac x="vs1" in exI)
|
|
1111 |
apply(rule_tac x="vs2" in exI)
|
|
1112 |
apply(auto)
|
|
1113 |
using Prf.intros(6) apply(auto)
|
|
1114 |
apply(rule_tac x="length vs2" in bexI)
|
|
1115 |
thm Prf.intros
|
|
1116 |
apply(subst append.simps(1)[symmetric])
|
|
1117 |
apply(rule Prf.intros)
|
|
1118 |
apply(auto)[1]
|
|
1119 |
apply(auto)[1]
|
|
1120 |
apply(simp)
|
|
1121 |
apply(simp)
|
|
1122 |
apply(rule_tac x="vs" in exI)
|
|
1123 |
apply(rule_tac x="[]" in exI)
|
|
1124 |
apply(auto)
|
|
1125 |
by (metis Prf.intros(9) append_Nil atMost_iff empty_iff le_imp_less_Suc less_antisym list.set(1) nth_mem zero_le)
|
|
1126 |
|
|
1127 |
lemma LV_FROMNTIMES_6:
|
|
1128 |
assumes "\<forall>s. finite (LV r s)"
|
|
1129 |
shows "finite (LV (FROMNTIMES r n) s)"
|
275
|
1130 |
apply(rule finite_subset)
|
276
|
1131 |
apply(rule LV_FROMNTIMES_5)
|
|
1132 |
apply(rule finite_Stars_Append)
|
|
1133 |
apply(rule LV_STAR_finite)
|
|
1134 |
apply(rule assms)
|
|
1135 |
apply(rule finite_UN_I)
|
|
1136 |
apply(auto)
|
|
1137 |
by (simp add: assms finite_Stars_Pow ttty)
|
275
|
1138 |
|
276
|
1139 |
lemma LV_NMTIMES_5:
|
|
1140 |
"LV (NMTIMES r n m) s \<subseteq> Stars_Append (LV (STAR r) s) (\<Union>i\<le>n. LV (FROMNTIMES r i) [])"
|
|
1141 |
apply(auto simp add: LV_def)
|
|
1142 |
apply(auto elim!: Prf_elims)
|
|
1143 |
apply(auto simp add: Stars_Append_def)
|
|
1144 |
apply(rule_tac x="vs1" in exI)
|
|
1145 |
apply(rule_tac x="vs2" in exI)
|
|
1146 |
apply(auto)
|
|
1147 |
using Prf.intros(6) apply(auto)
|
|
1148 |
apply(rule_tac x="length vs2" in bexI)
|
|
1149 |
thm Prf.intros
|
|
1150 |
apply(subst append.simps(1)[symmetric])
|
|
1151 |
apply(rule Prf.intros)
|
|
1152 |
apply(auto)[1]
|
|
1153 |
apply(auto)[1]
|
|
1154 |
apply(simp)
|
|
1155 |
apply(simp)
|
|
1156 |
apply(rule_tac x="vs" in exI)
|
|
1157 |
apply(rule_tac x="[]" in exI)
|
|
1158 |
apply(auto)
|
|
1159 |
by (metis Prf.intros(9) append_Nil atMost_iff empty_iff le_imp_less_Suc less_antisym list.set(1) nth_mem zero_le)
|
274
|
1160 |
|
276
|
1161 |
lemma LV_NMTIMES_6:
|
|
1162 |
assumes "\<forall>s. finite (LV r s)"
|
|
1163 |
shows "finite (LV (NMTIMES r n m) s)"
|
|
1164 |
apply(rule finite_subset)
|
|
1165 |
apply(rule LV_NMTIMES_5)
|
|
1166 |
apply(rule finite_Stars_Append)
|
|
1167 |
apply(rule LV_STAR_finite)
|
|
1168 |
apply(rule assms)
|
|
1169 |
apply(rule finite_UN_I)
|
|
1170 |
apply(auto)
|
|
1171 |
by (simp add: assms finite_Stars_Pow ttty)
|
|
1172 |
|
|
1173 |
|
273
|
1174 |
lemma LV_finite:
|
|
1175 |
shows "finite (LV r s)"
|
|
1176 |
proof(induct r arbitrary: s)
|
|
1177 |
case (ZERO s)
|
|
1178 |
show "finite (LV ZERO s)" by (simp add: LV_simps)
|
|
1179 |
next
|
|
1180 |
case (ONE s)
|
|
1181 |
show "finite (LV ONE s)" by (simp add: LV_simps)
|
|
1182 |
next
|
|
1183 |
case (CHAR c s)
|
|
1184 |
show "finite (LV (CHAR c) s)" by (simp add: LV_simps)
|
|
1185 |
next
|
|
1186 |
case (ALT r1 r2 s)
|
|
1187 |
then show "finite (LV (ALT r1 r2) s)" by (simp add: LV_simps)
|
|
1188 |
next
|
|
1189 |
case (SEQ r1 r2 s)
|
275
|
1190 |
define f where "f \<equiv> \<lambda>(v1, v2). Seq v1 v2"
|
|
1191 |
define S1 where "S1 \<equiv> \<Union>s' \<in> Prefixes s. LV r1 s'"
|
|
1192 |
define S2 where "S2 \<equiv> \<Union>s' \<in> Suffixes s. LV r2 s'"
|
273
|
1193 |
have IHs: "\<And>s. finite (LV r1 s)" "\<And>s. finite (LV r2 s)" by fact+
|
|
1194 |
then have "finite S1" "finite S2" unfolding S1_def S2_def
|
|
1195 |
by (simp_all add: finite_Prefixes finite_Suffixes)
|
|
1196 |
moreover
|
|
1197 |
have "LV (SEQ r1 r2) s \<subseteq> f ` (S1 \<times> S2)"
|
|
1198 |
unfolding f_def S1_def S2_def
|
275
|
1199 |
unfolding LV_def image_def prefix_def suffix_def
|
|
1200 |
apply (auto elim!: Prf_elims)
|
|
1201 |
by (metis (mono_tags, lifting) mem_Collect_eq)
|
273
|
1202 |
ultimately
|
|
1203 |
show "finite (LV (SEQ r1 r2) s)"
|
|
1204 |
by (simp add: finite_subset)
|
|
1205 |
next
|
|
1206 |
case (STAR r s)
|
|
1207 |
then show "finite (LV (STAR r) s)" by (simp add: LV_STAR_finite)
|
|
1208 |
next
|
274
|
1209 |
case (UPNTIMES r n s)
|
273
|
1210 |
have "\<And>s. finite (LV r s)" by fact
|
274
|
1211 |
then show "finite (LV (UPNTIMES r n) s)"
|
|
1212 |
by (meson LV_STAR_finite LV_UPNTIMES_STAR rev_finite_subset)
|
|
1213 |
next
|
|
1214 |
case (FROMNTIMES r n s)
|
|
1215 |
have "\<And>s. finite (LV r s)" by fact
|
|
1216 |
then show "finite (LV (FROMNTIMES r n) s)"
|
276
|
1217 |
by (simp add: LV_FROMNTIMES_6)
|
|
1218 |
next
|
|
1219 |
case (NTIMES r n s)
|
|
1220 |
have "\<And>s. finite (LV r s)" by fact
|
|
1221 |
then show "finite (LV (NTIMES r n) s)"
|
|
1222 |
by (metis (no_types, lifting) LV_NTIMES_4 LV_NTIMES_5 LV_STAR_finite finite_Stars_Append finite_Stars_Pow finite_UN_I finite_atMost finite_subset)
|
|
1223 |
next
|
|
1224 |
case (NMTIMES r n m s)
|
|
1225 |
have "\<And>s. finite (LV r s)" by fact
|
|
1226 |
then show "finite (LV (NMTIMES r n m) s)"
|
|
1227 |
by (simp add: LV_NMTIMES_6)
|
273
|
1228 |
qed
|
|
1229 |
|
|
1230 |
|
|
1231 |
|
|
1232 |
section {* Our POSIX Definition *}
|
|
1233 |
|
|
1234 |
inductive
|
|
1235 |
Posix :: "string \<Rightarrow> rexp \<Rightarrow> val \<Rightarrow> bool" ("_ \<in> _ \<rightarrow> _" [100, 100, 100] 100)
|
|
1236 |
where
|
|
1237 |
Posix_ONE: "[] \<in> ONE \<rightarrow> Void"
|
|
1238 |
| Posix_CHAR: "[c] \<in> (CHAR c) \<rightarrow> (Char c)"
|
|
1239 |
| Posix_ALT1: "s \<in> r1 \<rightarrow> v \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Left v)"
|
|
1240 |
| Posix_ALT2: "\<lbrakk>s \<in> r2 \<rightarrow> v; s \<notin> L(r1)\<rbrakk> \<Longrightarrow> s \<in> (ALT r1 r2) \<rightarrow> (Right v)"
|
|
1241 |
| Posix_SEQ: "\<lbrakk>s1 \<in> r1 \<rightarrow> v1; s2 \<in> r2 \<rightarrow> v2;
|
|
1242 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r1 \<and> s\<^sub>4 \<in> L r2)\<rbrakk> \<Longrightarrow>
|
|
1243 |
(s1 @ s2) \<in> (SEQ r1 r2) \<rightarrow> (Seq v1 v2)"
|
|
1244 |
| Posix_STAR1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
|
|
1245 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
|
|
1246 |
\<Longrightarrow> (s1 @ s2) \<in> STAR r \<rightarrow> Stars (v # vs)"
|
|
1247 |
| Posix_STAR2: "[] \<in> STAR r \<rightarrow> Stars []"
|
276
|
1248 |
| Posix_NTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n;
|
|
1249 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))\<rbrakk>
|
|
1250 |
\<Longrightarrow> (s1 @ s2) \<in> NTIMES r n \<rightarrow> Stars (v # vs)"
|
|
1251 |
| Posix_NTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n\<rbrakk>
|
|
1252 |
\<Longrightarrow> [] \<in> NTIMES r n \<rightarrow> Stars vs"
|
|
1253 |
| Posix_UPNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n;
|
|
1254 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))\<rbrakk>
|
|
1255 |
\<Longrightarrow> (s1 @ s2) \<in> UPNTIMES r n \<rightarrow> Stars (v # vs)"
|
|
1256 |
| Posix_UPNTIMES2: "[] \<in> UPNTIMES r n \<rightarrow> Stars []"
|
|
1257 |
| Posix_FROMNTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n\<rbrakk>
|
|
1258 |
\<Longrightarrow> [] \<in> FROMNTIMES r n \<rightarrow> Stars vs"
|
|
1259 |
| Posix_FROMNTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n;
|
|
1260 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))\<rbrakk>
|
|
1261 |
\<Longrightarrow> (s1 @ s2) \<in> FROMNTIMES r n \<rightarrow> Stars (v # vs)"
|
277
|
1262 |
| Posix_FROMNTIMES3: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> STAR r \<rightarrow> Stars vs; flat v \<noteq> [];
|
|
1263 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))\<rbrakk>
|
|
1264 |
\<Longrightarrow> (s1 @ s2) \<in> FROMNTIMES r 0 \<rightarrow> Stars (v # vs)"
|
276
|
1265 |
| Posix_NMTIMES2: "\<lbrakk>\<forall>v \<in> set vs. [] \<in> r \<rightarrow> v; length vs = n; n \<le> m\<rbrakk>
|
|
1266 |
\<Longrightarrow> [] \<in> NMTIMES r n m \<rightarrow> Stars vs"
|
278
|
1267 |
| Posix_NMTIMES1: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < n; n \<le> m;
|
|
1268 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))\<rbrakk>
|
|
1269 |
\<Longrightarrow> (s1 @ s2) \<in> NMTIMES r n m \<rightarrow> Stars (v # vs)"
|
|
1270 |
| Posix_NMTIMES3: "\<lbrakk>s1 \<in> r \<rightarrow> v; s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs; flat v \<noteq> []; 0 < m;
|
|
1271 |
\<not>(\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> (s1 @ s\<^sub>3) \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))\<rbrakk>
|
|
1272 |
\<Longrightarrow> (s1 @ s2) \<in> NMTIMES r 0 m \<rightarrow> Stars (v # vs)"
|
276
|
1273 |
|
273
|
1274 |
inductive_cases Posix_elims:
|
|
1275 |
"s \<in> ZERO \<rightarrow> v"
|
|
1276 |
"s \<in> ONE \<rightarrow> v"
|
|
1277 |
"s \<in> CHAR c \<rightarrow> v"
|
|
1278 |
"s \<in> ALT r1 r2 \<rightarrow> v"
|
|
1279 |
"s \<in> SEQ r1 r2 \<rightarrow> v"
|
|
1280 |
"s \<in> STAR r \<rightarrow> v"
|
276
|
1281 |
"s \<in> NTIMES r n \<rightarrow> v"
|
|
1282 |
"s \<in> UPNTIMES r n \<rightarrow> v"
|
|
1283 |
"s \<in> FROMNTIMES r n \<rightarrow> v"
|
|
1284 |
"s \<in> NMTIMES r n m \<rightarrow> v"
|
|
1285 |
|
273
|
1286 |
lemma Posix1:
|
|
1287 |
assumes "s \<in> r \<rightarrow> v"
|
|
1288 |
shows "s \<in> L r" "flat v = s"
|
|
1289 |
using assms
|
276
|
1290 |
apply(induct s r v rule: Posix.induct)
|
|
1291 |
apply(auto simp add: Sequ_def)[18]
|
|
1292 |
apply(case_tac n)
|
|
1293 |
apply(simp)
|
|
1294 |
apply(simp add: Sequ_def)
|
|
1295 |
apply(auto)[1]
|
|
1296 |
apply(simp)
|
|
1297 |
apply(clarify)
|
|
1298 |
apply(rule_tac x="Suc x" in bexI)
|
|
1299 |
apply(simp add: Sequ_def)
|
|
1300 |
apply(auto)[5]
|
|
1301 |
using nth_mem nullable.simps(9) nullable_correctness apply auto[1]
|
|
1302 |
apply simp
|
|
1303 |
apply(simp)
|
|
1304 |
apply(clarify)
|
|
1305 |
apply(rule_tac x="Suc x" in bexI)
|
|
1306 |
apply(simp add: Sequ_def)
|
|
1307 |
apply(auto)[3]
|
277
|
1308 |
defer
|
276
|
1309 |
apply(simp)
|
|
1310 |
apply fastforce
|
|
1311 |
apply(simp)
|
|
1312 |
apply(simp)
|
|
1313 |
apply(clarify)
|
|
1314 |
apply(rule_tac x="Suc x" in bexI)
|
|
1315 |
apply(auto simp add: Sequ_def)[2]
|
|
1316 |
apply(simp)
|
278
|
1317 |
apply(simp)
|
|
1318 |
apply(clarify)
|
|
1319 |
apply(rule_tac x="Suc x" in bexI)
|
|
1320 |
apply(auto simp add: Sequ_def)[2]
|
|
1321 |
apply(simp)
|
|
1322 |
apply(simp add: Star.step Star_Pow)
|
|
1323 |
done
|
|
1324 |
|
273
|
1325 |
text {*
|
|
1326 |
Our Posix definition determines a unique value.
|
|
1327 |
*}
|
276
|
1328 |
|
|
1329 |
lemma List_eq_zipI:
|
|
1330 |
assumes "\<forall>(v1, v2) \<in> set (zip vs1 vs2). v1 = v2"
|
|
1331 |
and "length vs1 = length vs2"
|
|
1332 |
shows "vs1 = vs2"
|
|
1333 |
using assms
|
|
1334 |
apply(induct vs1 arbitrary: vs2)
|
|
1335 |
apply(case_tac vs2)
|
|
1336 |
apply(simp)
|
|
1337 |
apply(simp)
|
|
1338 |
apply(case_tac vs2)
|
|
1339 |
apply(simp)
|
|
1340 |
apply(simp)
|
|
1341 |
done
|
273
|
1342 |
|
|
1343 |
lemma Posix_determ:
|
|
1344 |
assumes "s \<in> r \<rightarrow> v1" "s \<in> r \<rightarrow> v2"
|
|
1345 |
shows "v1 = v2"
|
|
1346 |
using assms
|
|
1347 |
proof (induct s r v1 arbitrary: v2 rule: Posix.induct)
|
|
1348 |
case (Posix_ONE v2)
|
|
1349 |
have "[] \<in> ONE \<rightarrow> v2" by fact
|
|
1350 |
then show "Void = v2" by cases auto
|
|
1351 |
next
|
|
1352 |
case (Posix_CHAR c v2)
|
|
1353 |
have "[c] \<in> CHAR c \<rightarrow> v2" by fact
|
|
1354 |
then show "Char c = v2" by cases auto
|
|
1355 |
next
|
|
1356 |
case (Posix_ALT1 s r1 v r2 v2)
|
|
1357 |
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
|
|
1358 |
moreover
|
|
1359 |
have "s \<in> r1 \<rightarrow> v" by fact
|
|
1360 |
then have "s \<in> L r1" by (simp add: Posix1)
|
|
1361 |
ultimately obtain v' where eq: "v2 = Left v'" "s \<in> r1 \<rightarrow> v'" by cases auto
|
|
1362 |
moreover
|
|
1363 |
have IH: "\<And>v2. s \<in> r1 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
|
|
1364 |
ultimately have "v = v'" by simp
|
|
1365 |
then show "Left v = v2" using eq by simp
|
|
1366 |
next
|
|
1367 |
case (Posix_ALT2 s r2 v r1 v2)
|
|
1368 |
have "s \<in> ALT r1 r2 \<rightarrow> v2" by fact
|
|
1369 |
moreover
|
|
1370 |
have "s \<notin> L r1" by fact
|
|
1371 |
ultimately obtain v' where eq: "v2 = Right v'" "s \<in> r2 \<rightarrow> v'"
|
|
1372 |
by cases (auto simp add: Posix1)
|
|
1373 |
moreover
|
|
1374 |
have IH: "\<And>v2. s \<in> r2 \<rightarrow> v2 \<Longrightarrow> v = v2" by fact
|
|
1375 |
ultimately have "v = v'" by simp
|
|
1376 |
then show "Right v = v2" using eq by simp
|
|
1377 |
next
|
|
1378 |
case (Posix_SEQ s1 r1 v1 s2 r2 v2 v')
|
|
1379 |
have "(s1 @ s2) \<in> SEQ r1 r2 \<rightarrow> v'"
|
|
1380 |
"s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2"
|
|
1381 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact+
|
|
1382 |
then obtain v1' v2' where "v' = Seq v1' v2'" "s1 \<in> r1 \<rightarrow> v1'" "s2 \<in> r2 \<rightarrow> v2'"
|
|
1383 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1384 |
using Posix1(1) by fastforce+
|
|
1385 |
moreover
|
|
1386 |
have IHs: "\<And>v1'. s1 \<in> r1 \<rightarrow> v1' \<Longrightarrow> v1 = v1'"
|
|
1387 |
"\<And>v2'. s2 \<in> r2 \<rightarrow> v2' \<Longrightarrow> v2 = v2'" by fact+
|
|
1388 |
ultimately show "Seq v1 v2 = v'" by simp
|
|
1389 |
next
|
|
1390 |
case (Posix_STAR1 s1 r v s2 vs v2)
|
|
1391 |
have "(s1 @ s2) \<in> STAR r \<rightarrow> v2"
|
|
1392 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
|
|
1393 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
|
|
1394 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
|
|
1395 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1396 |
using Posix1(1) apply fastforce
|
|
1397 |
apply (metis Posix1(1) Posix_STAR1.hyps(6) append_Nil append_Nil2)
|
|
1398 |
using Posix1(2) by blast
|
|
1399 |
moreover
|
|
1400 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1401 |
"\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1402 |
ultimately show "Stars (v # vs) = v2" by auto
|
|
1403 |
next
|
|
1404 |
case (Posix_STAR2 r v2)
|
|
1405 |
have "[] \<in> STAR r \<rightarrow> v2" by fact
|
|
1406 |
then show "Stars [] = v2" by cases (auto simp add: Posix1)
|
276
|
1407 |
next
|
|
1408 |
case (Posix_NTIMES2 vs r n v2)
|
|
1409 |
then show "Stars vs = v2"
|
|
1410 |
apply(erule_tac Posix_elims)
|
|
1411 |
apply(auto)
|
|
1412 |
apply (simp add: Posix1(2))
|
|
1413 |
apply(rule List_eq_zipI)
|
|
1414 |
apply(auto)
|
|
1415 |
by (meson in_set_zipE)
|
|
1416 |
next
|
|
1417 |
case (Posix_NTIMES1 s1 r v s2 n vs v2)
|
|
1418 |
have "(s1 @ s2) \<in> NTIMES r n \<rightarrow> v2"
|
|
1419 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []"
|
|
1420 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1 )))" by fact+
|
|
1421 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (NTIMES r (n - 1)) \<rightarrow> (Stars vs')"
|
|
1422 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1423 |
using Posix1(1) apply fastforce
|
|
1424 |
apply (metis One_nat_def Posix1(1) Posix_NTIMES1.hyps(7) append.right_neutral append_self_conv2)
|
|
1425 |
using Posix1(2) by blast
|
|
1426 |
moreover
|
|
1427 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1428 |
"\<And>v2. s2 \<in> NTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1429 |
ultimately show "Stars (v # vs) = v2" by auto
|
|
1430 |
next
|
|
1431 |
case (Posix_UPNTIMES1 s1 r v s2 n vs v2)
|
|
1432 |
have "(s1 @ s2) \<in> UPNTIMES r n \<rightarrow> v2"
|
|
1433 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []"
|
|
1434 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1 )))" by fact+
|
|
1435 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r (n - 1)) \<rightarrow> (Stars vs')"
|
|
1436 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1437 |
using Posix1(1) apply fastforce
|
|
1438 |
apply (metis One_nat_def Posix1(1) Posix_UPNTIMES1.hyps(7) append.right_neutral append_self_conv2)
|
|
1439 |
using Posix1(2) by blast
|
|
1440 |
moreover
|
|
1441 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1442 |
"\<And>v2. s2 \<in> UPNTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1443 |
ultimately show "Stars (v # vs) = v2" by auto
|
|
1444 |
next
|
|
1445 |
case (Posix_UPNTIMES2 r n v2)
|
|
1446 |
then show "Stars [] = v2"
|
|
1447 |
apply(erule_tac Posix_elims)
|
|
1448 |
apply(auto)
|
|
1449 |
by (simp add: Posix1(2))
|
|
1450 |
next
|
|
1451 |
case (Posix_FROMNTIMES1 s1 r v s2 n vs v2)
|
|
1452 |
have "(s1 @ s2) \<in> FROMNTIMES r n \<rightarrow> v2"
|
277
|
1453 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" "0 < n"
|
276
|
1454 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1 )))" by fact+
|
|
1455 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (FROMNTIMES r (n - 1)) \<rightarrow> (Stars vs')"
|
|
1456 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1457 |
using Posix1(1) Posix1(2) apply blast
|
|
1458 |
apply(case_tac n)
|
|
1459 |
apply(simp)
|
277
|
1460 |
apply(simp)
|
|
1461 |
apply(drule_tac x="va" in meta_spec)
|
|
1462 |
apply(drule_tac x="vs" in meta_spec)
|
|
1463 |
apply(simp)
|
|
1464 |
apply(drule meta_mp)
|
|
1465 |
apply (metis L.simps(9) Posix1(1) UN_E append.right_neutral append_Nil diff_Suc_1 local.Posix_FROMNTIMES1(4) val.inject(5))
|
|
1466 |
apply (metis L.simps(9) Posix1(1) UN_E append.right_neutral append_Nil)
|
|
1467 |
by (metis One_nat_def Posix1(1) Posix_FROMNTIMES1.hyps(7) self_append_conv self_append_conv2)
|
276
|
1468 |
moreover
|
|
1469 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1470 |
"\<And>v2. s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1471 |
ultimately show "Stars (v # vs) = v2" by auto
|
|
1472 |
next
|
|
1473 |
case (Posix_FROMNTIMES2 vs r n v2)
|
|
1474 |
then show "Stars vs = v2"
|
|
1475 |
apply(erule_tac Posix_elims)
|
|
1476 |
apply(auto)
|
|
1477 |
apply(rule List_eq_zipI)
|
|
1478 |
apply(auto)
|
277
|
1479 |
apply(meson in_set_zipE)
|
|
1480 |
apply (simp add: Posix1(2))
|
|
1481 |
using Posix1(2) by blast
|
276
|
1482 |
next
|
277
|
1483 |
case (Posix_FROMNTIMES3 s1 r v s2 vs v2)
|
|
1484 |
have "(s1 @ s2) \<in> FROMNTIMES r 0 \<rightarrow> v2"
|
|
1485 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" "flat v \<noteq> []"
|
|
1486 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact+
|
|
1487 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (STAR r) \<rightarrow> (Stars vs')"
|
|
1488 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1489 |
using Posix1(2) apply fastforce
|
|
1490 |
using Posix1(1) apply fastforce
|
|
1491 |
by (metis Posix1(1) Posix_FROMNTIMES3.hyps(6) append.right_neutral append_Nil)
|
|
1492 |
moreover
|
|
1493 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1494 |
"\<And>v2. s2 \<in> STAR r \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1495 |
ultimately show "Stars (v # vs) = v2" by auto
|
|
1496 |
next
|
276
|
1497 |
case (Posix_NMTIMES1 s1 r v s2 n m vs v2)
|
278
|
1498 |
have "(s1 @ s2) \<in> NMTIMES r n m \<rightarrow> v2"
|
|
1499 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> Stars vs" "flat v \<noteq> []"
|
|
1500 |
"0 < n" "n \<le> m"
|
|
1501 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" by fact+
|
|
1502 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'"
|
|
1503 |
"s2 \<in> (NMTIMES r (n - 1) (m - 1)) \<rightarrow> (Stars vs')"
|
|
1504 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1505 |
using Posix1(1) Posix1(2) apply blast
|
|
1506 |
apply(case_tac n)
|
|
1507 |
apply(simp)
|
|
1508 |
apply(simp)
|
|
1509 |
apply(case_tac m)
|
|
1510 |
apply(simp)
|
|
1511 |
apply(simp)
|
|
1512 |
apply(drule_tac x="va" in meta_spec)
|
|
1513 |
apply(drule_tac x="vs" in meta_spec)
|
|
1514 |
apply(simp)
|
|
1515 |
apply(drule meta_mp)
|
280
|
1516 |
apply(drule Posix1(1))
|
|
1517 |
apply(drule Posix1(1))
|
|
1518 |
apply(drule Posix1(1))
|
|
1519 |
apply(frule Posix1(1))
|
|
1520 |
apply(simp)
|
|
1521 |
using Posix_NMTIMES1.hyps(4) apply force
|
278
|
1522 |
apply (metis L.simps(10) Posix1(1) UN_E append_Nil2 append_self_conv2)
|
|
1523 |
by (metis One_nat_def Posix1(1) Posix_NMTIMES1.hyps(8) append.right_neutral append_Nil)
|
|
1524 |
moreover
|
|
1525 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1526 |
"\<And>v2. s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1527 |
ultimately show "Stars (v # vs) = v2" by auto
|
276
|
1528 |
next
|
|
1529 |
case (Posix_NMTIMES2 vs r n m v2)
|
|
1530 |
then show "Stars vs = v2"
|
278
|
1531 |
apply(erule_tac Posix_elims)
|
|
1532 |
apply(simp)
|
|
1533 |
apply(rule List_eq_zipI)
|
|
1534 |
apply(auto)
|
|
1535 |
apply (meson in_set_zipE)
|
|
1536 |
apply (simp add: Posix1(2))
|
|
1537 |
apply(erule_tac Posix_elims)
|
|
1538 |
apply(auto)
|
|
1539 |
apply (simp add: Posix1(2))+
|
|
1540 |
done
|
|
1541 |
next
|
|
1542 |
case (Posix_NMTIMES3 s1 r v s2 m vs v2)
|
|
1543 |
have "(s1 @ s2) \<in> NMTIMES r 0 m \<rightarrow> v2"
|
|
1544 |
"s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs" "flat v \<noteq> []" "0 < m"
|
|
1545 |
"\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1 )))" by fact+
|
|
1546 |
then obtain v' vs' where "v2 = Stars (v' # vs')" "s1 \<in> r \<rightarrow> v'" "s2 \<in> (UPNTIMES r (m - 1)) \<rightarrow> (Stars vs')"
|
|
1547 |
apply(cases) apply (auto simp add: append_eq_append_conv2)
|
|
1548 |
using Posix1(2) apply blast
|
|
1549 |
apply (smt L.simps(7) Posix1(1) UN_E append_eq_append_conv2)
|
|
1550 |
by (metis One_nat_def Posix1(1) Posix_NMTIMES3.hyps(7) append.right_neutral append_Nil)
|
|
1551 |
moreover
|
|
1552 |
have IHs: "\<And>v2. s1 \<in> r \<rightarrow> v2 \<Longrightarrow> v = v2"
|
|
1553 |
"\<And>v2. s2 \<in> UPNTIMES r (m - 1) \<rightarrow> v2 \<Longrightarrow> Stars vs = v2" by fact+
|
|
1554 |
ultimately show "Stars (v # vs) = v2" by auto
|
273
|
1555 |
qed
|
|
1556 |
|
|
1557 |
|
|
1558 |
text {*
|
|
1559 |
Our POSIX value is a lexical value.
|
|
1560 |
*}
|
|
1561 |
|
|
1562 |
lemma Posix_LV:
|
|
1563 |
assumes "s \<in> r \<rightarrow> v"
|
|
1564 |
shows "v \<in> LV r s"
|
|
1565 |
using assms unfolding LV_def
|
|
1566 |
apply(induct rule: Posix.induct)
|
276
|
1567 |
apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)[7]
|
|
1568 |
defer
|
|
1569 |
defer
|
|
1570 |
apply(auto simp add: intro!: Prf.intros elim!: Prf_elims)[2]
|
|
1571 |
apply (metis (mono_tags, lifting) Prf.intros(9) append_Nil empty_iff flat_Stars flats_empty list.set(1) mem_Collect_eq)
|
277
|
1572 |
apply(simp)
|
|
1573 |
apply(clarify)
|
|
1574 |
apply(case_tac n)
|
|
1575 |
apply(simp)
|
|
1576 |
apply(simp)
|
|
1577 |
apply(erule Prf_elims)
|
|
1578 |
apply(simp)
|
276
|
1579 |
apply(subst append.simps(2)[symmetric])
|
277
|
1580 |
apply(rule Prf.intros)
|
|
1581 |
apply(simp)
|
|
1582 |
apply(simp)
|
|
1583 |
apply(simp)
|
|
1584 |
apply(simp)
|
|
1585 |
apply(rule Prf.intros)
|
|
1586 |
apply(simp)
|
|
1587 |
apply(simp)
|
|
1588 |
apply(simp)
|
|
1589 |
apply(clarify)
|
|
1590 |
apply(erule Prf_elims)
|
|
1591 |
apply(simp)
|
|
1592 |
apply(rule Prf.intros)
|
|
1593 |
apply(simp)
|
278
|
1594 |
apply(simp)
|
|
1595 |
(* NTIMES *)
|
|
1596 |
prefer 4
|
|
1597 |
apply(simp)
|
|
1598 |
apply(case_tac n)
|
277
|
1599 |
apply(simp)
|
278
|
1600 |
apply(simp)
|
|
1601 |
apply(clarify)
|
|
1602 |
apply(rotate_tac 5)
|
|
1603 |
apply(erule Prf_elims)
|
|
1604 |
apply(simp)
|
|
1605 |
apply(subst append.simps(2)[symmetric])
|
|
1606 |
apply(rule Prf.intros)
|
|
1607 |
apply(simp)
|
|
1608 |
apply(simp)
|
|
1609 |
apply(simp)
|
|
1610 |
prefer 4
|
|
1611 |
apply(simp)
|
|
1612 |
apply (metis Prf.intros(8) length_removeAll_less less_irrefl_nat removeAll.simps(1) self_append_conv2)
|
277
|
1613 |
(* NMTIMES *)
|
278
|
1614 |
apply(simp)
|
|
1615 |
apply (metis Prf.intros(11) append_Nil empty_iff list.set(1))
|
|
1616 |
apply(simp)
|
|
1617 |
apply(clarify)
|
|
1618 |
apply(rotate_tac 6)
|
|
1619 |
apply(erule Prf_elims)
|
|
1620 |
apply(simp)
|
|
1621 |
apply(subst append.simps(2)[symmetric])
|
|
1622 |
apply(rule Prf.intros)
|
|
1623 |
apply(simp)
|
|
1624 |
apply(simp)
|
|
1625 |
apply(simp)
|
|
1626 |
apply(simp)
|
|
1627 |
apply(rule Prf.intros)
|
|
1628 |
apply(simp)
|
|
1629 |
apply(simp)
|
|
1630 |
apply(simp)
|
|
1631 |
apply(simp)
|
|
1632 |
apply(clarify)
|
|
1633 |
apply(rotate_tac 6)
|
|
1634 |
apply(erule Prf_elims)
|
|
1635 |
apply(simp)
|
|
1636 |
apply(rule Prf.intros)
|
|
1637 |
apply(simp)
|
|
1638 |
apply(simp)
|
|
1639 |
apply(simp)
|
|
1640 |
done
|
276
|
1641 |
|
273
|
1642 |
end |