| 365 |      1 |    
 | 
|  |      2 | theory PositionsExt
 | 
|  |      3 |   imports "SpecExt" "LexerExt" 
 | 
|  |      4 | begin
 | 
|  |      5 | 
 | 
|  |      6 | section {* Positions in Values *}
 | 
|  |      7 | 
 | 
|  |      8 | fun 
 | 
|  |      9 |   at :: "val \<Rightarrow> nat list \<Rightarrow> val"
 | 
|  |     10 | where
 | 
|  |     11 |   "at v [] = v"
 | 
|  |     12 | | "at (Left v) (0#ps)= at v ps"
 | 
|  |     13 | | "at (Right v) (Suc 0#ps)= at v ps"
 | 
|  |     14 | | "at (Seq v1 v2) (0#ps)= at v1 ps"
 | 
|  |     15 | | "at (Seq v1 v2) (Suc 0#ps)= at v2 ps"
 | 
|  |     16 | | "at (Stars vs) (n#ps)= at (nth vs n) ps"
 | 
|  |     17 | 
 | 
|  |     18 | 
 | 
|  |     19 | 
 | 
|  |     20 | fun Pos :: "val \<Rightarrow> (nat list) set"
 | 
|  |     21 | where
 | 
|  |     22 |   "Pos (Void) = {[]}"
 | 
|  |     23 | | "Pos (Char c) = {[]}"
 | 
|  |     24 | | "Pos (Left v) = {[]} \<union> {0#ps | ps. ps \<in> Pos v}"
 | 
|  |     25 | | "Pos (Right v) = {[]} \<union> {1#ps | ps. ps \<in> Pos v}"
 | 
|  |     26 | | "Pos (Seq v1 v2) = {[]} \<union> {0#ps | ps. ps \<in> Pos v1} \<union> {1#ps | ps. ps \<in> Pos v2}" 
 | 
|  |     27 | | "Pos (Stars []) = {[]}"
 | 
|  |     28 | | "Pos (Stars (v#vs)) = {[]} \<union> {0#ps | ps. ps \<in> Pos v} \<union> {Suc n#ps | n ps. n#ps \<in> Pos (Stars vs)}"
 | 
|  |     29 | 
 | 
|  |     30 | 
 | 
|  |     31 | lemma Pos_stars:
 | 
|  |     32 |   "Pos (Stars vs) = {[]} \<union> (\<Union>n < length vs. {n#ps | ps. ps \<in> Pos (vs ! n)})"
 | 
|  |     33 | apply(induct vs)
 | 
|  |     34 | apply(auto simp add: insert_ident less_Suc_eq_0_disj)
 | 
|  |     35 | done
 | 
|  |     36 | 
 | 
|  |     37 | lemma Pos_empty:
 | 
|  |     38 |   shows "[] \<in> Pos v"
 | 
|  |     39 | by (induct v rule: Pos.induct)(auto)
 | 
|  |     40 | 
 | 
|  |     41 | 
 | 
|  |     42 | abbreviation
 | 
|  |     43 |   "intlen vs \<equiv> int (length vs)"
 | 
|  |     44 | 
 | 
|  |     45 | 
 | 
|  |     46 | definition pflat_len :: "val \<Rightarrow> nat list => int"
 | 
|  |     47 | where
 | 
|  |     48 |   "pflat_len v p \<equiv> (if p \<in> Pos v then intlen (flat (at v p)) else -1)"
 | 
|  |     49 | 
 | 
|  |     50 | lemma pflat_len_simps:
 | 
|  |     51 |   shows "pflat_len (Seq v1 v2) (0#p) = pflat_len v1 p"
 | 
|  |     52 |   and   "pflat_len (Seq v1 v2) (Suc 0#p) = pflat_len v2 p"
 | 
|  |     53 |   and   "pflat_len (Left v) (0#p) = pflat_len v p"
 | 
|  |     54 |   and   "pflat_len (Left v) (Suc 0#p) = -1"
 | 
|  |     55 |   and   "pflat_len (Right v) (Suc 0#p) = pflat_len v p"
 | 
|  |     56 |   and   "pflat_len (Right v) (0#p) = -1"
 | 
|  |     57 |   and   "pflat_len (Stars (v#vs)) (Suc n#p) = pflat_len (Stars vs) (n#p)"
 | 
|  |     58 |   and   "pflat_len (Stars (v#vs)) (0#p) = pflat_len v p"
 | 
|  |     59 |   and   "pflat_len v [] = intlen (flat v)"
 | 
|  |     60 | by (auto simp add: pflat_len_def Pos_empty)
 | 
|  |     61 | 
 | 
|  |     62 | lemma pflat_len_Stars_simps:
 | 
|  |     63 |   assumes "n < length vs"
 | 
|  |     64 |   shows "pflat_len (Stars vs) (n#p) = pflat_len (vs!n) p"
 | 
|  |     65 | using assms
 | 
|  |     66 | apply(induct vs arbitrary: n p)
 | 
|  |     67 | apply(auto simp add: less_Suc_eq_0_disj pflat_len_simps)
 | 
|  |     68 | done
 | 
|  |     69 | 
 | 
|  |     70 | lemma pflat_len_outside:
 | 
|  |     71 |   assumes "p \<notin> Pos v1"
 | 
|  |     72 |   shows "pflat_len v1 p = -1 "
 | 
|  |     73 | using assms by (simp add: pflat_len_def)
 | 
|  |     74 | 
 | 
|  |     75 | 
 | 
|  |     76 | 
 | 
|  |     77 | section {* Orderings *}
 | 
|  |     78 | 
 | 
|  |     79 | 
 | 
|  |     80 | definition prefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubseteq>pre _" [60,59] 60)
 | 
|  |     81 | where
 | 
|  |     82 |   "ps1 \<sqsubseteq>pre ps2 \<equiv> \<exists>ps'. ps1 @ps' = ps2"
 | 
|  |     83 | 
 | 
|  |     84 | definition sprefix_list:: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" ("_ \<sqsubset>spre _" [60,59] 60)
 | 
|  |     85 | where
 | 
|  |     86 |   "ps1 \<sqsubset>spre ps2 \<equiv> ps1 \<sqsubseteq>pre ps2 \<and> ps1 \<noteq> ps2"
 | 
|  |     87 | 
 | 
|  |     88 | inductive lex_list :: "nat list \<Rightarrow> nat list \<Rightarrow> bool" ("_ \<sqsubset>lex _" [60,59] 60)
 | 
|  |     89 | where
 | 
|  |     90 |   "[] \<sqsubset>lex (p#ps)"
 | 
|  |     91 | | "ps1 \<sqsubset>lex ps2 \<Longrightarrow> (p#ps1) \<sqsubset>lex (p#ps2)"
 | 
|  |     92 | | "p1 < p2 \<Longrightarrow> (p1#ps1) \<sqsubset>lex (p2#ps2)"
 | 
|  |     93 | 
 | 
|  |     94 | lemma lex_irrfl:
 | 
|  |     95 |   fixes ps1 ps2 :: "nat list"
 | 
|  |     96 |   assumes "ps1 \<sqsubset>lex ps2"
 | 
|  |     97 |   shows "ps1 \<noteq> ps2"
 | 
|  |     98 | using assms
 | 
|  |     99 | by(induct rule: lex_list.induct)(auto)
 | 
|  |    100 | 
 | 
|  |    101 | lemma lex_simps [simp]:
 | 
|  |    102 |   fixes xs ys :: "nat list"
 | 
|  |    103 |   shows "[] \<sqsubset>lex ys \<longleftrightarrow> ys \<noteq> []"
 | 
|  |    104 |   and   "xs \<sqsubset>lex [] \<longleftrightarrow> False"
 | 
|  |    105 |   and   "(x # xs) \<sqsubset>lex (y # ys) \<longleftrightarrow> (x < y \<or> (x = y \<and> xs \<sqsubset>lex ys))"
 | 
|  |    106 | by (auto simp add: neq_Nil_conv elim: lex_list.cases intro: lex_list.intros)
 | 
|  |    107 | 
 | 
|  |    108 | lemma lex_trans:
 | 
|  |    109 |   fixes ps1 ps2 ps3 :: "nat list"
 | 
|  |    110 |   assumes "ps1 \<sqsubset>lex ps2" "ps2 \<sqsubset>lex ps3"
 | 
|  |    111 |   shows "ps1 \<sqsubset>lex ps3"
 | 
|  |    112 | using assms
 | 
|  |    113 | by (induct arbitrary: ps3 rule: lex_list.induct)
 | 
|  |    114 |    (auto elim: lex_list.cases)
 | 
|  |    115 | 
 | 
|  |    116 | 
 | 
|  |    117 | lemma lex_trichotomous:
 | 
|  |    118 |   fixes p q :: "nat list"
 | 
|  |    119 |   shows "p = q \<or> p \<sqsubset>lex q \<or> q \<sqsubset>lex p"
 | 
|  |    120 | apply(induct p arbitrary: q)
 | 
|  |    121 | apply(auto elim: lex_list.cases)
 | 
|  |    122 | apply(case_tac q)
 | 
|  |    123 | apply(auto)
 | 
|  |    124 | done
 | 
|  |    125 | 
 | 
|  |    126 | 
 | 
|  |    127 | 
 | 
|  |    128 | 
 | 
|  |    129 | section {* POSIX Ordering of Values According to Okui \& Suzuki *}
 | 
|  |    130 | 
 | 
|  |    131 | 
 | 
|  |    132 | definition PosOrd:: "val \<Rightarrow> nat list \<Rightarrow> val \<Rightarrow> bool" ("_ \<sqsubset>val _ _" [60, 60, 59] 60)
 | 
|  |    133 | where
 | 
|  |    134 |   "v1 \<sqsubset>val p v2 \<equiv> pflat_len v1 p > pflat_len v2 p \<and>
 | 
|  |    135 |                    (\<forall>q \<in> Pos v1 \<union> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)"
 | 
|  |    136 | 
 | 
|  |    137 | lemma PosOrd_def2:
 | 
|  |    138 |   shows "v1 \<sqsubset>val p v2 \<longleftrightarrow> 
 | 
|  |    139 |          pflat_len v1 p > pflat_len v2 p \<and>
 | 
|  |    140 |          (\<forall>q \<in> Pos v1. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q) \<and>
 | 
|  |    141 |          (\<forall>q \<in> Pos v2. q \<sqsubset>lex p \<longrightarrow> pflat_len v1 q = pflat_len v2 q)"
 | 
|  |    142 | unfolding PosOrd_def
 | 
|  |    143 | apply(auto)
 | 
|  |    144 | done
 | 
|  |    145 | 
 | 
|  |    146 | 
 | 
|  |    147 | definition PosOrd_ex:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubset>val _" [60, 59] 60)
 | 
|  |    148 | where
 | 
|  |    149 |   "v1 :\<sqsubset>val v2 \<equiv> \<exists>p. v1 \<sqsubset>val p v2"
 | 
|  |    150 | 
 | 
|  |    151 | definition PosOrd_ex_eq:: "val \<Rightarrow> val \<Rightarrow> bool" ("_ :\<sqsubseteq>val _" [60, 59] 60)
 | 
|  |    152 | where
 | 
|  |    153 |   "v1 :\<sqsubseteq>val v2 \<equiv> v1 :\<sqsubset>val v2 \<or> v1 = v2"
 | 
|  |    154 | 
 | 
|  |    155 | 
 | 
|  |    156 | lemma PosOrd_trans:
 | 
|  |    157 |   assumes "v1 :\<sqsubset>val v2" "v2 :\<sqsubset>val v3"
 | 
|  |    158 |   shows "v1 :\<sqsubset>val v3"
 | 
|  |    159 | proof -
 | 
|  |    160 |   from assms obtain p p'
 | 
|  |    161 |     where as: "v1 \<sqsubset>val p v2" "v2 \<sqsubset>val p' v3" unfolding PosOrd_ex_def by blast
 | 
|  |    162 |   then have pos: "p \<in> Pos v1" "p' \<in> Pos v2" unfolding PosOrd_def pflat_len_def
 | 
|  |    163 |     by (smt not_int_zless_negative)+
 | 
|  |    164 |   have "p = p' \<or> p \<sqsubset>lex p' \<or> p' \<sqsubset>lex p"
 | 
|  |    165 |     by (rule lex_trichotomous)
 | 
|  |    166 |   moreover
 | 
|  |    167 |     { assume "p = p'"
 | 
|  |    168 |       with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def
 | 
|  |    169 |       by (smt Un_iff)
 | 
|  |    170 |       then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast
 | 
|  |    171 |     }   
 | 
|  |    172 |   moreover
 | 
|  |    173 |     { assume "p \<sqsubset>lex p'"
 | 
|  |    174 |       with as have "v1 \<sqsubset>val p v3" unfolding PosOrd_def pflat_len_def
 | 
|  |    175 |       by (smt Un_iff lex_trans)
 | 
|  |    176 |       then have " v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast
 | 
|  |    177 |     }
 | 
|  |    178 |   moreover
 | 
|  |    179 |     { assume "p' \<sqsubset>lex p"
 | 
|  |    180 |       with as have "v1 \<sqsubset>val p' v3" unfolding PosOrd_def
 | 
|  |    181 |       by (smt Un_iff lex_trans pflat_len_def)
 | 
|  |    182 |       then have "v1 :\<sqsubset>val v3" unfolding PosOrd_ex_def by blast
 | 
|  |    183 |     }
 | 
|  |    184 |   ultimately show "v1 :\<sqsubset>val v3" by blast
 | 
|  |    185 | qed
 | 
|  |    186 | 
 | 
|  |    187 | lemma PosOrd_irrefl:
 | 
|  |    188 |   assumes "v :\<sqsubset>val v"
 | 
|  |    189 |   shows "False"
 | 
|  |    190 | using assms unfolding PosOrd_ex_def PosOrd_def
 | 
|  |    191 | by auto
 | 
|  |    192 | 
 | 
|  |    193 | lemma PosOrd_assym:
 | 
|  |    194 |   assumes "v1 :\<sqsubset>val v2" 
 | 
|  |    195 |   shows "\<not>(v2 :\<sqsubset>val v1)"
 | 
|  |    196 | using assms
 | 
|  |    197 | using PosOrd_irrefl PosOrd_trans by blast 
 | 
|  |    198 | 
 | 
|  |    199 | (*
 | 
|  |    200 |   :\<sqsubseteq>val and :\<sqsubset>val are partial orders.
 | 
|  |    201 | *)
 | 
|  |    202 | 
 | 
|  |    203 | lemma PosOrd_ordering:
 | 
|  |    204 |   shows "ordering (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)"
 | 
|  |    205 | unfolding ordering_def PosOrd_ex_eq_def
 | 
|  |    206 | apply(auto)
 | 
|  |    207 | using PosOrd_irrefl apply blast
 | 
|  |    208 | using PosOrd_assym apply blast
 | 
|  |    209 | using PosOrd_trans by blast
 | 
|  |    210 | 
 | 
|  |    211 | lemma PosOrd_order:
 | 
|  |    212 |   shows "class.order (\<lambda>v1 v2. v1 :\<sqsubseteq>val v2) (\<lambda> v1 v2. v1 :\<sqsubset>val v2)"
 | 
|  |    213 | using PosOrd_ordering
 | 
|  |    214 | apply(simp add: class.order_def class.preorder_def class.order_axioms_def)
 | 
|  |    215 | unfolding ordering_def
 | 
|  |    216 | by blast
 | 
|  |    217 | 
 | 
|  |    218 | 
 | 
|  |    219 | lemma PosOrd_ex_eq2:
 | 
|  |    220 |   shows "v1 :\<sqsubset>val v2 \<longleftrightarrow> (v1 :\<sqsubseteq>val v2 \<and> v1 \<noteq> v2)"
 | 
|  |    221 | using PosOrd_ordering 
 | 
|  |    222 | unfolding ordering_def
 | 
|  |    223 | by auto
 | 
|  |    224 | 
 | 
|  |    225 | lemma PosOrdeq_trans:
 | 
|  |    226 |   assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v3"
 | 
|  |    227 |   shows "v1 :\<sqsubseteq>val v3"
 | 
|  |    228 | using assms PosOrd_ordering 
 | 
|  |    229 | unfolding ordering_def
 | 
|  |    230 | by blast
 | 
|  |    231 | 
 | 
|  |    232 | lemma PosOrdeq_antisym:
 | 
|  |    233 |   assumes "v1 :\<sqsubseteq>val v2" "v2 :\<sqsubseteq>val v1"
 | 
|  |    234 |   shows "v1 = v2"
 | 
|  |    235 | using assms PosOrd_ordering 
 | 
|  |    236 | unfolding ordering_def
 | 
|  |    237 | by blast
 | 
|  |    238 | 
 | 
|  |    239 | lemma PosOrdeq_refl:
 | 
|  |    240 |   shows "v :\<sqsubseteq>val v" 
 | 
|  |    241 | unfolding PosOrd_ex_eq_def
 | 
|  |    242 | by auto
 | 
|  |    243 | 
 | 
|  |    244 | 
 | 
|  |    245 | lemma PosOrd_shorterE:
 | 
|  |    246 |   assumes "v1 :\<sqsubset>val v2" 
 | 
|  |    247 |   shows "length (flat v2) \<le> length (flat v1)"
 | 
|  |    248 | using assms unfolding PosOrd_ex_def PosOrd_def
 | 
|  |    249 | apply(auto)
 | 
|  |    250 | apply(case_tac p)
 | 
|  |    251 | apply(simp add: pflat_len_simps)
 | 
|  |    252 | apply(drule_tac x="[]" in bspec)
 | 
|  |    253 | apply(simp add: Pos_empty)
 | 
|  |    254 | apply(simp add: pflat_len_simps)
 | 
|  |    255 | done
 | 
|  |    256 | 
 | 
|  |    257 | lemma PosOrd_shorterI:
 | 
|  |    258 |   assumes "length (flat v2) < length (flat v1)"
 | 
|  |    259 |   shows "v1 :\<sqsubset>val v2"
 | 
|  |    260 | unfolding PosOrd_ex_def PosOrd_def pflat_len_def 
 | 
|  |    261 | using assms Pos_empty by force
 | 
|  |    262 | 
 | 
|  |    263 | lemma PosOrd_spreI:
 | 
|  |    264 |   assumes "flat v' \<sqsubset>spre flat v"
 | 
|  |    265 |   shows "v :\<sqsubset>val v'" 
 | 
|  |    266 | using assms
 | 
|  |    267 | apply(rule_tac PosOrd_shorterI)
 | 
|  |    268 | unfolding prefix_list_def sprefix_list_def
 | 
|  |    269 | by (metis append_Nil2 append_eq_conv_conj drop_all le_less_linear)
 | 
|  |    270 | 
 | 
|  |    271 | lemma pflat_len_inside:
 | 
|  |    272 |   assumes "pflat_len v2 p < pflat_len v1 p"
 | 
|  |    273 |   shows "p \<in> Pos v1"
 | 
|  |    274 | using assms 
 | 
|  |    275 | unfolding pflat_len_def
 | 
|  |    276 | by (auto split: if_splits)
 | 
|  |    277 | 
 | 
|  |    278 | 
 | 
|  |    279 | lemma PosOrd_Left_Right:
 | 
|  |    280 |   assumes "flat v1 = flat v2"
 | 
|  |    281 |   shows "Left v1 :\<sqsubset>val Right v2" 
 | 
|  |    282 | unfolding PosOrd_ex_def
 | 
|  |    283 | apply(rule_tac x="[0]" in exI)
 | 
|  |    284 | apply(auto simp add: PosOrd_def pflat_len_simps assms)
 | 
|  |    285 | done
 | 
|  |    286 | 
 | 
|  |    287 | lemma PosOrd_LeftE:
 | 
|  |    288 |   assumes "Left v1 :\<sqsubset>val Left v2" "flat v1 = flat v2"
 | 
|  |    289 |   shows "v1 :\<sqsubset>val v2"
 | 
|  |    290 | using assms
 | 
|  |    291 | unfolding PosOrd_ex_def PosOrd_def2
 | 
|  |    292 | apply(auto simp add: pflat_len_simps)
 | 
|  |    293 | apply(frule pflat_len_inside)
 | 
|  |    294 | apply(auto simp add: pflat_len_simps)
 | 
|  |    295 | by (metis lex_simps(3) pflat_len_simps(3))
 | 
|  |    296 | 
 | 
|  |    297 | lemma PosOrd_LeftI:
 | 
|  |    298 |   assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2"
 | 
|  |    299 |   shows  "Left v1 :\<sqsubset>val Left v2"
 | 
|  |    300 | using assms
 | 
|  |    301 | unfolding PosOrd_ex_def PosOrd_def2
 | 
|  |    302 | apply(auto simp add: pflat_len_simps)
 | 
|  |    303 | by (metis less_numeral_extra(3) lex_simps(3) pflat_len_simps(3))
 | 
|  |    304 | 
 | 
|  |    305 | lemma PosOrd_Left_eq:
 | 
|  |    306 |   assumes "flat v1 = flat v2"
 | 
|  |    307 |   shows "Left v1 :\<sqsubset>val Left v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" 
 | 
|  |    308 | using assms PosOrd_LeftE PosOrd_LeftI
 | 
|  |    309 | by blast
 | 
|  |    310 | 
 | 
|  |    311 | 
 | 
|  |    312 | lemma PosOrd_RightE:
 | 
|  |    313 |   assumes "Right v1 :\<sqsubset>val Right v2" "flat v1 = flat v2"
 | 
|  |    314 |   shows "v1 :\<sqsubset>val v2"
 | 
|  |    315 | using assms
 | 
|  |    316 | unfolding PosOrd_ex_def PosOrd_def2
 | 
|  |    317 | apply(auto simp add: pflat_len_simps)
 | 
|  |    318 | apply(frule pflat_len_inside)
 | 
|  |    319 | apply(auto simp add: pflat_len_simps)
 | 
|  |    320 | by (metis lex_simps(3) pflat_len_simps(5))
 | 
|  |    321 | 
 | 
|  |    322 | lemma PosOrd_RightI:
 | 
|  |    323 |   assumes "v1 :\<sqsubset>val v2" "flat v1 = flat v2"
 | 
|  |    324 |   shows  "Right v1 :\<sqsubset>val Right v2"
 | 
|  |    325 | using assms
 | 
|  |    326 | unfolding PosOrd_ex_def PosOrd_def2
 | 
|  |    327 | apply(auto simp add: pflat_len_simps)
 | 
|  |    328 | by (metis lex_simps(3) nat_neq_iff pflat_len_simps(5))
 | 
|  |    329 | 
 | 
|  |    330 | 
 | 
|  |    331 | lemma PosOrd_Right_eq:
 | 
|  |    332 |   assumes "flat v1 = flat v2"
 | 
|  |    333 |   shows "Right v1 :\<sqsubset>val Right v2 \<longleftrightarrow> v1 :\<sqsubset>val v2" 
 | 
|  |    334 | using assms PosOrd_RightE PosOrd_RightI
 | 
|  |    335 | by blast
 | 
|  |    336 | 
 | 
|  |    337 | 
 | 
|  |    338 | lemma PosOrd_SeqI1:
 | 
|  |    339 |   assumes "v1 :\<sqsubset>val w1" "flat (Seq v1 v2) = flat (Seq w1 w2)"
 | 
|  |    340 |   shows "Seq v1 v2 :\<sqsubset>val Seq w1 w2" 
 | 
|  |    341 | using assms(1)
 | 
|  |    342 | apply(subst (asm) PosOrd_ex_def)
 | 
|  |    343 | apply(subst (asm) PosOrd_def)
 | 
|  |    344 | apply(clarify)
 | 
|  |    345 | apply(subst PosOrd_ex_def)
 | 
|  |    346 | apply(rule_tac x="0#p" in exI)
 | 
|  |    347 | apply(subst PosOrd_def)
 | 
|  |    348 | apply(rule conjI)
 | 
|  |    349 | apply(simp add: pflat_len_simps)
 | 
|  |    350 | apply(rule ballI)
 | 
|  |    351 | apply(rule impI)
 | 
|  |    352 | apply(simp only: Pos.simps)
 | 
|  |    353 | apply(auto)[1]
 | 
|  |    354 | apply(simp add: pflat_len_simps)
 | 
|  |    355 | apply(auto simp add: pflat_len_simps)
 | 
|  |    356 | using assms(2)
 | 
|  |    357 | apply(simp)
 | 
|  |    358 | apply(metis length_append of_nat_add)
 | 
|  |    359 | done
 | 
|  |    360 | 
 | 
|  |    361 | lemma PosOrd_SeqI2:
 | 
|  |    362 |   assumes "v2 :\<sqsubset>val w2" "flat v2 = flat w2"
 | 
|  |    363 |   shows "Seq v v2 :\<sqsubset>val Seq v w2" 
 | 
|  |    364 | using assms(1)
 | 
|  |    365 | apply(subst (asm) PosOrd_ex_def)
 | 
|  |    366 | apply(subst (asm) PosOrd_def)
 | 
|  |    367 | apply(clarify)
 | 
|  |    368 | apply(subst PosOrd_ex_def)
 | 
|  |    369 | apply(rule_tac x="Suc 0#p" in exI)
 | 
|  |    370 | apply(subst PosOrd_def)
 | 
|  |    371 | apply(rule conjI)
 | 
|  |    372 | apply(simp add: pflat_len_simps)
 | 
|  |    373 | apply(rule ballI)
 | 
|  |    374 | apply(rule impI)
 | 
|  |    375 | apply(simp only: Pos.simps)
 | 
|  |    376 | apply(auto)[1]
 | 
|  |    377 | apply(simp add: pflat_len_simps)
 | 
|  |    378 | using assms(2)
 | 
|  |    379 | apply(simp)
 | 
|  |    380 | apply(auto simp add: pflat_len_simps)
 | 
|  |    381 | done
 | 
|  |    382 | 
 | 
|  |    383 | lemma PosOrd_Seq_eq:
 | 
|  |    384 |   assumes "flat v2 = flat w2"
 | 
|  |    385 |   shows "(Seq v v2) :\<sqsubset>val (Seq v w2) \<longleftrightarrow> v2 :\<sqsubset>val w2"
 | 
|  |    386 | using assms 
 | 
|  |    387 | apply(auto)
 | 
|  |    388 | prefer 2
 | 
|  |    389 | apply(simp add: PosOrd_SeqI2)
 | 
|  |    390 | apply(simp add: PosOrd_ex_def)
 | 
|  |    391 | apply(auto)
 | 
|  |    392 | apply(case_tac p)
 | 
|  |    393 | apply(simp add: PosOrd_def pflat_len_simps)
 | 
|  |    394 | apply(case_tac a)
 | 
|  |    395 | apply(simp add: PosOrd_def pflat_len_simps)
 | 
|  |    396 | apply(clarify)
 | 
|  |    397 | apply(case_tac nat)
 | 
|  |    398 | prefer 2
 | 
|  |    399 | apply(simp add: PosOrd_def pflat_len_simps pflat_len_outside)
 | 
|  |    400 | apply(rule_tac x="list" in exI)
 | 
|  |    401 | apply(auto simp add: PosOrd_def2 pflat_len_simps)
 | 
|  |    402 | apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2))
 | 
|  |    403 | apply(smt Collect_disj_eq lex_list.intros(2) mem_Collect_eq pflat_len_simps(2))
 | 
|  |    404 | done
 | 
|  |    405 | 
 | 
|  |    406 | 
 | 
|  |    407 | 
 | 
|  |    408 | lemma PosOrd_StarsI:
 | 
|  |    409 |   assumes "v1 :\<sqsubset>val v2" "flats (v1#vs1) = flats (v2#vs2)"
 | 
|  |    410 |   shows "Stars (v1#vs1) :\<sqsubset>val Stars (v2#vs2)" 
 | 
|  |    411 | using assms(1)
 | 
|  |    412 | apply(subst (asm) PosOrd_ex_def)
 | 
|  |    413 | apply(subst (asm) PosOrd_def)
 | 
|  |    414 | apply(clarify)
 | 
|  |    415 | apply(subst PosOrd_ex_def)
 | 
|  |    416 | apply(subst PosOrd_def)
 | 
|  |    417 | apply(rule_tac x="0#p" in exI)
 | 
|  |    418 | apply(simp add: pflat_len_Stars_simps pflat_len_simps)
 | 
|  |    419 | using assms(2)
 | 
|  |    420 | apply(simp add: pflat_len_simps)
 | 
|  |    421 | apply(auto simp add: pflat_len_Stars_simps pflat_len_simps)
 | 
|  |    422 | by (metis length_append of_nat_add)
 | 
|  |    423 | 
 | 
|  |    424 | lemma PosOrd_StarsI2:
 | 
|  |    425 |   assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flats vs1 = flats vs2"
 | 
|  |    426 |   shows "Stars (v#vs1) :\<sqsubset>val Stars (v#vs2)" 
 | 
|  |    427 | using assms(1)
 | 
|  |    428 | apply(subst (asm) PosOrd_ex_def)
 | 
|  |    429 | apply(subst (asm) PosOrd_def)
 | 
|  |    430 | apply(clarify)
 | 
|  |    431 | apply(subst PosOrd_ex_def)
 | 
|  |    432 | apply(subst PosOrd_def)
 | 
|  |    433 | apply(case_tac p)
 | 
|  |    434 | apply(simp add: pflat_len_simps)
 | 
|  |    435 | apply(rule_tac x="Suc a#list" in exI)
 | 
|  |    436 | apply(auto simp add: pflat_len_Stars_simps pflat_len_simps assms(2))
 | 
|  |    437 | done
 | 
|  |    438 | 
 | 
|  |    439 | lemma PosOrd_Stars_appendI:
 | 
|  |    440 |   assumes "Stars vs1 :\<sqsubset>val Stars vs2" "flat (Stars vs1) = flat (Stars vs2)"
 | 
|  |    441 |   shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)"
 | 
|  |    442 | using assms
 | 
|  |    443 | apply(induct vs)
 | 
|  |    444 | apply(simp)
 | 
|  |    445 | apply(simp add: PosOrd_StarsI2)
 | 
|  |    446 | done
 | 
|  |    447 | 
 | 
|  |    448 | lemma PosOrd_eq_Stars_zipI:
 | 
|  |    449 |   assumes "\<forall>(v1, v2) \<in> set (zip vs1 vs2). v1 :\<sqsubseteq>val v2" 
 | 
|  |    450 |      "length vs1 = length vs2" "flats vs1 = flats vs2"
 | 
|  |    451 |   shows "Stars vs1 :\<sqsubseteq>val Stars vs2"
 | 
|  |    452 |   using assms
 | 
|  |    453 |   apply(induct vs1 arbitrary: vs2)
 | 
|  |    454 |    apply(case_tac vs2)
 | 
|  |    455 | apply(simp add: PosOrd_ex_eq_def)    
 | 
|  |    456 |    apply(simp)
 | 
|  |    457 |   apply(case_tac vs2)
 | 
|  |    458 |    apply(simp)
 | 
|  |    459 |   apply(simp)
 | 
|  |    460 |   apply(auto)
 | 
|  |    461 | apply(subst (asm) (2)PosOrd_ex_eq_def)
 | 
|  |    462 |   apply(auto)
 | 
|  |    463 |    apply(subst PosOrd_ex_eq_def)
 | 
|  |    464 |    apply(rule disjI1)
 | 
|  |    465 |    apply(rule PosOrd_StarsI)
 | 
|  |    466 |     apply(simp)
 | 
|  |    467 |    apply(simp)
 | 
|  |    468 |   using PosOrd_StarsI2 PosOrd_ex_eq_def by fastforce
 | 
|  |    469 |   
 | 
|  |    470 | lemma PosOrd_StarsE2:
 | 
|  |    471 |   assumes "Stars (v # vs1) :\<sqsubset>val Stars (v # vs2)"
 | 
|  |    472 |   shows "Stars vs1 :\<sqsubset>val Stars vs2"
 | 
|  |    473 | using assms
 | 
|  |    474 | apply(subst (asm) PosOrd_ex_def)
 | 
|  |    475 | apply(erule exE)
 | 
|  |    476 | apply(case_tac p)
 | 
|  |    477 | apply(simp)
 | 
|  |    478 | apply(simp add: PosOrd_def pflat_len_simps)
 | 
|  |    479 | apply(subst PosOrd_ex_def)
 | 
|  |    480 | apply(rule_tac x="[]" in exI)
 | 
|  |    481 | apply(simp add: PosOrd_def pflat_len_simps Pos_empty)
 | 
|  |    482 | apply(simp)
 | 
|  |    483 | apply(case_tac a)
 | 
|  |    484 | apply(clarify)
 | 
|  |    485 | apply(auto simp add: pflat_len_simps PosOrd_def pflat_len_def split: if_splits)[1]
 | 
|  |    486 | apply(clarify)
 | 
|  |    487 | apply(simp add: PosOrd_ex_def)
 | 
|  |    488 | apply(rule_tac x="nat#list" in exI)
 | 
|  |    489 | apply(auto simp add: PosOrd_def pflat_len_simps)[1]
 | 
|  |    490 | apply(case_tac q)
 | 
|  |    491 | apply(simp add: PosOrd_def pflat_len_simps)
 | 
|  |    492 | apply(clarify)
 | 
|  |    493 | apply(drule_tac x="Suc a # lista" in bspec)
 | 
|  |    494 | apply(simp)
 | 
|  |    495 | apply(auto simp add: PosOrd_def pflat_len_simps)[1]
 | 
|  |    496 | apply(case_tac q)
 | 
|  |    497 | apply(simp add: PosOrd_def pflat_len_simps)
 | 
|  |    498 | apply(clarify)
 | 
|  |    499 | apply(drule_tac x="Suc a # lista" in bspec)
 | 
|  |    500 | apply(simp)
 | 
|  |    501 | apply(auto simp add: PosOrd_def pflat_len_simps)[1]
 | 
|  |    502 | done
 | 
|  |    503 | 
 | 
|  |    504 | lemma PosOrd_Stars_appendE:
 | 
|  |    505 |   assumes "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2)"
 | 
|  |    506 |   shows "Stars vs1 :\<sqsubset>val Stars vs2"
 | 
|  |    507 | using assms
 | 
|  |    508 | apply(induct vs)
 | 
|  |    509 | apply(simp)
 | 
|  |    510 | apply(simp add: PosOrd_StarsE2)
 | 
|  |    511 | done
 | 
|  |    512 | 
 | 
|  |    513 | lemma PosOrd_Stars_append_eq:
 | 
|  |    514 |   assumes "flats vs1 = flats vs2"
 | 
|  |    515 |   shows "Stars (vs @ vs1) :\<sqsubset>val Stars (vs @ vs2) \<longleftrightarrow> Stars vs1 :\<sqsubset>val Stars vs2"
 | 
|  |    516 | using assms
 | 
|  |    517 | apply(rule_tac iffI)
 | 
|  |    518 | apply(erule PosOrd_Stars_appendE)
 | 
|  |    519 | apply(rule PosOrd_Stars_appendI)
 | 
|  |    520 | apply(auto)
 | 
|  |    521 | done  
 | 
|  |    522 | 
 | 
|  |    523 | lemma PosOrd_almost_trichotomous:
 | 
|  |    524 |   shows "v1 :\<sqsubset>val v2 \<or> v2 :\<sqsubset>val v1 \<or> (length (flat v1) = length (flat v2))"
 | 
|  |    525 | apply(auto simp add: PosOrd_ex_def)
 | 
|  |    526 | apply(auto simp add: PosOrd_def)
 | 
|  |    527 | apply(rule_tac x="[]" in exI)
 | 
|  |    528 | apply(auto simp add: Pos_empty pflat_len_simps)
 | 
|  |    529 | apply(drule_tac x="[]" in spec)
 | 
|  |    530 | apply(auto simp add: Pos_empty pflat_len_simps)
 | 
|  |    531 | done
 | 
|  |    532 | 
 | 
|  |    533 | 
 | 
|  |    534 | 
 | 
|  |    535 | section {* The Posix Value is smaller than any other Value *}
 | 
|  |    536 | 
 | 
|  |    537 | 
 | 
|  |    538 | lemma Posix_PosOrd:
 | 
|  |    539 |   assumes "s \<in> r \<rightarrow> v1" "v2 \<in> LV r s" 
 | 
|  |    540 |   shows "v1 :\<sqsubseteq>val v2"
 | 
|  |    541 | using assms
 | 
|  |    542 | proof (induct arbitrary: v2 rule: Posix.induct)
 | 
|  |    543 |   case (Posix_ONE v)
 | 
|  |    544 |   have "v \<in> LV ONE []" by fact
 | 
|  |    545 |   then have "v = Void"
 | 
|  |    546 |     by (simp add: LV_simps)
 | 
|  |    547 |   then show "Void :\<sqsubseteq>val v"
 | 
|  |    548 |     by (simp add: PosOrd_ex_eq_def)
 | 
|  |    549 | next
 | 
|  |    550 |   case (Posix_CHAR c v)
 | 
|  |    551 |   have "v \<in> LV (CHAR c) [c]" by fact
 | 
|  |    552 |   then have "v = Char c"
 | 
|  |    553 |     by (simp add: LV_simps)
 | 
|  |    554 |   then show "Char c :\<sqsubseteq>val v"
 | 
|  |    555 |     by (simp add: PosOrd_ex_eq_def)
 | 
|  |    556 | next
 | 
|  |    557 |   case (Posix_ALT1 s r1 v r2 v2)
 | 
|  |    558 |   have as1: "s \<in> r1 \<rightarrow> v" by fact
 | 
|  |    559 |   have IH: "\<And>v2. v2 \<in> LV r1 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact
 | 
|  |    560 |   have "v2 \<in> LV (ALT r1 r2) s" by fact
 | 
|  |    561 |   then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s"
 | 
|  |    562 |     by(auto simp add: LV_def prefix_list_def)
 | 
|  |    563 |   then consider
 | 
|  |    564 |     (Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" 
 | 
|  |    565 |   | (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s"
 | 
|  |    566 |   by (auto elim: Prf.cases)
 | 
|  |    567 |   then show "Left v :\<sqsubseteq>val v2"
 | 
|  |    568 |   proof(cases)
 | 
|  |    569 |      case (Left v3)
 | 
|  |    570 |      have "v3 \<in> LV r1 s" using Left(2,3) 
 | 
|  |    571 |        by (auto simp add: LV_def prefix_list_def)
 | 
|  |    572 |      with IH have "v :\<sqsubseteq>val v3" by simp
 | 
|  |    573 |      moreover
 | 
|  |    574 |      have "flat v3 = flat v" using as1 Left(3)
 | 
|  |    575 |        by (simp add: Posix1(2)) 
 | 
|  |    576 |      ultimately have "Left v :\<sqsubseteq>val Left v3"
 | 
|  |    577 |        by (simp add: PosOrd_ex_eq_def PosOrd_Left_eq)
 | 
|  |    578 |      then show "Left v :\<sqsubseteq>val v2" unfolding Left .
 | 
|  |    579 |   next
 | 
|  |    580 |      case (Right v3)
 | 
|  |    581 |      have "flat v3 = flat v" using as1 Right(3)
 | 
|  |    582 |        by (simp add: Posix1(2)) 
 | 
|  |    583 |      then have "Left v :\<sqsubseteq>val Right v3" 
 | 
|  |    584 |        unfolding PosOrd_ex_eq_def
 | 
|  |    585 |        by (simp add: PosOrd_Left_Right)
 | 
|  |    586 |      then show "Left v :\<sqsubseteq>val v2" unfolding Right .
 | 
|  |    587 |   qed
 | 
|  |    588 | next
 | 
|  |    589 |   case (Posix_ALT2 s r2 v r1 v2)
 | 
|  |    590 |   have as1: "s \<in> r2 \<rightarrow> v" by fact
 | 
|  |    591 |   have as2: "s \<notin> L r1" by fact
 | 
|  |    592 |   have IH: "\<And>v2. v2 \<in> LV r2 s \<Longrightarrow> v :\<sqsubseteq>val v2" by fact
 | 
|  |    593 |   have "v2 \<in> LV (ALT r1 r2) s" by fact
 | 
|  |    594 |   then have "\<Turnstile> v2 : ALT r1 r2" "flat v2 = s"
 | 
|  |    595 |     by(auto simp add: LV_def prefix_list_def)
 | 
|  |    596 |   then consider
 | 
|  |    597 |     (Left) v3 where "v2 = Left v3" "\<Turnstile> v3 : r1" "flat v3 = s" 
 | 
|  |    598 |   | (Right) v3 where "v2 = Right v3" "\<Turnstile> v3 : r2" "flat v3 = s"
 | 
|  |    599 |   by (auto elim: Prf.cases)
 | 
|  |    600 |   then show "Right v :\<sqsubseteq>val v2"
 | 
|  |    601 |   proof (cases)
 | 
|  |    602 |     case (Right v3)
 | 
|  |    603 |      have "v3 \<in> LV r2 s" using Right(2,3) 
 | 
|  |    604 |        by (auto simp add: LV_def prefix_list_def)
 | 
|  |    605 |      with IH have "v :\<sqsubseteq>val v3" by simp
 | 
|  |    606 |      moreover
 | 
|  |    607 |      have "flat v3 = flat v" using as1 Right(3)
 | 
|  |    608 |        by (simp add: Posix1(2)) 
 | 
|  |    609 |      ultimately have "Right v :\<sqsubseteq>val Right v3" 
 | 
|  |    610 |         by (auto simp add: PosOrd_ex_eq_def PosOrd_RightI)
 | 
|  |    611 |      then show "Right v :\<sqsubseteq>val v2" unfolding Right .
 | 
|  |    612 |   next
 | 
|  |    613 |      case (Left v3)
 | 
|  |    614 |      have "v3 \<in> LV r1 s" using Left(2,3) as2  
 | 
|  |    615 |        by (auto simp add: LV_def prefix_list_def)
 | 
|  |    616 |      then have "flat v3 = flat v \<and> \<Turnstile> v3 : r1" using as1 Left(3)
 | 
|  |    617 |        by (simp add: Posix1(2) LV_def) 
 | 
|  |    618 |      then have "False" using as1 as2 Left
 | 
|  |    619 |        by (auto simp add: Posix1(2) L_flat_Prf1)
 | 
|  |    620 |      then show "Right v :\<sqsubseteq>val v2" by simp
 | 
|  |    621 |   qed
 | 
|  |    622 | next 
 | 
|  |    623 |   case (Posix_SEQ s1 r1 v1 s2 r2 v2 v3)
 | 
|  |    624 |   have "s1 \<in> r1 \<rightarrow> v1" "s2 \<in> r2 \<rightarrow> v2" by fact+
 | 
|  |    625 |   then have as1: "s1 = flat v1" "s2 = flat v2" by (simp_all add: Posix1(2))
 | 
|  |    626 |   have IH1: "\<And>v3. v3 \<in> LV r1 s1 \<Longrightarrow> v1 :\<sqsubseteq>val v3" by fact
 | 
|  |    627 |   have IH2: "\<And>v3. v3 \<in> LV r2 s2 \<Longrightarrow> v2 :\<sqsubseteq>val v3" by fact
 | 
|  |    628 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r1 \<and> s\<^sub>4 \<in> L r2)" by fact
 | 
|  |    629 |   have "v3 \<in> LV (SEQ r1 r2) (s1 @ s2)" by fact
 | 
|  |    630 |   then obtain v3a v3b where eqs:
 | 
|  |    631 |     "v3 = Seq v3a v3b" "\<Turnstile> v3a : r1" "\<Turnstile> v3b : r2"
 | 
|  |    632 |     "flat v3a @ flat v3b = s1 @ s2" 
 | 
|  |    633 |     by (force simp add: prefix_list_def LV_def elim: Prf.cases)
 | 
|  |    634 |   with cond have "flat v3a \<sqsubseteq>pre s1" unfolding prefix_list_def
 | 
|  |    635 |     by (smt L_flat_Prf1 append_eq_append_conv2 append_self_conv)
 | 
|  |    636 |   then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat v3b = s2)" using eqs
 | 
|  |    637 |     by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |    638 |   then have q2: "v1 :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat v3b = s2)" 
 | 
|  |    639 |     using PosOrd_spreI as1(1) eqs by blast
 | 
|  |    640 |   then have "v1 :\<sqsubset>val v3a \<or> (v3a \<in> LV r1 s1 \<and> v3b \<in> LV r2 s2)" using eqs(2,3)
 | 
|  |    641 |     by (auto simp add: LV_def)
 | 
|  |    642 |   then have "v1 :\<sqsubset>val v3a \<or> (v1 :\<sqsubseteq>val v3a \<and> v2 :\<sqsubseteq>val v3b)" using IH1 IH2 by blast         
 | 
|  |    643 |   then have "Seq v1 v2 :\<sqsubseteq>val Seq v3a v3b" using eqs q2 as1
 | 
|  |    644 |     unfolding  PosOrd_ex_eq_def by (auto simp add: PosOrd_SeqI1 PosOrd_Seq_eq) 
 | 
|  |    645 |   then show "Seq v1 v2 :\<sqsubseteq>val v3" unfolding eqs by blast
 | 
|  |    646 | next 
 | 
|  |    647 |   case (Posix_STAR1 s1 r v s2 vs v3) 
 | 
|  |    648 |   have "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" by fact+
 | 
|  |    649 |   then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2))
 | 
|  |    650 |   have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
 | 
|  |    651 |   have IH2: "\<And>v3. v3 \<in> LV (STAR r) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
 | 
|  |    652 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact
 | 
|  |    653 |   have cond2: "flat v \<noteq> []" by fact
 | 
|  |    654 |   have "v3 \<in> LV (STAR r) (s1 @ s2)" by fact
 | 
|  |    655 |   then consider 
 | 
|  |    656 |     (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
 | 
|  |    657 |     "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : STAR r"
 | 
|  |    658 |     "flat (Stars (v3a # vs3)) = s1 @ s2"
 | 
|  |    659 |   | (Empty) "v3 = Stars []"
 | 
|  |    660 |   unfolding LV_def  
 | 
|  |    661 |   apply(auto)
 | 
|  |    662 |   apply(erule Prf.cases)
 | 
|  |    663 |   apply(auto)
 | 
|  |    664 |   apply(case_tac vs)
 | 
|  |    665 |   apply(auto intro: Prf.intros)
 | 
|  |    666 |   done
 | 
|  |    667 |   then show "Stars (v # vs) :\<sqsubseteq>val v3" 
 | 
|  |    668 |     proof (cases)
 | 
|  |    669 |       case (NonEmpty v3a vs3)
 | 
|  |    670 |       have "flat (Stars (v3a # vs3)) = s1 @ s2" using NonEmpty(4) . 
 | 
|  |    671 |       with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
 | 
|  |    672 |         unfolding prefix_list_def
 | 
|  |    673 |         by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7)) 
 | 
|  |    674 |       then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
 | 
|  |    675 |         by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |    676 |       then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
 | 
|  |    677 |         using PosOrd_spreI as1(1) NonEmpty(4) by blast
 | 
|  |    678 |       then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (STAR r) s2)" 
 | 
|  |    679 |         using NonEmpty(2,3) by (auto simp add: LV_def)
 | 
|  |    680 |       then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
 | 
|  |    681 |       then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
 | 
|  |    682 |          unfolding PosOrd_ex_eq_def by auto     
 | 
|  |    683 |       then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
 | 
|  |    684 |         unfolding  PosOrd_ex_eq_def
 | 
|  |    685 |         using PosOrd_StarsI PosOrd_StarsI2 by auto 
 | 
|  |    686 |       then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
 | 
|  |    687 |     next 
 | 
|  |    688 |       case Empty
 | 
|  |    689 |       have "v3 = Stars []" by fact
 | 
|  |    690 |       then show "Stars (v # vs) :\<sqsubseteq>val v3"
 | 
|  |    691 |       unfolding PosOrd_ex_eq_def using cond2
 | 
|  |    692 |       by (simp add: PosOrd_shorterI)
 | 
|  |    693 |     qed      
 | 
|  |    694 | next 
 | 
|  |    695 |   case (Posix_STAR2 r v2)
 | 
|  |    696 |   have "v2 \<in> LV (STAR r) []" by fact
 | 
|  |    697 |   then have "v2 = Stars []" 
 | 
|  |    698 |     unfolding LV_def by (auto elim: Prf.cases) 
 | 
|  |    699 |   then show "Stars [] :\<sqsubseteq>val v2"
 | 
|  |    700 |     by (simp add: PosOrd_ex_eq_def)
 | 
|  |    701 | next 
 | 
|  |    702 |   case (Posix_NTIMES1 s1 r v s2 n vs v3) 
 | 
|  |    703 |   have "s1 \<in> r \<rightarrow> v" "s2 \<in> NTIMES r (n - 1) \<rightarrow> Stars vs" by fact+
 | 
|  |    704 |   then have as1: "s1 = flat v" "s2 = flats vs" by (auto dest: Posix1(2))
 | 
|  |    705 |   have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
 | 
|  |    706 |   have IH2: "\<And>v3. v3 \<in> LV (NTIMES r (n - 1)) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
 | 
|  |    707 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NTIMES r (n - 1)))" by fact
 | 
|  |    708 |   have cond2: "flat v \<noteq> []" by fact
 | 
|  |    709 |   have "v3 \<in> LV (NTIMES r n) (s1 @ s2)" by fact
 | 
|  |    710 |   then consider 
 | 
|  |    711 |     (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
 | 
|  |    712 |     "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : NTIMES r (n - 1)"
 | 
|  |    713 |     "flats (v3a # vs3) = s1 @ s2"
 | 
|  |    714 |   | (Empty) "v3 = Stars []"
 | 
|  |    715 |   unfolding LV_def  
 | 
|  |    716 |   apply(auto)
 | 
|  |    717 |   apply(erule Prf.cases)
 | 
|  |    718 |              apply(auto)  
 | 
|  |    719 |   apply(case_tac vs1)
 | 
|  |    720 |    apply(auto intro: Prf.intros)
 | 
|  |    721 |    apply(case_tac vs2)
 | 
|  |    722 |     apply(auto intro: Prf.intros)
 | 
|  |    723 |   apply (simp add: as1(1) cond2 flats_empty)
 | 
|  |    724 |   by (simp add: Prf.intros(8))
 | 
|  |    725 |   then show "Stars (v # vs) :\<sqsubseteq>val v3" 
 | 
|  |    726 |     proof (cases)
 | 
|  |    727 |       case (NonEmpty v3a vs3)
 | 
|  |    728 |       have "flats (v3a # vs3) = s1 @ s2" using NonEmpty(4) . 
 | 
|  |    729 |       with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
 | 
|  |    730 |         unfolding prefix_list_def
 | 
|  |    731 |         by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7) flat_Stars)
 | 
|  |    732 |       then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
 | 
|  |    733 |         by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |    734 |       then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
 | 
|  |    735 |         using PosOrd_spreI as1(1) NonEmpty(4) by blast
 | 
|  |    736 |       then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (NTIMES r (n - 1)) s2)" 
 | 
|  |    737 |         using NonEmpty(2,3) by (auto simp add: LV_def)
 | 
|  |    738 |       then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
 | 
|  |    739 |       then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
 | 
|  |    740 |          unfolding PosOrd_ex_eq_def by auto     
 | 
|  |    741 |       then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
 | 
|  |    742 |         unfolding  PosOrd_ex_eq_def
 | 
|  |    743 |         using PosOrd_StarsI PosOrd_StarsI2 by auto 
 | 
|  |    744 |       then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
 | 
|  |    745 |     next 
 | 
|  |    746 |       case Empty
 | 
|  |    747 |       have "v3 = Stars []" by fact
 | 
|  |    748 |       then show "Stars (v # vs) :\<sqsubseteq>val v3"
 | 
|  |    749 |       unfolding PosOrd_ex_eq_def using cond2
 | 
|  |    750 |       by (simp add: PosOrd_shorterI)
 | 
|  |    751 |   qed 
 | 
|  |    752 | next
 | 
|  |    753 |   case (Posix_NTIMES2 vs r n v2) 
 | 
|  |    754 |   then show "Stars vs :\<sqsubseteq>val v2"
 | 
|  |    755 |     apply(simp add: LV_def)
 | 
|  |    756 |     apply(auto)  
 | 
|  |    757 |     apply(erule Prf_elims)
 | 
|  |    758 |     apply(auto)
 | 
|  |    759 |     apply(rule PosOrd_eq_Stars_zipI) 
 | 
|  |    760 |       prefer 2
 | 
|  |    761 |       apply(simp)
 | 
|  |    762 |      prefer 2
 | 
|  |    763 |      apply (metis Posix1(2) flats_empty)
 | 
|  |    764 |     apply(auto)
 | 
|  |    765 |     by (meson in_set_zipE)
 | 
|  |    766 | next
 | 
|  |    767 |   case (Posix_UPNTIMES2 r n v2)
 | 
|  |    768 |     then show "Stars [] :\<sqsubseteq>val v2"
 | 
|  |    769 |     apply(simp add: LV_def)
 | 
|  |    770 |       apply(auto)  
 | 
|  |    771 |     apply(erule Prf_elims)
 | 
|  |    772 |       apply(auto)
 | 
|  |    773 |       unfolding PosOrd_ex_eq_def by simp
 | 
|  |    774 | next 
 | 
|  |    775 |   case (Posix_UPNTIMES1 s1 r v s2 n vs v3)
 | 
|  |    776 |   have "s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (n - 1) \<rightarrow> Stars vs" by fact+
 | 
|  |    777 |   then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2))
 | 
|  |    778 |   have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
 | 
|  |    779 |   have IH2: "\<And>v3. v3 \<in> LV (UPNTIMES r (n - 1)) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
 | 
|  |    780 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (n - 1)))" by fact
 | 
|  |    781 |   have cond2: "flat v \<noteq> []" by fact
 | 
|  |    782 |   have "v3 \<in> LV (UPNTIMES r n) (s1 @ s2)" by fact
 | 
|  |    783 |   then consider 
 | 
|  |    784 |     (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
 | 
|  |    785 |     "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : UPNTIMES r (n - 1)" 
 | 
|  |    786 |     "flats (v3a # vs3) = s1 @ s2"
 | 
|  |    787 |   | (Empty) "v3 = Stars []"
 | 
|  |    788 |   unfolding LV_def  
 | 
|  |    789 |   apply(auto)
 | 
|  |    790 |   apply(erule Prf.cases)
 | 
|  |    791 |   apply(auto)
 | 
|  |    792 |   apply(case_tac vs)
 | 
|  |    793 |    apply(auto intro: Prf.intros)
 | 
|  |    794 |   by (simp add: Prf.intros(7) as1(1) cond2)
 | 
|  |    795 |   then show "Stars (v # vs) :\<sqsubseteq>val v3" 
 | 
|  |    796 |     proof (cases)
 | 
|  |    797 |       case (NonEmpty v3a vs3)
 | 
|  |    798 |       have "flats (v3a # vs3) = s1 @ s2" using NonEmpty(4) . 
 | 
|  |    799 |       with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
 | 
|  |    800 |         unfolding prefix_list_def
 | 
|  |    801 |         apply(simp)
 | 
|  |    802 |         apply(simp add: append_eq_append_conv2)
 | 
|  |    803 |         apply(auto)
 | 
|  |    804 |         by (metis L_flat_Prf1 One_nat_def cond flat_Stars)
 | 
|  |    805 |       then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
 | 
|  |    806 |         by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |    807 |       then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
 | 
|  |    808 |         using PosOrd_spreI as1(1) NonEmpty(4) by blast
 | 
|  |    809 |       then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (UPNTIMES r (n - 1)) s2)" 
 | 
|  |    810 |         using NonEmpty(2,3) by (auto simp add: LV_def)
 | 
|  |    811 |       then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
 | 
|  |    812 |       then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
 | 
|  |    813 |          unfolding PosOrd_ex_eq_def by auto     
 | 
|  |    814 |       then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
 | 
|  |    815 |         unfolding  PosOrd_ex_eq_def
 | 
|  |    816 |         using PosOrd_StarsI PosOrd_StarsI2 by auto 
 | 
|  |    817 |       then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
 | 
|  |    818 |     next 
 | 
|  |    819 |       case Empty
 | 
|  |    820 |       have "v3 = Stars []" by fact
 | 
|  |    821 |       then show "Stars (v # vs) :\<sqsubseteq>val v3"
 | 
|  |    822 |       unfolding PosOrd_ex_eq_def using cond2
 | 
|  |    823 |       by (simp add: PosOrd_shorterI)
 | 
|  |    824 |   qed        
 | 
|  |    825 | next
 | 
|  |    826 |   case (Posix_FROMNTIMES2 vs r n v2)
 | 
|  |    827 |     then show "Stars vs :\<sqsubseteq>val v2"
 | 
|  |    828 |     apply(simp add: LV_def)
 | 
|  |    829 |       apply(auto)  
 | 
|  |    830 |     apply(erule Prf_elims)
 | 
|  |    831 |        apply(auto)
 | 
|  |    832 |         apply(rule PosOrd_eq_Stars_zipI) 
 | 
|  |    833 |       prefer 2
 | 
|  |    834 |       apply(simp)
 | 
|  |    835 |      prefer 2
 | 
|  |    836 |      apply (metis Posix1(2) flats_empty)
 | 
|  |    837 |     apply(auto)
 | 
|  |    838 |       by (meson in_set_zipE)
 | 
|  |    839 | next 
 | 
|  |    840 |   case (Posix_FROMNTIMES1 s1 r v s2 n vs v3) 
 | 
|  |    841 |   have "s1 \<in> r \<rightarrow> v" "s2 \<in> FROMNTIMES r (n - 1) \<rightarrow> Stars vs" by fact+
 | 
|  |    842 |   then have as1: "s1 = flat v" "s2 = flats vs" by (auto dest: Posix1(2))
 | 
|  |    843 |   have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
 | 
|  |    844 |   have IH2: "\<And>v3. v3 \<in> LV (FROMNTIMES r (n - 1)) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
 | 
|  |    845 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (FROMNTIMES r (n - 1)))" by fact
 | 
|  |    846 |   have cond2: "flat v \<noteq> []" by fact
 | 
|  |    847 |   have "v3 \<in> LV (FROMNTIMES r n) (s1 @ s2)" by fact
 | 
|  |    848 |   then consider 
 | 
|  |    849 |     (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
 | 
|  |    850 |     "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : FROMNTIMES r (n - 1)"
 | 
|  |    851 |     "flats (v3a # vs3) = s1 @ s2"
 | 
|  |    852 |   | (Empty) "v3 = Stars []" 
 | 
|  |    853 |   unfolding LV_def  
 | 
|  |    854 |   apply(auto)
 | 
|  |    855 |   apply(erule Prf.cases)
 | 
|  |    856 |              apply(auto)  
 | 
|  |    857 |   apply(case_tac vs1)
 | 
|  |    858 |    apply(auto intro: Prf.intros)
 | 
|  |    859 |    apply(case_tac vs2)
 | 
|  |    860 |     apply(auto intro: Prf.intros)
 | 
|  |    861 |     apply (simp add: as1(1) cond2 flats_empty)
 | 
|  |    862 |   apply (simp add: Prf.intros)
 | 
|  |    863 |   apply(case_tac vs)
 | 
|  |    864 |    apply(auto)
 | 
|  |    865 |   using Posix_FROMNTIMES1.hyps(6) Prf.intros(10) by auto
 | 
|  |    866 |   then show "Stars (v # vs) :\<sqsubseteq>val v3" 
 | 
|  |    867 |     proof (cases)
 | 
|  |    868 |       case (NonEmpty v3a vs3)
 | 
|  |    869 |       have "flats (v3a # vs3) = s1 @ s2" using NonEmpty(4) . 
 | 
|  |    870 |       with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
 | 
|  |    871 |         unfolding prefix_list_def
 | 
|  |    872 |         by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7) flat_Stars)
 | 
|  |    873 |       then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
 | 
|  |    874 |         by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |    875 |       then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
 | 
|  |    876 |         using PosOrd_spreI as1(1) NonEmpty(4) by blast
 | 
|  |    877 |       then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (FROMNTIMES r (n - 1)) s2)" 
 | 
|  |    878 |         using NonEmpty(2,3) by (auto simp add: LV_def)
 | 
|  |    879 |       then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
 | 
|  |    880 |       then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
 | 
|  |    881 |          unfolding PosOrd_ex_eq_def by auto     
 | 
|  |    882 |       then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
 | 
|  |    883 |         unfolding  PosOrd_ex_eq_def
 | 
|  |    884 |         using PosOrd_StarsI PosOrd_StarsI2 by auto 
 | 
|  |    885 |       then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
 | 
|  |    886 |     next 
 | 
|  |    887 |       case Empty
 | 
|  |    888 |       have "v3 = Stars []" by fact
 | 
|  |    889 |       then show "Stars (v # vs) :\<sqsubseteq>val v3"
 | 
|  |    890 |       unfolding PosOrd_ex_eq_def using cond2
 | 
|  |    891 |       by (simp add: PosOrd_shorterI)
 | 
|  |    892 |   qed        
 | 
|  |    893 | next    
 | 
|  |    894 |   case (Posix_FROMNTIMES3 s1 r v s2 vs v3)
 | 
|  |    895 |       have "s1 \<in> r \<rightarrow> v" "s2 \<in> STAR r \<rightarrow> Stars vs" by fact+
 | 
|  |    896 |   then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2))
 | 
|  |    897 |   have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
 | 
|  |    898 |   have IH2: "\<And>v3. v3 \<in> LV (STAR r) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
 | 
|  |    899 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (STAR r))" by fact
 | 
|  |    900 |   have cond2: "flat v \<noteq> []" by fact
 | 
|  |    901 |   have "v3 \<in> LV (FROMNTIMES r 0) (s1 @ s2)" by fact
 | 
|  |    902 |   then consider 
 | 
|  |    903 |     (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
 | 
|  |    904 |     "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : STAR r"
 | 
|  |    905 |     "flat (Stars (v3a # vs3)) = s1 @ s2"
 | 
|  |    906 |   | (Empty) "v3 = Stars []" 
 | 
|  |    907 |   unfolding LV_def  
 | 
|  |    908 |   apply(auto)
 | 
|  |    909 |   apply(erule Prf.cases)
 | 
|  |    910 |   apply(auto)
 | 
|  |    911 |   apply(case_tac vs)
 | 
|  |    912 |   apply(auto intro: Prf.intros)
 | 
|  |    913 |   done
 | 
|  |    914 |   then show "Stars (v # vs) :\<sqsubseteq>val v3" 
 | 
|  |    915 |     proof (cases)
 | 
|  |    916 |       case (NonEmpty v3a vs3)
 | 
|  |    917 |       have "flat (Stars (v3a # vs3)) = s1 @ s2" using NonEmpty(4) . 
 | 
|  |    918 |       with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
 | 
|  |    919 |         unfolding prefix_list_def
 | 
|  |    920 |         by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7)) 
 | 
|  |    921 |       then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
 | 
|  |    922 |         by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |    923 |       then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
 | 
|  |    924 |         using PosOrd_spreI as1(1) NonEmpty(4) by blast
 | 
|  |    925 |       then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (STAR r) s2)" 
 | 
|  |    926 |         using NonEmpty(2,3) by (auto simp add: LV_def)
 | 
|  |    927 |       then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
 | 
|  |    928 |       then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
 | 
|  |    929 |          unfolding PosOrd_ex_eq_def by auto     
 | 
|  |    930 |       then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
 | 
|  |    931 |         unfolding  PosOrd_ex_eq_def
 | 
|  |    932 |         using PosOrd_StarsI PosOrd_StarsI2 by auto 
 | 
|  |    933 |       then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
 | 
|  |    934 |     next 
 | 
|  |    935 |       case Empty
 | 
|  |    936 |       have "v3 = Stars []" by fact
 | 
|  |    937 |       then show "Stars (v # vs) :\<sqsubseteq>val v3"
 | 
|  |    938 |       unfolding PosOrd_ex_eq_def using cond2
 | 
|  |    939 |       by (simp add: PosOrd_shorterI)
 | 
|  |    940 |     qed      
 | 
|  |    941 | next
 | 
|  |    942 |   case (Posix_NMTIMES2 vs r n m v2) 
 | 
|  |    943 |   then show "Stars vs :\<sqsubseteq>val v2" 
 | 
|  |    944 |     apply(auto simp add: LV_def)
 | 
|  |    945 |     apply(erule Prf_elims)
 | 
|  |    946 |      apply(simp)
 | 
|  |    947 |      apply(rule PosOrd_eq_Stars_zipI) 
 | 
|  |    948 |        apply(auto)
 | 
|  |    949 |      apply (meson in_set_zipE)
 | 
|  |    950 |     by (metis Posix1(2) flats_empty)
 | 
|  |    951 | next
 | 
|  |    952 |   case (Posix_NMTIMES1 s1 r v s2 n m vs v3) 
 | 
|  |    953 |   have "s1 \<in> r \<rightarrow> v" "s2 \<in> NMTIMES r (n - 1) (m - 1) \<rightarrow> Stars vs" by fact+
 | 
|  |    954 |   then have as1: "s1 = flat v" "s2 = flats vs" by (auto dest: Posix1(2))
 | 
|  |    955 |   have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
 | 
|  |    956 |   have IH2: "\<And>v3. v3 \<in> LV (NMTIMES r (n - 1) (m - 1)) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
 | 
|  |    957 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (NMTIMES r (n - 1) (m - 1)))" by fact
 | 
|  |    958 |   have cond2: "flat v \<noteq> []" by fact
 | 
|  |    959 |   have "v3 \<in> LV (NMTIMES r n m) (s1 @ s2)" by fact
 | 
|  |    960 |   then consider 
 | 
|  |    961 |     (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
 | 
|  |    962 |     "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : NMTIMES r (n - 1) (m - 1)"
 | 
|  |    963 |     "flats (v3a # vs3) = s1 @ s2"
 | 
|  |    964 |   | (Empty) "v3 = Stars []" 
 | 
|  |    965 |   unfolding LV_def  
 | 
|  |    966 |   apply(auto)
 | 
|  |    967 |   apply(erule Prf.cases)
 | 
|  |    968 |              apply(auto)  
 | 
|  |    969 |   apply(case_tac n)
 | 
|  |    970 |     apply(auto intro: Prf.intros)
 | 
|  |    971 |    apply(case_tac vs1)
 | 
|  |    972 |     apply(auto intro: Prf.intros)
 | 
|  |    973 |    apply (simp add: as1(1) cond2 flats_empty)
 | 
|  |    974 |    apply (simp add: Prf.intros(11))
 | 
|  |    975 |   apply(case_tac n)
 | 
|  |    976 |    apply(simp)
 | 
|  |    977 |   using Posix_NMTIMES1.hyps(6) apply blast
 | 
|  |    978 |   apply(simp)
 | 
|  |    979 |   apply(case_tac vs)
 | 
|  |    980 |    apply(auto)
 | 
|  |    981 |   by (simp add: Prf.intros(12))
 | 
|  |    982 |   then show "Stars (v # vs) :\<sqsubseteq>val v3" 
 | 
|  |    983 |     proof (cases)
 | 
|  |    984 |       case (NonEmpty v3a vs3)
 | 
|  |    985 |       have "flats (v3a # vs3) = s1 @ s2" using NonEmpty(4) . 
 | 
|  |    986 |       with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
 | 
|  |    987 |         unfolding prefix_list_def
 | 
|  |    988 |         by (smt L_flat_Prf1 append_Nil2 append_eq_append_conv2 flat.simps(7) flat_Stars)
 | 
|  |    989 |       then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
 | 
|  |    990 |         by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |    991 |       then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
 | 
|  |    992 |         using PosOrd_spreI as1(1) NonEmpty(4) by blast
 | 
|  |    993 |       then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (NMTIMES r (n - 1) (m - 1)) s2)" 
 | 
|  |    994 |         using NonEmpty(2,3) by (auto simp add: LV_def)
 | 
|  |    995 |       then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
 | 
|  |    996 |       then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
 | 
|  |    997 |          unfolding PosOrd_ex_eq_def by auto     
 | 
|  |    998 |       then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
 | 
|  |    999 |         unfolding  PosOrd_ex_eq_def
 | 
|  |   1000 |         using PosOrd_StarsI PosOrd_StarsI2 by auto 
 | 
|  |   1001 |       then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
 | 
|  |   1002 |     next 
 | 
|  |   1003 |       case Empty
 | 
|  |   1004 |       have "v3 = Stars []" by fact
 | 
|  |   1005 |       then show "Stars (v # vs) :\<sqsubseteq>val v3"
 | 
|  |   1006 |       unfolding PosOrd_ex_eq_def using cond2
 | 
|  |   1007 |       by (simp add: PosOrd_shorterI)
 | 
|  |   1008 |   qed        
 | 
|  |   1009 | next
 | 
|  |   1010 |   case (Posix_NMTIMES3 s1 r v s2 m vs v3) 
 | 
|  |   1011 |   have "s1 \<in> r \<rightarrow> v" "s2 \<in> UPNTIMES r (m - 1) \<rightarrow> Stars vs" by fact+
 | 
|  |   1012 |   then have as1: "s1 = flat v" "s2 = flat (Stars vs)" by (auto dest: Posix1(2))
 | 
|  |   1013 |   have IH1: "\<And>v3. v3 \<in> LV r s1 \<Longrightarrow> v :\<sqsubseteq>val v3" by fact
 | 
|  |   1014 |   have IH2: "\<And>v3. v3 \<in> LV (UPNTIMES r (m - 1)) s2 \<Longrightarrow> Stars vs :\<sqsubseteq>val v3" by fact
 | 
|  |   1015 |   have cond: "\<not> (\<exists>s\<^sub>3 s\<^sub>4. s\<^sub>3 \<noteq> [] \<and> s\<^sub>3 @ s\<^sub>4 = s2 \<and> s1 @ s\<^sub>3 \<in> L r \<and> s\<^sub>4 \<in> L (UPNTIMES r (m - 1)))" by fact
 | 
|  |   1016 |   have cond2: "flat v \<noteq> []" by fact
 | 
|  |   1017 |   have "v3 \<in> LV (NMTIMES r 0 m) (s1 @ s2)" by fact
 | 
|  |   1018 |   then consider 
 | 
|  |   1019 |     (NonEmpty) v3a vs3 where "v3 = Stars (v3a # vs3)" 
 | 
|  |   1020 |     "\<Turnstile> v3a : r" "\<Turnstile> Stars vs3 : UPNTIMES r (m - 1)" 
 | 
|  |   1021 |     "flats (v3a # vs3) = s1 @ s2"
 | 
|  |   1022 |   | (Empty) "v3 = Stars []"
 | 
|  |   1023 |   unfolding LV_def  
 | 
|  |   1024 |   apply(auto)
 | 
|  |   1025 |   apply(erule Prf.cases)
 | 
|  |   1026 |   apply(auto)
 | 
|  |   1027 |   apply(case_tac vs)
 | 
|  |   1028 |    apply(auto intro: Prf.intros)
 | 
|  |   1029 |   by (simp add: Prf.intros(7) as1(1) cond2)
 | 
|  |   1030 |   then show "Stars (v # vs) :\<sqsubseteq>val v3" 
 | 
|  |   1031 |     proof (cases)
 | 
|  |   1032 |       case (NonEmpty v3a vs3)
 | 
|  |   1033 |       have "flats (v3a # vs3) = s1 @ s2" using NonEmpty(4) . 
 | 
|  |   1034 |       with cond have "flat v3a \<sqsubseteq>pre s1" using NonEmpty(2,3)
 | 
|  |   1035 |         unfolding prefix_list_def
 | 
|  |   1036 |         apply(simp)
 | 
|  |   1037 |         apply(simp add: append_eq_append_conv2)
 | 
|  |   1038 |         apply(auto)
 | 
|  |   1039 |         by (metis L_flat_Prf1 One_nat_def cond flat_Stars)
 | 
|  |   1040 |       then have "flat v3a \<sqsubset>spre s1 \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" using NonEmpty(4)
 | 
|  |   1041 |         by (simp add: sprefix_list_def append_eq_conv_conj)
 | 
|  |   1042 |       then have q2: "v :\<sqsubset>val v3a \<or> (flat v3a = s1 \<and> flat (Stars vs3) = s2)" 
 | 
|  |   1043 |         using PosOrd_spreI as1(1) NonEmpty(4) by blast
 | 
|  |   1044 |       then have "v :\<sqsubset>val v3a \<or> (v3a \<in> LV r s1 \<and> Stars vs3 \<in> LV (UPNTIMES r (m - 1)) s2)" 
 | 
|  |   1045 |         using NonEmpty(2,3) by (auto simp add: LV_def)
 | 
|  |   1046 |       then have "v :\<sqsubset>val v3a \<or> (v :\<sqsubseteq>val v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" using IH1 IH2 by blast
 | 
|  |   1047 |       then have "v :\<sqsubset>val v3a \<or> (v = v3a \<and> Stars vs :\<sqsubseteq>val Stars vs3)" 
 | 
|  |   1048 |          unfolding PosOrd_ex_eq_def by auto     
 | 
|  |   1049 |       then have "Stars (v # vs) :\<sqsubseteq>val Stars (v3a # vs3)" using NonEmpty(4) q2 as1
 | 
|  |   1050 |         unfolding  PosOrd_ex_eq_def
 | 
|  |   1051 |         using PosOrd_StarsI PosOrd_StarsI2 by auto 
 | 
|  |   1052 |       then show "Stars (v # vs) :\<sqsubseteq>val v3" unfolding NonEmpty by blast
 | 
|  |   1053 |     next 
 | 
|  |   1054 |       case Empty
 | 
|  |   1055 |       have "v3 = Stars []" by fact
 | 
|  |   1056 |       then show "Stars (v # vs) :\<sqsubseteq>val v3"
 | 
|  |   1057 |       unfolding PosOrd_ex_eq_def using cond2
 | 
|  |   1058 |       by (simp add: PosOrd_shorterI)
 | 
|  |   1059 |   qed          
 | 
|  |   1060 | qed
 | 
|  |   1061 | 
 | 
|  |   1062 | 
 | 
|  |   1063 | lemma Posix_PosOrd_reverse:
 | 
|  |   1064 |   assumes "s \<in> r \<rightarrow> v1" 
 | 
|  |   1065 |   shows "\<not>(\<exists>v2 \<in> LV r s. v2 :\<sqsubset>val v1)"
 | 
|  |   1066 | using assms
 | 
|  |   1067 | by (metis Posix_PosOrd less_irrefl PosOrd_def 
 | 
|  |   1068 |     PosOrd_ex_eq_def PosOrd_ex_def PosOrd_trans)
 | 
|  |   1069 | 
 | 
|  |   1070 | lemma PosOrd_Posix:
 | 
|  |   1071 |   assumes "v1 \<in> LV r s" "\<forall>v\<^sub>2 \<in> LV r s. \<not> v\<^sub>2 :\<sqsubset>val v1"
 | 
|  |   1072 |   shows "s \<in> r \<rightarrow> v1" 
 | 
|  |   1073 | proof -
 | 
|  |   1074 |   have "s \<in> L r" using assms(1) unfolding LV_def
 | 
|  |   1075 |     using L_flat_Prf1 by blast 
 | 
|  |   1076 |   then obtain vposix where vp: "s \<in> r \<rightarrow> vposix"
 | 
|  |   1077 |     using lexer_correct_Some by blast 
 | 
|  |   1078 |   with assms(1) have "vposix :\<sqsubseteq>val v1" by (simp add: Posix_PosOrd) 
 | 
|  |   1079 |   then have "vposix = v1 \<or> vposix :\<sqsubset>val v1" unfolding PosOrd_ex_eq2 by auto
 | 
|  |   1080 |   moreover
 | 
|  |   1081 |     { assume "vposix :\<sqsubset>val v1"
 | 
|  |   1082 |       moreover
 | 
|  |   1083 |       have "vposix \<in> LV r s" using vp 
 | 
|  |   1084 |          using Posix_LV by blast 
 | 
|  |   1085 |       ultimately have "False" using assms(2) by blast
 | 
|  |   1086 |     }
 | 
|  |   1087 |   ultimately show "s \<in> r \<rightarrow> v1" using vp by blast
 | 
|  |   1088 | qed
 | 
|  |   1089 | 
 | 
|  |   1090 | lemma Least_existence:
 | 
|  |   1091 |   assumes "LV r s \<noteq> {}"
 | 
|  |   1092 |   shows " \<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v"
 | 
|  |   1093 | proof -
 | 
|  |   1094 |   from assms
 | 
|  |   1095 |   obtain vposix where "s \<in> r \<rightarrow> vposix"
 | 
|  |   1096 |   unfolding LV_def 
 | 
|  |   1097 |   using L_flat_Prf1 lexer_correct_Some by blast
 | 
|  |   1098 |   then have "\<forall>v \<in> LV r s. vposix :\<sqsubseteq>val v"
 | 
|  |   1099 |     by (simp add: Posix_PosOrd)
 | 
|  |   1100 |   then show "\<exists>vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v"
 | 
|  |   1101 |     using Posix_LV \<open>s \<in> r \<rightarrow> vposix\<close> by blast
 | 
|  |   1102 | qed 
 | 
|  |   1103 | 
 | 
|  |   1104 | lemma Least_existence1:
 | 
|  |   1105 |   assumes "LV r s \<noteq> {}"
 | 
|  |   1106 |   shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> LV r s. vmin :\<sqsubseteq>val v"
 | 
|  |   1107 | using Least_existence[OF assms] assms
 | 
|  |   1108 |   using PosOrdeq_antisym by blast
 | 
|  |   1109 | 
 | 
|  |   1110 | 
 | 
|  |   1111 | 
 | 
|  |   1112 | 
 | 
|  |   1113 | 
 | 
|  |   1114 | lemma Least_existence1_pre:
 | 
|  |   1115 |   assumes "LV r s \<noteq> {}"
 | 
|  |   1116 |   shows " \<exists>!vmin \<in> LV r s. \<forall>v \<in> (LV r s \<union> {v'. flat v' \<sqsubset>spre s}). vmin :\<sqsubseteq>val v"
 | 
|  |   1117 | using Least_existence[OF assms] assms
 | 
|  |   1118 | apply -
 | 
|  |   1119 | apply(erule bexE)
 | 
|  |   1120 | apply(rule_tac a="vmin" in ex1I)
 | 
|  |   1121 | apply(auto)[1]
 | 
|  |   1122 | apply (metis PosOrd_Posix PosOrd_ex_eq2 PosOrd_spreI PosOrdeq_antisym Posix1(2))
 | 
|  |   1123 | apply(auto)[1]
 | 
|  |   1124 | apply(simp add: PosOrdeq_antisym)
 | 
|  |   1125 | done
 | 
|  |   1126 | 
 | 
|  |   1127 | lemma
 | 
|  |   1128 |   shows "partial_order_on UNIV {(v1, v2). v1 :\<sqsubseteq>val v2}"
 | 
|  |   1129 | apply(simp add: partial_order_on_def)
 | 
|  |   1130 | apply(simp add: preorder_on_def refl_on_def)
 | 
|  |   1131 | apply(simp add: PosOrdeq_refl)
 | 
|  |   1132 | apply(auto)
 | 
|  |   1133 | apply(rule transI)
 | 
|  |   1134 | apply(auto intro: PosOrdeq_trans)[1]
 | 
|  |   1135 | apply(rule antisymI)
 | 
|  |   1136 | apply(simp add: PosOrdeq_antisym)
 | 
|  |   1137 | done
 | 
|  |   1138 | 
 | 
|  |   1139 | lemma
 | 
|  |   1140 |  "wf {(v1, v2). v1 :\<sqsubset>val v2 \<and> v1 \<in> LV r s \<and> v2 \<in> LV r s}"
 | 
|  |   1141 | apply(rule finite_acyclic_wf)
 | 
|  |   1142 | prefer 2
 | 
|  |   1143 | apply(simp add: acyclic_def)
 | 
|  |   1144 | apply(induct_tac rule: trancl.induct)
 | 
|  |   1145 |      apply(auto)[1]
 | 
|  |   1146 |     prefer 3
 | 
|  |   1147 | 
 | 
|  |   1148 | oops
 | 
|  |   1149 | 
 | 
|  |   1150 | 
 | 
|  |   1151 | unused_thms
 | 
|  |   1152 | 
 | 
|  |   1153 | end |