532
|
1 |
% Chapter Template
|
|
2 |
|
|
3 |
% Main chapter title
|
|
4 |
\chapter{Correctness of Bit-coded Algorithm without Simplification}
|
|
5 |
|
|
6 |
\label{Bitcoded1} % Change X to a consecutive number; for referencing this chapter elsewhere, use \ref{ChapterX}
|
|
7 |
%Then we illustrate how the algorithm without bitcodes falls short for such aggressive
|
|
8 |
%simplifications and therefore introduce our version of the bitcoded algorithm and
|
|
9 |
%its correctness proof in
|
|
10 |
%Chapter 3\ref{Chapter3}.
|
|
11 |
|
|
12 |
\section*{Bit-coded Algorithm}
|
|
13 |
Bits and bitcodes (lists of bits) are defined as:
|
|
14 |
|
|
15 |
\begin{center}
|
|
16 |
$b ::= 1 \mid 0 \qquad
|
|
17 |
bs ::= [] \mid b::bs
|
|
18 |
$
|
|
19 |
\end{center}
|
|
20 |
|
|
21 |
\noindent
|
|
22 |
The $1$ and $0$ are not in bold in order to avoid
|
|
23 |
confusion with the regular expressions $\ZERO$ and $\ONE$. Bitcodes (or
|
|
24 |
bit-lists) can be used to encode values (or potentially incomplete values) in a
|
|
25 |
compact form. This can be straightforwardly seen in the following
|
|
26 |
coding function from values to bitcodes:
|
|
27 |
|
|
28 |
\begin{center}
|
|
29 |
\begin{tabular}{lcl}
|
|
30 |
$\textit{code}(\Empty)$ & $\dn$ & $[]$\\
|
|
31 |
$\textit{code}(\Char\,c)$ & $\dn$ & $[]$\\
|
|
32 |
$\textit{code}(\Left\,v)$ & $\dn$ & $0 :: code(v)$\\
|
|
33 |
$\textit{code}(\Right\,v)$ & $\dn$ & $1 :: code(v)$\\
|
|
34 |
$\textit{code}(\Seq\,v_1\,v_2)$ & $\dn$ & $code(v_1) \,@\, code(v_2)$\\
|
|
35 |
$\textit{code}(\Stars\,[])$ & $\dn$ & $[0]$\\
|
|
36 |
$\textit{code}(\Stars\,(v\!::\!vs))$ & $\dn$ & $1 :: code(v) \;@\;
|
|
37 |
code(\Stars\,vs)$
|
|
38 |
\end{tabular}
|
|
39 |
\end{center}
|
|
40 |
|
|
41 |
\noindent
|
|
42 |
Here $\textit{code}$ encodes a value into a bitcodes by converting
|
|
43 |
$\Left$ into $0$, $\Right$ into $1$, and marks the start of a non-empty
|
|
44 |
star iteration by $1$. The border where a local star terminates
|
|
45 |
is marked by $0$. This coding is lossy, as it throws away the information about
|
|
46 |
characters, and also does not encode the ``boundary'' between two
|
|
47 |
sequence values. Moreover, with only the bitcode we cannot even tell
|
|
48 |
whether the $1$s and $0$s are for $\Left/\Right$ or $\Stars$. The
|
|
49 |
reason for choosing this compact way of storing information is that the
|
|
50 |
relatively small size of bits can be easily manipulated and ``moved
|
|
51 |
around'' in a regular expression. In order to recover values, we will
|
|
52 |
need the corresponding regular expression as an extra information. This
|
|
53 |
means the decoding function is defined as:
|
|
54 |
|
|
55 |
|
|
56 |
%\begin{definition}[Bitdecoding of Values]\mbox{}
|
|
57 |
\begin{center}
|
|
58 |
\begin{tabular}{@{}l@{\hspace{1mm}}c@{\hspace{1mm}}l@{}}
|
|
59 |
$\textit{decode}'\,bs\,(\ONE)$ & $\dn$ & $(\Empty, bs)$\\
|
|
60 |
$\textit{decode}'\,bs\,(c)$ & $\dn$ & $(\Char\,c, bs)$\\
|
|
61 |
$\textit{decode}'\,(0\!::\!bs)\;(r_1 + r_2)$ & $\dn$ &
|
|
62 |
$\textit{let}\,(v, bs_1) = \textit{decode}'\,bs\,r_1\;\textit{in}\;
|
|
63 |
(\Left\,v, bs_1)$\\
|
|
64 |
$\textit{decode}'\,(1\!::\!bs)\;(r_1 + r_2)$ & $\dn$ &
|
|
65 |
$\textit{let}\,(v, bs_1) = \textit{decode}'\,bs\,r_2\;\textit{in}\;
|
|
66 |
(\Right\,v, bs_1)$\\
|
|
67 |
$\textit{decode}'\,bs\;(r_1\cdot r_2)$ & $\dn$ &
|
|
68 |
$\textit{let}\,(v_1, bs_1) = \textit{decode}'\,bs\,r_1\;\textit{in}$\\
|
|
69 |
& & $\textit{let}\,(v_2, bs_2) = \textit{decode}'\,bs_1\,r_2$\\
|
|
70 |
& & \hspace{35mm}$\textit{in}\;(\Seq\,v_1\,v_2, bs_2)$\\
|
|
71 |
$\textit{decode}'\,(0\!::\!bs)\,(r^*)$ & $\dn$ & $(\Stars\,[], bs)$\\
|
|
72 |
$\textit{decode}'\,(1\!::\!bs)\,(r^*)$ & $\dn$ &
|
|
73 |
$\textit{let}\,(v, bs_1) = \textit{decode}'\,bs\,r\;\textit{in}$\\
|
|
74 |
& & $\textit{let}\,(\Stars\,vs, bs_2) = \textit{decode}'\,bs_1\,r^*$\\
|
|
75 |
& & \hspace{35mm}$\textit{in}\;(\Stars\,v\!::\!vs, bs_2)$\bigskip\\
|
|
76 |
|
|
77 |
$\textit{decode}\,bs\,r$ & $\dn$ &
|
|
78 |
$\textit{let}\,(v, bs') = \textit{decode}'\,bs\,r\;\textit{in}$\\
|
|
79 |
& & $\textit{if}\;bs' = []\;\textit{then}\;\textit{Some}\,v\;
|
|
80 |
\textit{else}\;\textit{None}$
|
|
81 |
\end{tabular}
|
|
82 |
\end{center}
|
|
83 |
%\end{definition}
|
|
84 |
|
|
85 |
Sulzmann and Lu's integrated the bitcodes into regular expressions to
|
|
86 |
create annotated regular expressions \cite{Sulzmann2014}.
|
|
87 |
\emph{Annotated regular expressions} are defined by the following
|
|
88 |
grammar:%\comment{ALTS should have an $as$ in the definitions, not just $a_1$ and $a_2$}
|
|
89 |
|
|
90 |
\begin{center}
|
|
91 |
\begin{tabular}{lcl}
|
|
92 |
$\textit{a}$ & $::=$ & $\ZERO$\\
|
|
93 |
& $\mid$ & $_{bs}\ONE$\\
|
|
94 |
& $\mid$ & $_{bs}{\bf c}$\\
|
|
95 |
& $\mid$ & $_{bs}\sum\,as$\\
|
|
96 |
& $\mid$ & $_{bs}a_1\cdot a_2$\\
|
|
97 |
& $\mid$ & $_{bs}a^*$
|
|
98 |
\end{tabular}
|
|
99 |
\end{center}
|
|
100 |
%(in \textit{ALTS})
|
|
101 |
|
|
102 |
\noindent
|
|
103 |
where $bs$ stands for bitcodes, $a$ for $\mathbf{a}$nnotated regular
|
|
104 |
expressions and $as$ for a list of annotated regular expressions.
|
|
105 |
The alternative constructor($\sum$) has been generalized to
|
|
106 |
accept a list of annotated regular expressions rather than just 2.
|
|
107 |
We will show that these bitcodes encode information about
|
|
108 |
the (POSIX) value that should be generated by the Sulzmann and Lu
|
|
109 |
algorithm.
|
|
110 |
|
|
111 |
|
|
112 |
To do lexing using annotated regular expressions, we shall first
|
|
113 |
transform the usual (un-annotated) regular expressions into annotated
|
|
114 |
regular expressions. This operation is called \emph{internalisation} and
|
|
115 |
defined as follows:
|
|
116 |
|
|
117 |
%\begin{definition}
|
|
118 |
\begin{center}
|
|
119 |
\begin{tabular}{lcl}
|
|
120 |
$(\ZERO)^\uparrow$ & $\dn$ & $\ZERO$\\
|
|
121 |
$(\ONE)^\uparrow$ & $\dn$ & $_{[]}\ONE$\\
|
|
122 |
$(c)^\uparrow$ & $\dn$ & $_{[]}{\bf c}$\\
|
|
123 |
$(r_1 + r_2)^\uparrow$ & $\dn$ &
|
|
124 |
$_{[]}\sum[\textit{fuse}\,[0]\,r_1^\uparrow,\,
|
|
125 |
\textit{fuse}\,[1]\,r_2^\uparrow]$\\
|
|
126 |
$(r_1\cdot r_2)^\uparrow$ & $\dn$ &
|
|
127 |
$_{[]}r_1^\uparrow \cdot r_2^\uparrow$\\
|
|
128 |
$(r^*)^\uparrow$ & $\dn$ &
|
|
129 |
$_{[]}(r^\uparrow)^*$\\
|
|
130 |
\end{tabular}
|
|
131 |
\end{center}
|
|
132 |
%\end{definition}
|
|
133 |
|
|
134 |
\noindent
|
|
135 |
We use up arrows here to indicate that the basic un-annotated regular
|
|
136 |
expressions are ``lifted up'' into something slightly more complex. In the
|
|
137 |
fourth clause, $\textit{fuse}$ is an auxiliary function that helps to
|
|
138 |
attach bits to the front of an annotated regular expression. Its
|
|
139 |
definition is as follows:
|
|
140 |
|
|
141 |
\begin{center}
|
|
142 |
\begin{tabular}{lcl}
|
|
143 |
$\textit{fuse}\;bs \; \ZERO$ & $\dn$ & $\ZERO$\\
|
|
144 |
$\textit{fuse}\;bs\; _{bs'}\ONE$ & $\dn$ &
|
|
145 |
$_{bs @ bs'}\ONE$\\
|
|
146 |
$\textit{fuse}\;bs\;_{bs'}{\bf c}$ & $\dn$ &
|
|
147 |
$_{bs@bs'}{\bf c}$\\
|
|
148 |
$\textit{fuse}\;bs\,_{bs'}\sum\textit{as}$ & $\dn$ &
|
|
149 |
$_{bs@bs'}\sum\textit{as}$\\
|
|
150 |
$\textit{fuse}\;bs\; _{bs'}a_1\cdot a_2$ & $\dn$ &
|
|
151 |
$_{bs@bs'}a_1 \cdot a_2$\\
|
|
152 |
$\textit{fuse}\;bs\,_{bs'}a^*$ & $\dn$ &
|
|
153 |
$_{bs @ bs'}a^*$
|
|
154 |
\end{tabular}
|
|
155 |
\end{center}
|
|
156 |
|
|
157 |
\noindent
|
|
158 |
After internalising the regular expression, we perform successive
|
|
159 |
derivative operations on the annotated regular expressions. This
|
|
160 |
derivative operation is the same as what we had previously for the
|
|
161 |
basic regular expressions, except that we beed to take care of
|
|
162 |
the bitcodes:
|
|
163 |
|
|
164 |
|
|
165 |
\iffalse
|
|
166 |
%\begin{definition}{bder}
|
|
167 |
\begin{center}
|
|
168 |
\begin{tabular}{@{}lcl@{}}
|
|
169 |
$(\textit{ZERO})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\
|
|
170 |
$(\textit{ONE}\;bs)\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\
|
|
171 |
$(\textit{CHAR}\;bs\,d)\,\backslash c$ & $\dn$ &
|
|
172 |
$\textit{if}\;c=d\; \;\textit{then}\;
|
|
173 |
\textit{ONE}\;bs\;\textit{else}\;\textit{ZERO}$\\
|
|
174 |
$(\textit{ALTS}\;bs\,as)\,\backslash c$ & $\dn$ &
|
|
175 |
$\textit{ALTS}\;bs\,(map (\backslash c) as)$\\
|
|
176 |
$(\textit{SEQ}\;bs\,a_1\,a_2)\,\backslash c$ & $\dn$ &
|
|
177 |
$\textit{if}\;\textit{bnullable}\,a_1$\\
|
|
178 |
& &$\textit{then}\;\textit{ALTS}\,bs\,List((\textit{SEQ}\,[]\,(a_1\,\backslash c)\,a_2),$\\
|
|
179 |
& &$\phantom{\textit{then}\;\textit{ALTS}\,bs\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c)))$\\
|
|
180 |
& &$\textit{else}\;\textit{SEQ}\,bs\,(a_1\,\backslash c)\,a_2$\\
|
|
181 |
$(\textit{STAR}\,bs\,a)\,\backslash c$ & $\dn$ &
|
|
182 |
$\textit{SEQ}\;bs\,(\textit{fuse}\, [\Z] (r\,\backslash c))\,
|
|
183 |
(\textit{STAR}\,[]\,r)$
|
|
184 |
\end{tabular}
|
|
185 |
\end{center}
|
|
186 |
%\end{definition}
|
|
187 |
|
|
188 |
\begin{center}
|
|
189 |
\begin{tabular}{@{}lcl@{}}
|
|
190 |
$(\textit{ZERO})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\
|
|
191 |
$(_{bs}\textit{ONE})\,\backslash c$ & $\dn$ & $\textit{ZERO}$\\
|
|
192 |
$(_{bs}\textit{CHAR}\;d)\,\backslash c$ & $\dn$ &
|
|
193 |
$\textit{if}\;c=d\; \;\textit{then}\;
|
|
194 |
_{bs}\textit{ONE}\;\textit{else}\;\textit{ZERO}$\\
|
|
195 |
$(_{bs}\textit{ALTS}\;\textit{as})\,\backslash c$ & $\dn$ &
|
|
196 |
$_{bs}\textit{ALTS}\;(\textit{as}.\textit{map}(\backslash c))$\\
|
|
197 |
$(_{bs}\textit{SEQ}\;a_1\,a_2)\,\backslash c$ & $\dn$ &
|
|
198 |
$\textit{if}\;\textit{bnullable}\,a_1$\\
|
|
199 |
& &$\textit{then}\;_{bs}\textit{ALTS}\,List((_{[]}\textit{SEQ}\,(a_1\,\backslash c)\,a_2),$\\
|
|
200 |
& &$\phantom{\textit{then}\;_{bs}\textit{ALTS}\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c)))$\\
|
|
201 |
& &$\textit{else}\;_{bs}\textit{SEQ}\,(a_1\,\backslash c)\,a_2$\\
|
|
202 |
$(_{bs}\textit{STAR}\,a)\,\backslash c$ & $\dn$ &
|
|
203 |
$_{bs}\textit{SEQ}\;(\textit{fuse}\, [0] \; r\,\backslash c )\,
|
|
204 |
(_{bs}\textit{STAR}\,[]\,r)$
|
|
205 |
\end{tabular}
|
|
206 |
\end{center}
|
|
207 |
%\end{definition}
|
|
208 |
\fi
|
|
209 |
|
|
210 |
\begin{center}
|
|
211 |
\begin{tabular}{@{}lcl@{}}
|
|
212 |
$(\ZERO)\,\backslash c$ & $\dn$ & $\ZERO$\\
|
|
213 |
$(_{bs}\ONE)\,\backslash c$ & $\dn$ & $\ZERO$\\
|
|
214 |
$(_{bs}{\bf d})\,\backslash c$ & $\dn$ &
|
|
215 |
$\textit{if}\;c=d\; \;\textit{then}\;
|
|
216 |
_{bs}\ONE\;\textit{else}\;\ZERO$\\
|
|
217 |
$(_{bs}\sum \;\textit{as})\,\backslash c$ & $\dn$ &
|
|
218 |
$_{bs}\sum\;(\textit{map} (\_\backslash c) as )$\\
|
|
219 |
$(_{bs}\;a_1\cdot a_2)\,\backslash c$ & $\dn$ &
|
|
220 |
$\textit{if}\;\textit{bnullable}\,a_1$\\
|
|
221 |
& &$\textit{then}\;_{bs}\sum\,[(_{[]}\,(a_1\,\backslash c)\cdot\,a_2),$\\
|
|
222 |
& &$\phantom{\textit{then},\;_{bs}\sum\,}(\textit{fuse}\,(\textit{bmkeps}\,a_1)\,(a_2\,\backslash c))]$\\
|
|
223 |
& &$\textit{else}\;_{bs}\,(a_1\,\backslash c)\cdot a_2$\\
|
|
224 |
$(_{bs}a^*)\,\backslash c$ & $\dn$ &
|
|
225 |
$_{bs}(\textit{fuse}\, [0] \; r\,\backslash c)\cdot
|
|
226 |
(_{[]}r^*))$
|
|
227 |
\end{tabular}
|
|
228 |
\end{center}
|
|
229 |
|
|
230 |
%\end{definition}
|
|
231 |
\noindent
|
|
232 |
For instance, when we do derivative of $_{bs}a^*$ with respect to c,
|
|
233 |
we need to unfold it into a sequence,
|
|
234 |
and attach an additional bit $0$ to the front of $r \backslash c$
|
|
235 |
to indicate one more star iteration. Also the sequence clause
|
|
236 |
is more subtle---when $a_1$ is $\textit{bnullable}$ (here
|
|
237 |
\textit{bnullable} is exactly the same as $\textit{nullable}$, except
|
|
238 |
that it is for annotated regular expressions, therefore we omit the
|
|
239 |
definition). Assume that $\textit{bmkeps}$ correctly extracts the bitcode for how
|
|
240 |
$a_1$ matches the string prior to character $c$ (more on this later),
|
|
241 |
then the right branch of alternative, which is $\textit{fuse} \; \bmkeps \; a_1 (a_2
|
|
242 |
\backslash c)$ will collapse the regular expression $a_1$(as it has
|
|
243 |
already been fully matched) and store the parsing information at the
|
|
244 |
head of the regular expression $a_2 \backslash c$ by fusing to it. The
|
|
245 |
bitsequence $\textit{bs}$, which was initially attached to the
|
|
246 |
first element of the sequence $a_1 \cdot a_2$, has
|
|
247 |
now been elevated to the top-level of $\sum$, as this information will be
|
|
248 |
needed whichever way the sequence is matched---no matter whether $c$ belongs
|
|
249 |
to $a_1$ or $ a_2$. After building these derivatives and maintaining all
|
|
250 |
the lexing information, we complete the lexing by collecting the
|
|
251 |
bitcodes using a generalised version of the $\textit{mkeps}$ function
|
|
252 |
for annotated regular expressions, called $\textit{bmkeps}$:
|
|
253 |
|
|
254 |
|
|
255 |
%\begin{definition}[\textit{bmkeps}]\mbox{}
|
|
256 |
\begin{center}
|
|
257 |
\begin{tabular}{lcl}
|
|
258 |
$\textit{bmkeps}\,(_{bs}\ONE)$ & $\dn$ & $bs$\\
|
|
259 |
$\textit{bmkeps}\,(_{bs}\sum a::\textit{as})$ & $\dn$ &
|
|
260 |
$\textit{if}\;\textit{bnullable}\,a$\\
|
|
261 |
& &$\textit{then}\;bs\,@\,\textit{bmkeps}\,a$\\
|
|
262 |
& &$\textit{else}\;bs\,@\,\textit{bmkeps}\,(_{bs}\sum \textit{as})$\\
|
|
263 |
$\textit{bmkeps}\,(_{bs} a_1 \cdot a_2)$ & $\dn$ &
|
|
264 |
$bs \,@\,\textit{bmkeps}\,a_1\,@\, \textit{bmkeps}\,a_2$\\
|
|
265 |
$\textit{bmkeps}\,(_{bs}a^*)$ & $\dn$ &
|
|
266 |
$bs \,@\, [0]$
|
|
267 |
\end{tabular}
|
|
268 |
\end{center}
|
|
269 |
%\end{definition}
|
|
270 |
|
|
271 |
\noindent
|
|
272 |
This function completes the value information by travelling along the
|
|
273 |
path of the regular expression that corresponds to a POSIX value and
|
|
274 |
collecting all the bitcodes, and using $S$ to indicate the end of star
|
|
275 |
iterations. If we take the bitcodes produced by $\textit{bmkeps}$ and
|
|
276 |
decode them, we get the value we expect. The corresponding lexing
|
|
277 |
algorithm looks as follows:
|
|
278 |
|
|
279 |
\begin{center}
|
|
280 |
\begin{tabular}{lcl}
|
|
281 |
$\textit{blexer}\;r\,s$ & $\dn$ &
|
|
282 |
$\textit{let}\;a = (r^\uparrow)\backslash s\;\textit{in}$\\
|
|
283 |
& & $\;\;\textit{if}\; \textit{bnullable}(a)$\\
|
|
284 |
& & $\;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,a)\,r$\\
|
|
285 |
& & $\;\;\textit{else}\;\textit{None}$
|
|
286 |
\end{tabular}
|
|
287 |
\end{center}
|
|
288 |
|
|
289 |
\noindent
|
|
290 |
In this definition $\_\backslash s$ is the generalisation of the derivative
|
|
291 |
operation from characters to strings (just like the derivatives for un-annotated
|
|
292 |
regular expressions).
|
|
293 |
|
|
294 |
Now we introduce the simplifications, which is why we introduce the
|
|
295 |
bitcodes in the first place.
|
|
296 |
|
|
297 |
\subsection*{Simplification Rules}
|
|
298 |
|
|
299 |
This section introduces aggressive (in terms of size) simplification rules
|
|
300 |
on annotated regular expressions
|
|
301 |
to keep derivatives small. Such simplifications are promising
|
|
302 |
as we have
|
|
303 |
generated test data that show
|
|
304 |
that a good tight bound can be achieved. We could only
|
|
305 |
partially cover the search space as there are infinitely many regular
|
|
306 |
expressions and strings.
|
|
307 |
|
|
308 |
One modification we introduced is to allow a list of annotated regular
|
|
309 |
expressions in the $\sum$ constructor. This allows us to not just
|
|
310 |
delete unnecessary $\ZERO$s and $\ONE$s from regular expressions, but
|
|
311 |
also unnecessary ``copies'' of regular expressions (very similar to
|
|
312 |
simplifying $r + r$ to just $r$, but in a more general setting). Another
|
|
313 |
modification is that we use simplification rules inspired by Antimirov's
|
|
314 |
work on partial derivatives. They maintain the idea that only the first
|
|
315 |
``copy'' of a regular expression in an alternative contributes to the
|
|
316 |
calculation of a POSIX value. All subsequent copies can be pruned away from
|
|
317 |
the regular expression. A recursive definition of our simplification function
|
|
318 |
that looks somewhat similar to our Scala code is given below:
|
|
319 |
%\comment{Use $\ZERO$, $\ONE$ and so on.
|
|
320 |
%Is it $ALTS$ or $ALTS$?}\\
|
|
321 |
|
|
322 |
\begin{center}
|
|
323 |
\begin{tabular}{@{}lcl@{}}
|
|
324 |
|
|
325 |
$\textit{simp} \; (_{bs}a_1\cdot a_2)$ & $\dn$ & $ (\textit{simp} \; a_1, \textit{simp} \; a_2) \; \textit{match} $ \\
|
|
326 |
&&$\quad\textit{case} \; (\ZERO, \_) \Rightarrow \ZERO$ \\
|
|
327 |
&&$\quad\textit{case} \; (\_, \ZERO) \Rightarrow \ZERO$ \\
|
|
328 |
&&$\quad\textit{case} \; (\ONE, a_2') \Rightarrow \textit{fuse} \; bs \; a_2'$ \\
|
|
329 |
&&$\quad\textit{case} \; (a_1', \ONE) \Rightarrow \textit{fuse} \; bs \; a_1'$ \\
|
|
330 |
&&$\quad\textit{case} \; (a_1', a_2') \Rightarrow _{bs}a_1' \cdot a_2'$ \\
|
|
331 |
|
|
332 |
$\textit{simp} \; (_{bs}\sum \textit{as})$ & $\dn$ & $\textit{distinct}( \textit{flatten} ( \textit{map} \; simp \; as)) \; \textit{match} $ \\
|
|
333 |
&&$\quad\textit{case} \; [] \Rightarrow \ZERO$ \\
|
|
334 |
&&$\quad\textit{case} \; a :: [] \Rightarrow \textit{fuse bs a}$ \\
|
|
335 |
&&$\quad\textit{case} \; as' \Rightarrow _{bs}\sum \textit{as'}$\\
|
|
336 |
|
|
337 |
$\textit{simp} \; a$ & $\dn$ & $\textit{a} \qquad \textit{otherwise}$
|
|
338 |
\end{tabular}
|
|
339 |
\end{center}
|
|
340 |
|
|
341 |
\noindent
|
|
342 |
The simplification does a pattern matching on the regular expression.
|
|
343 |
When it detected that the regular expression is an alternative or
|
|
344 |
sequence, it will try to simplify its child regular expressions
|
|
345 |
recursively and then see if one of the children turns into $\ZERO$ or
|
|
346 |
$\ONE$, which might trigger further simplification at the current level.
|
|
347 |
The most involved part is the $\sum$ clause, where we use two
|
|
348 |
auxiliary functions $\textit{flatten}$ and $\textit{distinct}$ to open up nested
|
|
349 |
alternatives and reduce as many duplicates as possible. Function
|
|
350 |
$\textit{distinct}$ keeps the first occurring copy only and removes all later ones
|
|
351 |
when detected duplicates. Function $\textit{flatten}$ opens up nested $\sum$s.
|
|
352 |
Its recursive definition is given below:
|
|
353 |
|
|
354 |
\begin{center}
|
|
355 |
\begin{tabular}{@{}lcl@{}}
|
|
356 |
$\textit{flatten} \; (_{bs}\sum \textit{as}) :: \textit{as'}$ & $\dn$ & $(\textit{map} \;
|
|
357 |
(\textit{fuse}\;bs)\; \textit{as}) \; @ \; \textit{flatten} \; as' $ \\
|
|
358 |
$\textit{flatten} \; \ZERO :: as'$ & $\dn$ & $ \textit{flatten} \; \textit{as'} $ \\
|
|
359 |
$\textit{flatten} \; a :: as'$ & $\dn$ & $a :: \textit{flatten} \; \textit{as'}$ \quad(otherwise)
|
|
360 |
\end{tabular}
|
|
361 |
\end{center}
|
|
362 |
|
|
363 |
\noindent
|
|
364 |
Here $\textit{flatten}$ behaves like the traditional functional programming flatten
|
|
365 |
function, except that it also removes $\ZERO$s. Or in terms of regular expressions, it
|
|
366 |
removes parentheses, for example changing $a+(b+c)$ into $a+b+c$.
|
|
367 |
|
|
368 |
Having defined the $\simp$ function,
|
|
369 |
we can use the previous notation of natural
|
|
370 |
extension from derivative w.r.t.~character to derivative
|
|
371 |
w.r.t.~string:%\comment{simp in the [] case?}
|
|
372 |
|
|
373 |
\begin{center}
|
|
374 |
\begin{tabular}{lcl}
|
|
375 |
$r \backslash_{simp} (c\!::\!s) $ & $\dn$ & $(r \backslash_{simp}\, c) \backslash_{simp}\, s$ \\
|
|
376 |
$r \backslash_{simp} [\,] $ & $\dn$ & $r$
|
|
377 |
\end{tabular}
|
|
378 |
\end{center}
|
|
379 |
|
|
380 |
\noindent
|
|
381 |
to obtain an optimised version of the algorithm:
|
|
382 |
|
|
383 |
\begin{center}
|
|
384 |
\begin{tabular}{lcl}
|
|
385 |
$\textit{blexer\_simp}\;r\,s$ & $\dn$ &
|
|
386 |
$\textit{let}\;a = (r^\uparrow)\backslash_{simp}\, s\;\textit{in}$\\
|
|
387 |
& & $\;\;\textit{if}\; \textit{bnullable}(a)$\\
|
|
388 |
& & $\;\;\textit{then}\;\textit{decode}\,(\textit{bmkeps}\,a)\,r$\\
|
|
389 |
& & $\;\;\textit{else}\;\textit{None}$
|
|
390 |
\end{tabular}
|
|
391 |
\end{center}
|
|
392 |
|
|
393 |
\noindent
|
|
394 |
This algorithm keeps the regular expression size small, for example,
|
|
395 |
with this simplification our previous $(a + aa)^*$ example's 8000 nodes
|
|
396 |
will be reduced to just 6 and stays constant, no matter how long the
|
|
397 |
input string is.
|
|
398 |
|
|
399 |
|
|
400 |
|
|
401 |
|
|
402 |
|
|
403 |
|
|
404 |
|
|
405 |
|
|
406 |
|
|
407 |
|
|
408 |
|
|
409 |
%-----------------------------------
|
|
410 |
% SUBSECTION 1
|
|
411 |
%-----------------------------------
|
|
412 |
\section{Specifications of Some Helper Functions}
|
|
413 |
Here we give some functions' definitions,
|
|
414 |
which we will use later.
|
|
415 |
\begin{center}
|
|
416 |
\begin{tabular}{ccc}
|
|
417 |
$\retrieve \; \ACHAR \, \textit{bs} \, c \; \Char(c) = \textit{bs}$
|
|
418 |
\end{tabular}
|
|
419 |
\end{center}
|
|
420 |
|
|
421 |
|
|
422 |
%----------------------------------------------------------------------------------------
|
|
423 |
% SECTION correctness proof
|
|
424 |
%----------------------------------------------------------------------------------------
|
|
425 |
\section{Correctness of Bit-coded Algorithm (Without Simplification)}
|
|
426 |
We now give the proof the correctness of the algorithm with bit-codes.
|
|
427 |
|
|
428 |
Ausaf and Urban cleverly defined an auxiliary function called $\flex$,
|
|
429 |
defined as
|
|
430 |
\[
|
|
431 |
\flex \; r \; f \; [] \; v \; = \; f\; v
|
|
432 |
\flex \; r \; f \; c :: s \; v = \flex r \; \lambda v. \, f (\inj \; r\; c\; v)\; s \; v
|
|
433 |
\]
|
|
434 |
which accumulates the characters that needs to be injected back,
|
|
435 |
and does the injection in a stack-like manner (last taken derivative first injected).
|
|
436 |
$\flex$ is connected to the $\lexer$:
|
|
437 |
\begin{lemma}
|
|
438 |
$\flex \; r \; \textit{id}\; s \; \mkeps (r\backslash s) = \lexer \; r \; s$
|
|
439 |
\end{lemma}
|
|
440 |
$\flex$ provides us a bridge between $\lexer$ and $\blexer$.
|
|
441 |
What is even better about $\flex$ is that it allows us to
|
|
442 |
directly operate on the value $\mkeps (r\backslash v)$,
|
|
443 |
which is pivotal in the definition of $\lexer $ and $\blexer$, but not visible as an argument.
|
|
444 |
When the value created by $\mkeps$ becomes available, one can
|
|
445 |
prove some stepwise properties of lexing nicely:
|
|
446 |
\begin{lemma}\label{flexStepwise}
|
|
447 |
$\textit{flex} \; r \; f \; s@[c] \; v= \flex \; r \; f\; s \; (\inj \; (r\backslash s) \; c \; v) $
|
|
448 |
\end{lemma}
|
|
449 |
|
|
450 |
And for $\blexer$ we have a function with stepwise properties like $\flex$ as well,
|
|
451 |
called $\retrieve$\ref{retrieveDef}.
|
|
452 |
$\retrieve$ takes bit-codes from annotated regular expressions
|
|
453 |
guided by a value.
|
|
454 |
$\retrieve$ is connected to the $\blexer$ in the following way:
|
|
455 |
\begin{lemma}\label{blexer_retrieve}
|
|
456 |
$\blexer \; r \; s = \decode \; (\retrieve \; (\internalise \; r) \; (\mkeps \; (r \backslash s) )) \; r$
|
|
457 |
\end{lemma}
|
|
458 |
If you take derivative of an annotated regular expression,
|
|
459 |
you can $\retrieve$ the same bit-codes as before the derivative took place,
|
|
460 |
provided that you use the corresponding value:
|
|
461 |
|
|
462 |
\begin{lemma}\label{retrieveStepwise}
|
|
463 |
$\retrieve \; (r \backslash c) \; v= \retrieve \; r \; (\inj \; r\; c\; v)$
|
|
464 |
\end{lemma}
|
|
465 |
The other good thing about $\retrieve$ is that it can be connected to $\flex$:
|
|
466 |
%centralLemma1
|
|
467 |
\begin{lemma}\label{flex_retrieve}
|
|
468 |
$\flex \; r \; \textit{id}\; s\; v = \decode \; (\retrieve \; (r\backslash s )\; v) \; r$
|
|
469 |
\end{lemma}
|
|
470 |
\begin{proof}
|
|
471 |
By induction on $s$. The induction tactic is reverse induction on strings.
|
|
472 |
$v$ is allowed to be arbitrary.
|
|
473 |
The crucial point is to rewrite
|
|
474 |
\[
|
|
475 |
\retrieve \; (r \backslash s@[c]) \; \mkeps (r \backslash s@[c])
|
|
476 |
\]
|
|
477 |
as
|
|
478 |
\[
|
|
479 |
\retrieve \; (r \backslash s) \; (\inj \; (r \backslash s) \; c\; \mkeps (r \backslash s@[c]))
|
|
480 |
\].
|
|
481 |
This enables us to equate
|
|
482 |
\[
|
|
483 |
\retrieve \; (r \backslash s@[c]) \; \mkeps (r \backslash s@[c])
|
|
484 |
\]
|
|
485 |
with
|
|
486 |
\[
|
|
487 |
\flex \; r \; \textit{id} \; s \; (\inj \; (r\backslash s) \; c\; (\mkeps (r\backslash s@[c])))
|
|
488 |
\],
|
|
489 |
which in turn can be rewritten as
|
|
490 |
\[
|
|
491 |
\flex \; r \; \textit{id} \; s@[c] \; (\mkeps (r\backslash s@[c]))
|
|
492 |
\].
|
|
493 |
\end{proof}
|
|
494 |
|
|
495 |
With the above lemma we can now link $\flex$ and $\blexer$.
|
|
496 |
|
|
497 |
\begin{lemma}\label{flex_blexer}
|
|
498 |
$\textit{flex} \; r \; \textit{id} \; s \; \mkeps(r \backslash s) = \blexer \; r \; s$
|
|
499 |
\end{lemma}
|
|
500 |
\begin{proof}
|
|
501 |
Using two of the above lemmas: \ref{flex_retrieve} and \ref{blexer_retrieve}.
|
|
502 |
\end{proof}
|
|
503 |
Finally
|
|
504 |
|
|
505 |
|
|
506 |
|