556
|
1 |
theory BasicIdentities
|
|
2 |
imports "RfltsRdistinctProps"
|
|
3 |
begin
|
|
4 |
|
|
5 |
|
|
6 |
|
|
7 |
lemma rder_rsimp_ALTs_commute:
|
|
8 |
shows " (rder x (rsimp_ALTs rs)) = rsimp_ALTs (map (rder x) rs)"
|
|
9 |
apply(induct rs)
|
|
10 |
apply simp
|
|
11 |
apply(case_tac rs)
|
|
12 |
apply simp
|
|
13 |
apply auto
|
|
14 |
done
|
|
15 |
|
|
16 |
|
|
17 |
|
|
18 |
lemma rsimp_aalts_smaller:
|
|
19 |
shows "rsize (rsimp_ALTs rs) \<le> rsize (RALTS rs)"
|
|
20 |
apply(induct rs)
|
|
21 |
apply simp
|
|
22 |
apply simp
|
|
23 |
apply(case_tac "rs = []")
|
|
24 |
apply simp
|
|
25 |
apply(subgoal_tac "\<exists>rsp ap. rs = ap # rsp")
|
|
26 |
apply(erule exE)+
|
|
27 |
apply simp
|
|
28 |
apply simp
|
|
29 |
by(meson neq_Nil_conv)
|
|
30 |
|
|
31 |
|
|
32 |
|
|
33 |
|
|
34 |
|
|
35 |
lemma rSEQ_mono:
|
|
36 |
shows "rsize (rsimp_SEQ r1 r2) \<le>rsize (RSEQ r1 r2)"
|
|
37 |
apply auto
|
|
38 |
apply(induct r1)
|
|
39 |
apply auto
|
|
40 |
apply(case_tac "r2")
|
|
41 |
apply simp_all
|
|
42 |
apply(case_tac r2)
|
|
43 |
apply simp_all
|
|
44 |
apply(case_tac r2)
|
|
45 |
apply simp_all
|
|
46 |
apply(case_tac r2)
|
|
47 |
apply simp_all
|
|
48 |
apply(case_tac r2)
|
|
49 |
apply simp_all
|
|
50 |
done
|
|
51 |
|
|
52 |
lemma ralts_cap_mono:
|
|
53 |
shows "rsize (RALTS rs) \<le> Suc (rsizes rs)"
|
|
54 |
by simp
|
|
55 |
|
|
56 |
|
|
57 |
|
|
58 |
|
|
59 |
lemma rflts_mono:
|
|
60 |
shows "rsizes (rflts rs) \<le> rsizes rs"
|
|
61 |
apply(induct rs)
|
|
62 |
apply simp
|
|
63 |
apply(case_tac "a = RZERO")
|
|
64 |
apply simp
|
|
65 |
apply(case_tac "\<exists>rs1. a = RALTS rs1")
|
|
66 |
apply(erule exE)
|
|
67 |
apply simp
|
|
68 |
apply(subgoal_tac "rflts (a # rs) = a # (rflts rs)")
|
|
69 |
prefer 2
|
|
70 |
|
|
71 |
using rflts_def_idiot apply blast
|
|
72 |
apply simp
|
|
73 |
done
|
|
74 |
|
|
75 |
lemma rdistinct_smaller:
|
|
76 |
shows "rsizes (rdistinct rs ss) \<le> rsizes rs"
|
|
77 |
apply (induct rs arbitrary: ss)
|
|
78 |
apply simp
|
|
79 |
by (simp add: trans_le_add2)
|
|
80 |
|
|
81 |
|
|
82 |
lemma rsimp_alts_mono :
|
|
83 |
shows "\<And>x. (\<And>xa. xa \<in> set x \<Longrightarrow> rsize (rsimp xa) \<le> rsize xa) \<Longrightarrow>
|
|
84 |
rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {})) \<le> Suc (rsizes x)"
|
|
85 |
apply(subgoal_tac "rsize (rsimp_ALTs (rdistinct (rflts (map rsimp x)) {} ))
|
|
86 |
\<le> rsize (RALTS (rdistinct (rflts (map rsimp x)) {} ))")
|
|
87 |
prefer 2
|
|
88 |
using rsimp_aalts_smaller apply auto[1]
|
|
89 |
apply(subgoal_tac "rsize (RALTS (rdistinct (rflts (map rsimp x)) {})) \<le>Suc (rsizes (rdistinct (rflts (map rsimp x)) {}))")
|
|
90 |
prefer 2
|
|
91 |
using ralts_cap_mono apply blast
|
|
92 |
apply(subgoal_tac "rsizes (rdistinct (rflts (map rsimp x)) {}) \<le> rsizes (rflts (map rsimp x))")
|
|
93 |
prefer 2
|
|
94 |
using rdistinct_smaller apply presburger
|
|
95 |
apply(subgoal_tac "rsizes (rflts (map rsimp x)) \<le> rsizes (map rsimp x)")
|
|
96 |
prefer 2
|
|
97 |
using rflts_mono apply blast
|
|
98 |
apply(subgoal_tac "rsizes (map rsimp x) \<le> rsizes x")
|
|
99 |
prefer 2
|
|
100 |
|
|
101 |
apply (simp add: sum_list_mono)
|
|
102 |
by linarith
|
|
103 |
|
|
104 |
|
|
105 |
|
|
106 |
|
|
107 |
|
|
108 |
lemma rsimp_mono:
|
|
109 |
shows "rsize (rsimp r) \<le> rsize r"
|
|
110 |
apply(induct r)
|
|
111 |
apply simp_all
|
|
112 |
apply(subgoal_tac "rsize (rsimp_SEQ (rsimp r1) (rsimp r2)) \<le> rsize (RSEQ (rsimp r1) (rsimp r2))")
|
|
113 |
apply force
|
|
114 |
using rSEQ_mono
|
|
115 |
apply presburger
|
|
116 |
using rsimp_alts_mono by auto
|
|
117 |
|
|
118 |
lemma idiot:
|
|
119 |
shows "rsimp_SEQ RONE r = r"
|
|
120 |
apply(case_tac r)
|
|
121 |
apply simp_all
|
|
122 |
done
|
|
123 |
|
|
124 |
|
|
125 |
|
|
126 |
|
|
127 |
|
|
128 |
lemma idiot2:
|
|
129 |
shows " \<lbrakk>r1 \<noteq> RZERO; r1 \<noteq> RONE;r2 \<noteq> RZERO\<rbrakk>
|
|
130 |
\<Longrightarrow> rsimp_SEQ r1 r2 = RSEQ r1 r2"
|
|
131 |
apply(case_tac r1)
|
|
132 |
apply(case_tac r2)
|
|
133 |
apply simp_all
|
|
134 |
apply(case_tac r2)
|
|
135 |
apply simp_all
|
|
136 |
apply(case_tac r2)
|
|
137 |
apply simp_all
|
|
138 |
apply(case_tac r2)
|
|
139 |
apply simp_all
|
|
140 |
apply(case_tac r2)
|
|
141 |
apply simp_all
|
|
142 |
done
|
|
143 |
|
|
144 |
lemma rders__onechar:
|
|
145 |
shows " (rders_simp r [c]) = (rsimp (rders r [c]))"
|
|
146 |
by simp
|
|
147 |
|
|
148 |
lemma rders_append:
|
|
149 |
"rders c (s1 @ s2) = rders (rders c s1) s2"
|
|
150 |
apply(induct s1 arbitrary: c s2)
|
|
151 |
apply(simp_all)
|
|
152 |
done
|
|
153 |
|
|
154 |
lemma rders_simp_append:
|
|
155 |
"rders_simp c (s1 @ s2) = rders_simp (rders_simp c s1) s2"
|
|
156 |
apply(induct s1 arbitrary: c s2)
|
|
157 |
apply(simp_all)
|
|
158 |
done
|
|
159 |
|
|
160 |
|
|
161 |
lemma rders_simp_one_char:
|
|
162 |
shows "rders_simp r [c] = rsimp (rder c r)"
|
|
163 |
apply auto
|
|
164 |
done
|
|
165 |
|
|
166 |
|
|
167 |
|
|
168 |
|
|
169 |
|
|
170 |
lemma k0a:
|
|
171 |
shows "rflts [RALTS rs] = rs"
|
|
172 |
apply(simp)
|
|
173 |
done
|
|
174 |
|
|
175 |
lemma bbbbs:
|
|
176 |
assumes "good r" "r = RALTS rs"
|
|
177 |
shows "rsimp_ALTs (rflts [r]) = RALTS rs"
|
|
178 |
using assms
|
|
179 |
by (metis good.simps(4) good.simps(5) k0a rsimp_ALTs.elims)
|
|
180 |
|
|
181 |
lemma bbbbs1:
|
|
182 |
shows "nonalt r \<or> (\<exists> rs. r = RALTS rs)"
|
|
183 |
by (meson nonalt.elims(3))
|
|
184 |
|
|
185 |
|
|
186 |
|
|
187 |
lemma good0:
|
|
188 |
assumes "rs \<noteq> Nil" "\<forall>r \<in> set rs. nonalt r" "distinct rs"
|
|
189 |
shows "good (rsimp_ALTs rs) \<longleftrightarrow> (\<forall>r \<in> set rs. good r)"
|
|
190 |
using assms
|
|
191 |
apply(induct rs rule: rsimp_ALTs.induct)
|
|
192 |
apply(auto)
|
|
193 |
done
|
|
194 |
|
|
195 |
lemma flts1:
|
|
196 |
assumes "good r"
|
|
197 |
shows "rflts [r] \<noteq> []"
|
|
198 |
using assms
|
|
199 |
apply(induct r)
|
|
200 |
apply(simp_all)
|
|
201 |
using good.simps(4) by blast
|
|
202 |
|
|
203 |
lemma flts2:
|
|
204 |
assumes "good r"
|
|
205 |
shows "\<forall>r' \<in> set (rflts [r]). good r' \<and> nonalt r'"
|
|
206 |
using assms
|
|
207 |
apply(induct r)
|
|
208 |
apply(simp)
|
|
209 |
apply(simp)
|
|
210 |
apply(simp)
|
|
211 |
prefer 2
|
|
212 |
apply(simp)
|
|
213 |
apply(auto)[1]
|
|
214 |
|
|
215 |
apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv)
|
|
216 |
apply (metis flts1 good.simps(5) good.simps(6) k0a neq_Nil_conv)
|
|
217 |
apply fastforce
|
|
218 |
apply(simp)
|
|
219 |
done
|
|
220 |
|
|
221 |
|
|
222 |
|
|
223 |
lemma flts3:
|
|
224 |
assumes "\<forall>r \<in> set rs. good r \<or> r = RZERO"
|
|
225 |
shows "\<forall>r \<in> set (rflts rs). good r"
|
|
226 |
using assms
|
|
227 |
apply(induct rs rule: rflts.induct)
|
|
228 |
apply(simp_all)
|
|
229 |
by (metis UnE flts2 k0a)
|
|
230 |
|
|
231 |
|
|
232 |
lemma k0:
|
|
233 |
shows "rflts (r # rs1) = rflts [r] @ rflts rs1"
|
|
234 |
apply(induct r arbitrary: rs1)
|
|
235 |
apply(auto)
|
|
236 |
done
|
|
237 |
|
|
238 |
|
|
239 |
lemma good_SEQ:
|
|
240 |
assumes "r1 \<noteq> RZERO" "r2 \<noteq> RZERO" " r1 \<noteq> RONE"
|
|
241 |
shows "good (RSEQ r1 r2) = (good r1 \<and> good r2)"
|
|
242 |
using assms
|
|
243 |
apply(case_tac r1)
|
|
244 |
apply(simp_all)
|
|
245 |
apply(case_tac r2)
|
|
246 |
apply(simp_all)
|
|
247 |
apply(case_tac r2)
|
|
248 |
apply(simp_all)
|
|
249 |
apply(case_tac r2)
|
|
250 |
apply(simp_all)
|
|
251 |
apply(case_tac r2)
|
|
252 |
apply(simp_all)
|
|
253 |
done
|
|
254 |
|
|
255 |
lemma rsize0:
|
|
256 |
shows "0 < rsize r"
|
|
257 |
apply(induct r)
|
|
258 |
apply(auto)
|
|
259 |
done
|
|
260 |
|
|
261 |
|
|
262 |
|
|
263 |
|
|
264 |
|
|
265 |
|
|
266 |
|
|
267 |
|
|
268 |
|
|
269 |
|
|
270 |
|
|
271 |
lemma nn1qq:
|
|
272 |
assumes "nonnested (RALTS rs)"
|
|
273 |
shows "\<nexists> rs1. RALTS rs1 \<in> set rs"
|
|
274 |
using assms
|
|
275 |
apply(induct rs rule: rflts.induct)
|
|
276 |
apply(auto)
|
|
277 |
done
|
|
278 |
|
|
279 |
|
|
280 |
|
|
281 |
lemma n0:
|
|
282 |
shows "nonnested (RALTS rs) \<longleftrightarrow> (\<forall>r \<in> set rs. nonalt r)"
|
|
283 |
apply(induct rs )
|
|
284 |
apply(auto)
|
|
285 |
apply (metis list.set_intros(1) nn1qq nonalt.elims(3))
|
|
286 |
apply (metis nonalt.elims(2) nonnested.simps(3) nonnested.simps(4) nonnested.simps(5) nonnested.simps(6) nonnested.simps(7))
|
|
287 |
using bbbbs1 apply fastforce
|
|
288 |
by (metis bbbbs1 list.set_intros(2) nn1qq)
|
|
289 |
|
|
290 |
|
|
291 |
|
|
292 |
|
|
293 |
lemma nn1c:
|
|
294 |
assumes "\<forall>r \<in> set rs. nonnested r"
|
|
295 |
shows "\<forall>r \<in> set (rflts rs). nonalt r"
|
|
296 |
using assms
|
|
297 |
apply(induct rs rule: rflts.induct)
|
|
298 |
apply(auto)
|
|
299 |
using n0 by blast
|
|
300 |
|
|
301 |
lemma nn1bb:
|
|
302 |
assumes "\<forall>r \<in> set rs. nonalt r"
|
|
303 |
shows "nonnested (rsimp_ALTs rs)"
|
|
304 |
using assms
|
|
305 |
apply(induct rs rule: rsimp_ALTs.induct)
|
|
306 |
apply(auto)
|
|
307 |
using nonalt.simps(1) nonnested.elims(3) apply blast
|
|
308 |
using n0 by auto
|
|
309 |
|
|
310 |
lemma bsimp_ASEQ0:
|
|
311 |
shows "rsimp_SEQ r1 RZERO = RZERO"
|
|
312 |
apply(induct r1)
|
|
313 |
apply(auto)
|
|
314 |
done
|
|
315 |
|
|
316 |
lemma nn1b:
|
|
317 |
shows "nonnested (rsimp r)"
|
|
318 |
apply(induct r)
|
|
319 |
apply(simp_all)
|
|
320 |
apply(case_tac "rsimp r1 = RZERO")
|
|
321 |
apply(simp)
|
|
322 |
apply(case_tac "rsimp r2 = RZERO")
|
|
323 |
apply(simp)
|
|
324 |
apply(subst bsimp_ASEQ0)
|
|
325 |
apply(simp)
|
|
326 |
apply(case_tac "\<exists>bs. rsimp r1 = RONE")
|
|
327 |
apply(auto)[1]
|
|
328 |
using idiot apply fastforce
|
|
329 |
using idiot2 nonnested.simps(11) apply presburger
|
|
330 |
by (metis (mono_tags, lifting) Diff_empty image_iff list.set_map nn1bb nn1c rdistinct_set_equality1)
|
|
331 |
|
|
332 |
lemma nonalt_flts_rd:
|
|
333 |
shows "\<lbrakk>xa \<in> set (rdistinct (rflts (map rsimp rs)) {})\<rbrakk>
|
|
334 |
\<Longrightarrow> nonalt xa"
|
|
335 |
by (metis Diff_empty ex_map_conv nn1b nn1c rdistinct_set_equality1)
|
|
336 |
|
|
337 |
|
|
338 |
|
|
339 |
|
|
340 |
lemma bsimp_ASEQ2:
|
|
341 |
shows "rsimp_SEQ RONE r2 = r2"
|
|
342 |
apply(induct r2)
|
|
343 |
apply(auto)
|
|
344 |
done
|
|
345 |
|
|
346 |
lemma elem_smaller_than_set:
|
|
347 |
shows "xa \<in> set list \<Longrightarrow> rsize xa < Suc (rsizes list)"
|
|
348 |
apply(induct list)
|
|
349 |
apply simp
|
|
350 |
by (metis image_eqI le_imp_less_Suc list.set_map member_le_sum_list)
|
|
351 |
|
|
352 |
lemma rsimp_list_mono:
|
|
353 |
shows "rsizes (map rsimp rs) \<le> rsizes rs"
|
|
354 |
apply(induct rs)
|
|
355 |
apply simp+
|
|
356 |
by (simp add: add_mono_thms_linordered_semiring(1) rsimp_mono)
|
|
357 |
|
|
358 |
|
|
359 |
(*says anything coming out of simp+flts+db will be good*)
|
|
360 |
lemma good2_obv_simplified:
|
|
361 |
shows " \<lbrakk>\<forall>y. rsize y < Suc (rsizes rs) \<longrightarrow> good (rsimp y) \<or> rsimp y = RZERO;
|
|
362 |
xa \<in> set (rdistinct (rflts (map rsimp rs)) {})\<rbrakk> \<Longrightarrow> good xa"
|
|
363 |
apply(subgoal_tac " \<forall>xa' \<in> set (map rsimp rs). good xa' \<or> xa' = RZERO")
|
|
364 |
prefer 2
|
|
365 |
apply (simp add: elem_smaller_than_set)
|
|
366 |
by (metis Diff_empty flts3 rdistinct_set_equality1)
|
|
367 |
|
|
368 |
|
|
369 |
|
|
370 |
|
|
371 |
lemma good1:
|
|
372 |
shows "good (rsimp a) \<or> rsimp a = RZERO"
|
|
373 |
apply(induct a taking: rsize rule: measure_induct)
|
|
374 |
apply(case_tac x)
|
|
375 |
apply(simp)
|
|
376 |
apply(simp)
|
|
377 |
apply(simp)
|
|
378 |
prefer 3
|
|
379 |
apply(simp)
|
|
380 |
prefer 2
|
|
381 |
apply(simp only:)
|
|
382 |
apply simp
|
|
383 |
apply (smt (verit, ccfv_threshold) add_mono_thms_linordered_semiring(1) elem_smaller_than_set good0 good2_obv_simplified le_eq_less_or_eq nonalt_flts_rd order_less_trans plus_1_eq_Suc rdistinct_does_the_job rdistinct_smaller rflts_mono rsimp_ALTs.simps(1) rsimp_list_mono)
|
|
384 |
apply simp
|
|
385 |
apply(subgoal_tac "good (rsimp x41) \<or> rsimp x41 = RZERO")
|
|
386 |
apply(subgoal_tac "good (rsimp x42) \<or> rsimp x42 = RZERO")
|
|
387 |
apply(case_tac "rsimp x41 = RZERO")
|
|
388 |
apply simp
|
|
389 |
apply(case_tac "rsimp x42 = RZERO")
|
|
390 |
apply simp
|
|
391 |
using bsimp_ASEQ0 apply blast
|
|
392 |
apply(subgoal_tac "good (rsimp x41)")
|
|
393 |
apply(subgoal_tac "good (rsimp x42)")
|
|
394 |
apply simp
|
|
395 |
apply (metis bsimp_ASEQ2 good_SEQ idiot2)
|
|
396 |
apply blast
|
|
397 |
apply fastforce
|
|
398 |
using less_add_Suc2 apply blast
|
|
399 |
using less_iff_Suc_add by blast
|
|
400 |
|
|
401 |
lemma RL_rnullable:
|
|
402 |
shows "rnullable r = ([] \<in> RL r)"
|
|
403 |
apply(induct r)
|
|
404 |
apply(auto simp add: Sequ_def)
|
|
405 |
done
|
|
406 |
|
|
407 |
lemma RL_rder:
|
|
408 |
shows "RL (rder c r) = Der c (RL r)"
|
|
409 |
apply(induct r)
|
|
410 |
apply(auto simp add: Sequ_def Der_def)
|
|
411 |
apply (metis append_Cons)
|
|
412 |
using RL_rnullable apply blast
|
|
413 |
apply (metis append_eq_Cons_conv)
|
|
414 |
apply (metis append_Cons)
|
|
415 |
apply (metis RL_rnullable append_eq_Cons_conv)
|
|
416 |
apply (metis Star.step append_Cons)
|
|
417 |
using Star_decomp by auto
|
|
418 |
|
|
419 |
|
|
420 |
|
|
421 |
|
|
422 |
lemma RL_rsimp_RSEQ:
|
|
423 |
shows "RL (rsimp_SEQ r1 r2) = (RL r1 ;; RL r2)"
|
|
424 |
apply(induct r1 r2 rule: rsimp_SEQ.induct)
|
|
425 |
apply(simp_all)
|
|
426 |
done
|
|
427 |
|
|
428 |
|
|
429 |
|
|
430 |
lemma RL_rsimp_RALTS:
|
|
431 |
shows "RL (rsimp_ALTs rs) = (\<Union> (set (map RL rs)))"
|
|
432 |
apply(induct rs rule: rsimp_ALTs.induct)
|
|
433 |
apply(simp_all)
|
|
434 |
done
|
|
435 |
|
|
436 |
lemma RL_rsimp_rdistinct:
|
|
437 |
shows "(\<Union> (set (map RL (rdistinct rs {})))) = (\<Union> (set (map RL rs)))"
|
|
438 |
apply(auto)
|
|
439 |
apply (metis Diff_iff rdistinct_set_equality1)
|
|
440 |
by (metis Diff_empty rdistinct_set_equality1)
|
|
441 |
|
|
442 |
lemma RL_rsimp_rflts:
|
|
443 |
shows "(\<Union> (set (map RL (rflts rs)))) = (\<Union> (set (map RL rs)))"
|
|
444 |
apply(induct rs rule: rflts.induct)
|
|
445 |
apply(simp_all)
|
|
446 |
done
|
|
447 |
|
|
448 |
lemma RL_rsimp:
|
|
449 |
shows "RL r = RL (rsimp r)"
|
|
450 |
apply(induct r rule: rsimp.induct)
|
|
451 |
apply(auto simp add: Sequ_def RL_rsimp_RSEQ)
|
|
452 |
using RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts apply auto[1]
|
|
453 |
by (smt (verit, del_insts) RL_rsimp_RALTS RL_rsimp_rdistinct RL_rsimp_rflts UN_E image_iff list.set_map)
|
|
454 |
|
|
455 |
|
|
456 |
|
|
457 |
lemma der_simp_nullability:
|
|
458 |
shows "rnullable r = rnullable (rsimp r)"
|
|
459 |
using RL_rnullable RL_rsimp by auto
|
|
460 |
|
|
461 |
|
|
462 |
lemma qqq1:
|
|
463 |
shows "RZERO \<notin> set (rflts (map rsimp rs))"
|
|
464 |
by (metis ex_map_conv flts3 good.simps(1) good1)
|
|
465 |
|
|
466 |
|
|
467 |
|
|
468 |
|
|
469 |
|
|
470 |
lemma flts_single1:
|
|
471 |
assumes "nonalt r" "nonazero r"
|
|
472 |
shows "rflts [r] = [r]"
|
|
473 |
using assms
|
|
474 |
apply(induct r)
|
|
475 |
apply(auto)
|
|
476 |
done
|
|
477 |
|
|
478 |
lemma nonalt0_flts_keeps:
|
|
479 |
shows "(a \<noteq> RZERO) \<and> (\<forall>rs. a \<noteq> RALTS rs) \<Longrightarrow> rflts (a # xs) = a # rflts xs"
|
|
480 |
apply(case_tac a)
|
|
481 |
apply simp+
|
|
482 |
done
|
|
483 |
|
|
484 |
|
|
485 |
lemma nonalt0_fltseq:
|
|
486 |
shows "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r \<Longrightarrow> rflts rs = rs"
|
|
487 |
apply(induct rs)
|
|
488 |
apply simp
|
|
489 |
apply(case_tac "a = RZERO")
|
|
490 |
apply fastforce
|
|
491 |
apply(case_tac "\<exists>rs1. a = RALTS rs1")
|
|
492 |
apply(erule exE)
|
|
493 |
apply simp+
|
|
494 |
using nonalt0_flts_keeps by presburger
|
|
495 |
|
|
496 |
|
|
497 |
|
|
498 |
|
|
499 |
lemma goodalts_nonalt:
|
|
500 |
shows "good (RALTS rs) \<Longrightarrow> rflts rs = rs"
|
|
501 |
apply(induct x == "RALTS rs" arbitrary: rs rule: good.induct)
|
|
502 |
apply simp
|
|
503 |
|
|
504 |
using good.simps(5) apply blast
|
|
505 |
apply simp
|
|
506 |
apply(case_tac "r1 = RZERO")
|
|
507 |
using good.simps(1) apply force
|
|
508 |
apply(case_tac "r2 = RZERO")
|
|
509 |
using good.simps(1) apply force
|
|
510 |
apply(subgoal_tac "rflts (r1 # r2 # rs) = r1 # r2 # rflts rs")
|
|
511 |
prefer 2
|
|
512 |
apply (metis nonalt.simps(1) rflts_def_idiot)
|
|
513 |
apply(subgoal_tac "\<forall>r \<in> set rs. r \<noteq> RZERO \<and> nonalt r")
|
|
514 |
apply(subgoal_tac "rflts rs = rs")
|
|
515 |
apply presburger
|
|
516 |
using nonalt0_fltseq apply presburger
|
|
517 |
using good.simps(1) by blast
|
|
518 |
|
|
519 |
|
|
520 |
|
|
521 |
|
|
522 |
|
|
523 |
lemma test:
|
|
524 |
assumes "good r"
|
|
525 |
shows "rsimp r = r"
|
|
526 |
|
|
527 |
using assms
|
|
528 |
apply(induct rule: good.induct)
|
|
529 |
apply simp
|
|
530 |
apply simp
|
|
531 |
apply simp
|
|
532 |
apply simp
|
|
533 |
apply simp
|
|
534 |
apply(subgoal_tac "distinct (r1 # r2 # rs)")
|
|
535 |
prefer 2
|
|
536 |
using good.simps(6) apply blast
|
|
537 |
apply(subgoal_tac "rflts (r1 # r2 # rs ) = r1 # r2 # rs")
|
|
538 |
prefer 2
|
|
539 |
using goodalts_nonalt apply blast
|
|
540 |
|
|
541 |
apply(subgoal_tac "r1 \<noteq> r2")
|
|
542 |
prefer 2
|
|
543 |
apply (meson distinct_length_2_or_more)
|
|
544 |
apply(subgoal_tac "r1 \<notin> set rs")
|
|
545 |
apply(subgoal_tac "r2 \<notin> set rs")
|
|
546 |
apply(subgoal_tac "\<forall>r \<in> set rs. rsimp r = r")
|
|
547 |
apply(subgoal_tac "map rsimp rs = rs")
|
|
548 |
apply simp
|
|
549 |
apply(subgoal_tac "\<forall>r \<in> {r1, r2}. r \<notin> set rs")
|
|
550 |
apply (metis distinct_not_exist rdistinct_on_distinct)
|
|
551 |
|
|
552 |
apply blast
|
|
553 |
apply (meson map_idI)
|
|
554 |
apply (metis good.simps(6) insert_iff list.simps(15))
|
|
555 |
|
|
556 |
apply (meson distinct.simps(2))
|
|
557 |
apply (simp add: distinct_length_2_or_more)
|
|
558 |
apply simp+
|
|
559 |
done
|
|
560 |
|
|
561 |
|
|
562 |
|
|
563 |
lemma rsimp_idem:
|
|
564 |
shows "rsimp (rsimp r) = rsimp r"
|
|
565 |
using test good1
|
|
566 |
by force
|
|
567 |
|
|
568 |
corollary rsimp_inner_idem4:
|
|
569 |
shows "rsimp r = RALTS rs \<Longrightarrow> rflts rs = rs"
|
|
570 |
by (metis good1 goodalts_nonalt rrexp.simps(12))
|
|
571 |
|
|
572 |
|
|
573 |
corollary head_one_more_simp:
|
|
574 |
shows "map rsimp (r # rs) = map rsimp (( rsimp r) # rs)"
|
|
575 |
by (simp add: rsimp_idem)
|
|
576 |
|
|
577 |
|
|
578 |
|
|
579 |
|
|
580 |
lemma basic_regex_property1:
|
|
581 |
shows "rnullable r \<Longrightarrow> rsimp r \<noteq> RZERO"
|
|
582 |
apply(induct r rule: rsimp.induct)
|
|
583 |
apply(auto)
|
|
584 |
apply (metis idiot idiot2 rrexp.distinct(5))
|
|
585 |
by (metis der_simp_nullability rnullable.simps(1) rnullable.simps(4) rsimp.simps(2))
|
|
586 |
|
|
587 |
|
|
588 |
|
|
589 |
lemma no_alt_short_list_after_simp:
|
|
590 |
shows "RALTS rs = rsimp r \<Longrightarrow> rsimp_ALTs rs = RALTS rs"
|
|
591 |
by (metis bbbbs good1 k0a rrexp.simps(12))
|
|
592 |
|
|
593 |
|
|
594 |
lemma no_further_dB_after_simp:
|
|
595 |
shows "RALTS rs = rsimp r \<Longrightarrow> rdistinct rs {} = rs"
|
|
596 |
apply(subgoal_tac "good (RALTS rs)")
|
|
597 |
apply(subgoal_tac "distinct rs")
|
|
598 |
using rdistinct_on_distinct apply blast
|
|
599 |
apply (metis distinct.simps(1) distinct.simps(2) empty_iff good.simps(6) list.exhaust set_empty2)
|
|
600 |
using good1 by fastforce
|
|
601 |
|
|
602 |
|
|
603 |
lemma idem_after_simp1:
|
|
604 |
shows "rsimp_ALTs (rdistinct (rflts [rsimp aa]) {}) = rsimp aa"
|
|
605 |
apply(case_tac "rsimp aa")
|
|
606 |
apply simp+
|
|
607 |
apply (metis no_alt_short_list_after_simp no_further_dB_after_simp)
|
|
608 |
by simp
|
|
609 |
|
|
610 |
|
|
611 |
|
|
612 |
|
|
613 |
|
|
614 |
(*equalities with rsimp *)
|
|
615 |
lemma identity_wwo0:
|
|
616 |
shows "rsimp (rsimp_ALTs (RZERO # rs)) = rsimp (rsimp_ALTs rs)"
|
|
617 |
by (metis idem_after_simp1 list.exhaust list.simps(8) list.simps(9) rflts.simps(2) rsimp.simps(2) rsimp.simps(3) rsimp_ALTs.simps(1) rsimp_ALTs.simps(2) rsimp_ALTs.simps(3))
|
|
618 |
|
|
619 |
|
|
620 |
|
|
621 |
|
|
622 |
|
|
623 |
|
|
624 |
|
|
625 |
(*some basic facts about rsimp*)
|
|
626 |
|
|
627 |
unused_thms
|
|
628 |
|
|
629 |
|
|
630 |
end |